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Abstract

Background

The correct estimation of fibre orientations is a crucial step for reconstructing human brain

tracts. Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques

(bedpostx) is able to estimate several fibre orientations and their diffusion parameters per

voxel using Markov Chain Monte Carlo (MCMC) in a whole brain diffusion MRI data, and it is

capable of running on GPUs, achieving speed-up of over 100 times compared to CPUs.

However, few studies have looked at whether the results from the CPU and GPU algorithms

differ. In this study, we compared CPU and GPU bedpostx outputs by running multiple trials

of both algorithms on the same whole brain diffusion data and compared each distribution of

output using Kolmogorov-Smirnov tests.

Results

We show that distributions of fibre fraction parameters and principal diffusion direction

angles from bedpostx and bedpostx_gpu display few statistically significant differences in

shape and are localized sparsely throughout the whole brain. Average output differences

are small in magnitude compared to underlying uncertainty.

Conclusions

Despite small amount of differences in output between CPU and GPU bedpostx algorithms,

results are comparable given the difference in operation order and library usage between

CPU and GPU bedpostx.
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Background

Recent human brain MRI data sizes are continuing to increase as large imaging data reposito-

ries curate structural, functional and diffusion data with higher spatial resolution, faster tem-

poral sampling, and higher angular [1–3]. Performing image analysis on such dataset is

computationally expensive, even with clusters of CPUs working simultaneously on a single

dataset [4]. By contrast, graphics processing units (GPUs) have a massively parallel structure

designed with hundreds of smaller cores optimized to exploit the data level parallelism of cer-

tain applications, utilizing simpler instruction sets and distributing them over multiple cores

[5, 6]. This parallelization can accelerate computationally slow processes such as data visualiza-

tion, stochastic iteration, and Bayesian simulations including probabilistic tractography [2, 4–

10]. A popular tool in estimating diffusion parameters for whole brain diffusion MRI is avail-

able to be run on both CPU or GPU, with GPU algorithm achieving over 100 times speed-up

compared to its CPU algorithm [6, 11, 12]. Despite the GPU’s advantages in acceleration, few

studies have examined whether there are differences in computational output from the CPU

and GPU. In general, checking for output convergence between CPU and GPU results is

important for several reasons. First, CPU and GPU both have double-precision capabilities in

their compilation and runtime libraries, but the optimization of performance and speed-up of

GPU binaries may restrict them to using single-precision libraries which can cause results to

be different due to float-point precision differences [13, 14]. Secondly, there are differences in

the CPU and GPU random number generators and operation orders in implementing Markov

Chain Monte Carlo (MCMC) [15–17]. For GPU results to be used interchangeably with exist-

ing CPU algorithms, the GPU algorithm should produce results that are reproducible and con-

vergent with results obtained by the CPU algorithm. For example, Hernandez-Fernandez

et al., compared the mean of a few representative diffusion weighted voxel values in a repeated

test between CPU and GPU and found almost identical results [6]. However, their study did

not report on CPU/GPU differences in contiguous within-slice voxels or multi-slice brain

data. The current study aims to extend these findings by comparing sampled distribution

shapes of CPU and GPU Bayesian estimation of diffusion parameters in a whole brain dataset.

This paper is organized as follows. Brief introductions of diffusion MRI and Bayesian esti-

mation of diffusion parameters are given. Then, the complete methodology of output compari-

son technique is described. Results of output comparison are presented for each diffusion

parameter type, and then, we give our conclusions and discussions

Diffusion MRI and bayesian estimation

Diffusion MRI (dMRI) is a useful tool in visualizing the white matter connectivity of the brain

and is widely used in both research and clinical contexts. dMRI is sensitive to molecular diffu-

sion of water and enhances the anisotropy—the directional dependence—of neuronal white

matter fibre tracts, which can be used to create fractional anisotropy maps, mean diffusivity

maps and fibre pathways [18, 19]. A commonly used method to estimate the fibre orientations

and reconstruct the brain tracts in vivo is to use the FMRIB Software Library’s (FSL) “Bayesian

estimation of diffusion parameters” (bedpostx) and “probabilistic tracking of crossing fibres”

(probtrackx) algorithms. In brief, bedpostx employs a Markov Chain Monte Carlo sampling

technique to estimate the posterior probability density functions (PDF) of the diffusion param-

eters utilizing the “ball-and-stick” model which takes into account multiple fibre orientations

in a given voxel where appropriate [11, 12]. This allows the resolving of within-voxel fibre

crossings, which is a common hurdle during the fibre tracking step, by fitting more than one

fibre orientation in a given voxel only when it is relevant to do so. This feature is the “auto-

matic relevance determination” (ARD) algorithm in bedpostx [11] which initially sets the
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additional fibre fractions in secondary orientations to zero with low variance, and iteratively

estimates the variance separately so that when the additional fibre orientation is supported by

the data, the additional fibre fraction can take a non-zero value with a larger variance. bedpostx
uses the Levenberg-Marquardt (L-M) fit to initialize parameters by minimizing the sum of

squared model residuals, similar to fitting a diffusion tensor model, then, it proposes a value

for each parameter, drawing from Normal proposal distribution, calculates the likelihood

term, and accepts or rejects the proposed value based on a Metropolis acceptance criterion.

When employing the ball-and-stick model where the isotropic compartment is fitted with a

mean value within a voxel (i.e. model = 1), bedpostx gives the following PDF distributions for

each voxel as output: diffusivity value (d), baseline signal (S0), weight of each fibre orientation’s

contribution to anisotropic diffusion signal (stick), also known as fibre fraction values (f1, f2,

etc.), and each fibre orientation’s directional angles expressed in polar coordinates (ϕ1, θ1, ϕ2,

θ2, etc). These PDFs are then randomly sampled by probtrackx to create fibre streamlines

through stochastic propagation of multiple particles through the diffusion space [11, 12].

Because bedpostx processes each voxel serially in the CPU, an extensive amount of computa-

tional time is required to obtain the PDFS, which makes it impractical for utilization in a clini-

cal medical environment where a computing cluster may not be available [20, 21]. To alleviate

this problem, and to reduce computational time substantially FSL provides a GPU-based paral-

lelized version of bedpostx, called bedpostx_gpu [6]. Here, the L-M initialization and MCMC

sampling are parallelized such that multiple voxels are processed simultaneously. Difference in

operation order exists between bedpostx and bedpostx_gpu such that, in the GPU, L-M initiali-

zation for the entire brain is done first, then MCMC sampling are done for the entire brain,

whereas in the CPU, L-M initialization and MCMC sampling are done in sequential order for

each voxel. We know of no study to date that has quantitatively examined output similarities

and differences between the bedpostx and bedpostx_gpu algorithms in a whole-brain DTI data-

set. Further, because the PDF distributions obtained from bedpostx is used in obtaining fibre

streamlines in probtrackx and not their mean values, differing distributional shapes between

the two algorithms can also cause bias in output fibre tracking using probtrackx. This study

aims to compare the output of bedpostx and bedpostx_gpu and report on output PDF distribu-

tion (f1, f2, ϕ1, θ1, ϕ2, θ2) shape difference, magnitude of difference in mean value and underly-

ing uncertainty value.

Methods

Computational resources

bedpostx was used for output comparison with the GPU version bedpostx_gpu, both from FSL

6.0.5 package running on Ubuntu 20.04 LTS. The CPU version ran on a workstation with a

dual Intel Xeon X5670 2.93 GHz CPU with 6 x 4-GB DDR3-1333 memory, and 24 threads.

The GPU version ran on a workstation with one NVIDIA Tesla C2075 with 448 CUDA cores,

6-GB GDDR5 dedicated memory, PCIe x16 bus, CUDA 8.0 with driver version 390.144.

Data

Diffusion data from the MGH-USC Human Connectome Project (HCP) Image & Data

Archive portal (https://ida.loni.usc.edu/), subject: mgh1005, was used for running multiple tri-

als of bedpostx and bedpostx_gpu. The full dMRI data consist of directional volumes acquired

in multiple shells (b = 0,1000,3000,5000,10000) but for our work, a single shell from the full set

was used for analysis: motion and eddy corrected, b = 1000, 64 directional volumes and 6 non-

directional volumes, 1.5mm isotropic, 140x140x96. This was chosen because most clinical and

research studies have access to a similar single-shell dMRI acquisition method and the
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resulting data can still support multi-fibre modeling of bedpostx algorithms. T1-weighted ana-

tomical scan of the same subject was segmented [22] to derive binary masks of grey matter,

white matter and cerebrospinal fluid, then co-registered to the diffusion data [23, 24]. These

masks were used to quantify how many significantly different distributions were localized in

each tissue class. Analysis was repeated on a different HCP subject data, mgh1001, to assess

reproducibility of comparison results.

In the absence of ground truth data, a whole brain synthetic dMRI data was generated

using the ball-and-stick model through Dipy 0.16.0 [25] by the following. First, a single run of

bedpostx on the CPU was done on subject mgh1005’s dMRI data to produce mean values of

diffusion parameters d, S0, f1, f2, ϕ1, θ1, ϕ2, θ2. Then, these mean values were used to recreate a

simulated dMRI data with two fibre fractions and mean principal diffusion directions for each

voxel. Finally, the simulated dMRI data was used to run bedpostx on CPU and GPU 20 times

to generate 1000 samples of diffusion parameters with the goal of comparing the resulting sam-

ple mean values against the input mean values used for creating the simulated data. The ran-

dom number generator seed used for generating the simulated data was different than to those

used to generate these samples.

bedpostx PDF creation

Specified bedpostx and bedpostx_gpu input parameters are: 2250 MCMC iterations, of which

during the latter 1250 iterations, parameter values were recorded to PDF every 25 iterations,

resulting in 50 samples per PDF; monoexponential model (i.e. fit with mean diffusivity) with

ARD fitting 2 fibres per voxel where appropriate. 20 trials of bedpostx and bedpostx_gpu were

run with different random number generator seeds and output distributions from all trials

were merged together to form 1000 samples per parameter PDF for bedpostx and for bed-
postx_gpu. Furthermore, to inspect differences in L-M initialization between bedpostx and bed-
postx_gpu, 20 trials of each algorithm were run again but with 1 iteration to record 1 sample

close to the initializing value.

PDF distribution comparison and statistical analysis

PDF shape was statistically compared via two-sample Kolmogorov-Smirnov (KS) test to derive

voxels that have different distributions between CPU and GPU (two-tailed, p< 0.05, uncor-

rected). Family-wise error rate was controlled by the Bonferroni method [26]. Voxels with sig-

nificantly different distributions were then further categorized by their KS-scores (S) in 4

different ranges: 0.1–0.2, 0.2–0.3, 0.3–0.4,> 0.4. S scores illustrate the amount of sample devia-

tion (e.g. S = 0.35, 35% of samples differ between two distributions). For f1 and f2, CPU mean

values along with absolute difference in mean CPU/GPU values were calculated and averaged

for each S range. For angles, mean, standard deviation and median difference in principal dif-

fusion directions (PDD) along with 95th-percentile cones of angular uncertainties (CAUs)

were calculated in voxels with at least one significantly different angle parameter for each pairs

(i.e. ϕ1 OR θ1, ϕ2 OR θ2). Maximum S score between the [ϕ,θ] pair was used when categorizing

significantly different angle parameters into different S-ranges.

Effect of mixed fibre fraction and orientation samples near crossing-fibre

areas

Fibre fraction parameters (f1, f2, etc.) and their associated orientations (ϕ1θ1,ϕ2θ2, etc.) could

be inconsistently associated with the different underlying sub-fibre populations, especially if

the fibre fractions are of comparable strength [27]. This can cause differing proportions of

fibre fraction and orientation values to be labeled as one group (e.g. f1,ϕ1θ1) but labeled as
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another on the next trial (e.g. f2,ϕ2θ1). There is no guarantee that the labeling happens consis-

tently and because we are merging samples from 20 different bedpostx and bedpostx_gpu trials

to form the PDF distributions for comparison, it is possible that differences between the two

platforms occur due to the this inconsistent labeling of sub-fibre populations. To investigate

this effect of mixed fibre fractions and how much it may contribute to CPU and GPU output

differences, we swapped f1,ϕ1θ1 and f2,ϕ2θ2 where f2> f1 and ran the same statistical analysis

on the swapped samples and compared the results against statistically different unswapped

samples.

Results

Difference in L-M initialization

Example L-M initialization difference map is shown in Fig 1 with difference greater than 1% of

mean CPU values color coded. Diffusivity and baseline signal (d, S0) have increased difference

towards the center of the brain, and f2, ϕ2, and θ2 have greater amount of different voxels com-

pared to f1, ϕ1 and θ1.

f1

About 1% of total number of brain voxels (5145 of 436738) had significantly different f1 distri-

butions. Significantly different voxels were sparsely localized throughout the brain bilaterally.

Of the significantly difference voxels, 1% were found outside the three tissue class binary

masks, 2% were found in cerebrospinal fluid, 34% were found in grey matter and 63% were

found in white matter. The latter were located in long white matter projections, such as corpus

callosum, corona radiata, internal capsules and anterior and posterior thalamic radiations (Fig

2). Number of significant voxels, mean CPU f1, absolute average differences in mean f1, and

absolute average difference in L-M initialization in each S-score regions are summarized in

Table 1.

Majority of voxels had S-scores less than 0.3 (5101 out of 5139). Example PDF distribution

shapes of CPU and GPU in significant voxels are shown in Fig 3. The largest S-score of 0.788

was found in the body of corpus callosum. Here, both f1 distributions have peaks near 0.99.

CPU data had a sharper peak, with all samples above 0.9. Fewer GPU samples are above 0.9,

with the remainder between 0.4 and 0.9. Here, average f1 initialization across 20 trials by CPU

L-M was 0.998 while average f1 initialization by the GPU L-M across 20 trials was 0.605. Larger

average L-M initialization differences were noted for larger S-score. After adjusting for f2>f1
samples by swapping, 740 voxels were no longer significantly different.

Similar results were found on another subject with significantly different f1 voxels sparsely

located throughout the whole brain. 4128 voxels were different with an average difference in

magnitude at 0.0257. The magnitude of differences in mean f1 values in CPU and GPU were

24.23% and 24.25% of simulated f1 values respectively in the whole brain. Within the white-

matter only, the differences were both 8.27% of simulated f1 values.

f2

31% of total number of brain voxels (137240 out 436738) had significantly different f2 distribu-

tions. Significantly different distributions were localized in grey matter (50%), cerebrospinal

fluid (19%) and white matter (18%). For the white matter, they were localized in long white

matter projections similar to those identified in f1.

89% of significant voxels had CPU or GPU mean f2 values lower than 0.05, predominantly

in areas with grey matter and cerebrospinal fluid, likely the effect of ARD estimating f2 to zero
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in both bedpostx and bedpostx_gpu. To focus analysis on areas where f2 is supported by data,

we reported mean CPU f2, absolute average differences in mean f2, and absolute average differ-

ence in L-M initialization in each S-score regions only on areas with mean f2 from CPU or

GPU greater than or equal to 0.05 (Table 2).

This was the same threshold chosen by [11] when looking for secondary fibre orientations

supported by ARD (Fig 4). Here, most significantly different voxels were localized in grey/

Fig 1. CPU and GPU L-M initialization difference map. L-M initialization difference between CPU and GPU.

Orange-yellow colors are CPU> GPU regions, and blue-light blue colors are GPU> CPU regions. Difference in

scalar maps are thresholded at a magnitude of 1% with respect to mean CPU values.

https://doi.org/10.1371/journal.pone.0252736.g001
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white matter junctions. Some were sparsely found bilaterally within identifiable structures

such as corpus callosum, corona radiata, internal capsule, anterior and posterior thalamic

radiations.

The majority of significant f2 distribution differences had S-scores < 0.3 (13992 out of

14423). One example of a voxel exhibiting a large PDF difference in f2 is depicted in Fig 5,

where S-score = 0.415 which is the same location as the largest S-score found in Fig 4

(magenta).

Fig 2. Significantly different f1 map. Significantly different f1 overlaid on mean f1 image. S-score ranges are in: 0.1–

0.2 = blue, 0.2–0.3 = light blue, 0.3–0.4 = green,> 0.4 = magenta (enlarged view from area in red-square).

https://doi.org/10.1371/journal.pone.0252736.g002
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Here, the distribution shows a higher peak near f2 = 0 in the GPU distribution and lower

counts of samples between 0.05 and 0.2. In the CPU, there is a smaller peak near f2 = 0 with a

larger counts of samples between 0.05 to 0.2. The CPU L-M initialization step estimated f2 =

0.143 averaged across 20 trials while GPU L-M initialization step had f2 = 0.273 across 20 trials.

Similar to f1, larger average L-M differences were found for larger S ranges. After adjusting for

f2>f1 samples, 836 voxels were no longer significantly different, and of these voxels, 680 were

in areas with mean f2 from CPU or GPU greater than or equal to 0.05.

Similar results were found in another subject where total number of significantly different

f2 voxels with mean f2> 0.05 was 15129, and mean magnitude difference at 0.0302. The mag-

nitude of differences in mean f2 values in CPU and GPU were both 35.79% of simulated f2 val-

ues where simulated f2> 0.05. Within the whitematter only, the differences were 17.98% and

18.00% of simulated f2 for CPU and GPU, respectively.

ϕ1 and θ1

198166 out of 436738 total brain voxels had significantly different ϕ1 or θ1 distribution. Signifi-

cantly different distributions were localized predominantly in areas of grey matter (50%) and

cerebrospinal fluid (21%). They were also found in the white matter (15%), with some key

white matter structures such as corpus callosum, internal capsules, corona radiata and anterior

and posterior thalamic radiations containing significantly different distributions (Fig 6).

Mean and median angle differences, and average 95th percentile CAUs for each S-score

range are tabulated in Table 3.

Again, the majority of these voxels have S< 0.3 (183714 out of 196081). Mean difference in

angles of principle diffusion directions in all significantly different voxels was 2.194˚

(stdev = 4.232˚) while the median difference was 1.064˚. In all significantly different ϕ1 and θ1

voxels, the average angular difference between the 95th percentile CAUs for CPU and GPU is

0.013˚ (CPU 53.224˚; GPU 53.211˚; see Table 3). Because ϕ1 and θ1 parameters are more

meaningful in white-matter where anisotropy is higher, angular differences and 95th percentile

CAUs for each S-score range in white-matter only are tabulated in Table 4.

Overall, higher average difference in mean PDD and lower CAUs were found in signifi-

cantly different voxels confined to the white-matter. An example distributions of ϕ1 and θ1 is

shown in Fig 7. The depicted distributions in Fig 7 came from a voxel located in the corpus cal-

losum (marked by � in Fig 6.) with S score = 0.501. In this voxel, two sharp peaks were found

for CPU ϕ1 samples whereas only a single peak was found for GPU whose location coincided

with one of CPU’s peak values. For θ1 samples, GPU only had one sharp peak, whereas CPU

had three peaks, one of which was similar to the GPU. The effect of distribution shape differ-

ence on diffusion direction is illustrated in Fig 8. It is noted that while the GPU principal

Table 1. Significantly different f1 distributions.

S score (# of
voxels)

Average Mean f1 CPU
(stdev)

Average |Mean f1 CPU–Mean f1
GPU|

Average |L-M CPU–L-M
GPU|

0.1–0.2 (4487) 0.3320 (0.1606) 0.0179 0.0008
0.2–0.3 (614) 0.4061 (0.1555) 0.0337 0.0007
0.3–0.4 (42) 0.4457 (0.1656) 0.0572 0.0196
> 0.4 (2) 0.6459 (0.4800) 0.1439 0.1972
All 0.3419 (0.1623) 0.0202 0.0010

Significantly different f1 distributions: for each S-score range, averaged mean f1 of CPU distributions, averaged

absolute difference in mean f1 and averaged absolute difference in L-M initialization are tabulated.

https://doi.org/10.1371/journal.pone.0252736.t001
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diffusion directions are all estimated similarly, CPU principal diffusion directions have two

separate clusters that are located antiparallel to each other.

Adjusting for f2> f1, 18231 voxels became not significantly different and of these, 6755

were in the white-matter.

Similar results were found in another subject’s data with 190602 significantly different ϕ1,θ1

voxels with average mean PDD difference 2.559˚, with 95-percentile CAUs of 38.943˚ and

38.838˚ for CPU and GPU respectively. Compared to simulated data’s mean principal direc-

tion, both CPU and GPU produced 8.2˚ mean difference and 3.9˚ median difference in the

white matter.

Fig 3. Example PDF distribution shape difference of f1. Example PDF distribution shape differences of significantly

different f1.

https://doi.org/10.1371/journal.pone.0252736.g003

Table 2. Significantly different f2 distributions.

S score (# of
voxels)

Average Mean f2 CPU
(stdev)

Average |Mean f2 CPU—Mean f2
GPU|

Average |L-M CPU—L-M
GPU|

0.1–0.2 (10390) 0.1211 (0.0576) 0.0206 0.0010
0.2–0.3 (3602) 0.1082 (0.0477) 0.0344 0.0011
0.3–0.4 (406) 0.1073 (0.0490) 0.0550 0.0012
> 0.4 (25) 0.1051 (0.0428) 0.0753 0.0104
All 0.1175 (0.0554) 0.0252 0.0010

Significantly different f2 distributions where mean f2 in CPU or GPU > 0.05: for each S-score range, averaged mean

f2 of CPU distributions, averaged absolute difference in mean f2 and averaged absolute difference in L-M

initialization are tabulated

https://doi.org/10.1371/journal.pone.0252736.t002
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ϕ2 and θ2

224337 out of 436738 total brain voxels had significantly different ϕ2 or θ2 distributions. Signif-

icantly different distributions were localized in grey matter (51%), cerebrospinal fluid (16%)

and white matter structures (22%) such as corpus callosum, corona radiata, internal capsule,

and the anterior and posterior thalamic radiations (Fig 9). Mean and median angle differences

along with 95th percentile CAUs for each S-score range are tabulated in Table 5. Again, most

voxels have S-scores < 0.3 (213437 out of 223309).

Overall mean difference in principle directions is 36.776˚ with median difference of

29.397˚. Average angular uncertainty is 83.490˚ for both CPU and GPU.

With ϕ2 and θ2, it is more meaningful to focus on white matter and areas where f2> 0.05

(i.e. where ARD has deemed appropriate to fit a second fibre orientation). Mean PDD

Fig 4. Significantly different f2 map where f2>0.05. Significantly different f2 with mean f2 in CPU or GPU> 0.05. S-

score ranges are in: 0.1–0.2 = blue, 0.2–0.3 = light-blue, 0.3–0.4 = green,> 0.4 = magenta (enlarged view from area in

red-square).

https://doi.org/10.1371/journal.pone.0252736.g004
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difference and 95th-percentile CAUs in the white-matter and f2 > 0.05 for each S-score range

are tabulated in Table 6.

Like ϕ1 and θ1, the CAUs were lower when focusing in on the white matter region. Also,

the difference in mean PDD was lower for each S-score range. Distributions of PDDs derived

from ϕ2, θ2 samples as well as ϕ1, θ1 in a representative voxel with S = 0.453 for ϕ2, θ2 and

S = 0.451 for ϕ1, θ1 near the right dorsolateral frontal are illustrated in Fig 10. There were two

clusters of PDD formed by [ϕ1, θ1] and [ϕ2, θ2] for both CPU and GPU. Here, it was observed

that majority of CPU’s [ϕ1, θ1] samples (N = 600) and GPU’s [ϕ2, θ2] samples (N = 850) had

similar PDD distributions (angular difference between average PDDs of 2.04˚) while CPU’s

[ϕ2, θ2] samples had similar PDD distribution with GPU’s [ϕ1, θ1] (angular difference between

average PDDs of 1.85˚). It was noted that this voxel had mean f1 = 0.32 and mean f2 = 0.31 for

both CPU and GPU, indicating that two fibre orientations were viable.

For each S-score range, average of mean PDD difference, standard deviation of mean PDD

difference, median of mean PDD difference and 95th-percentile cone of angular uncertainty

are tabulated for significantly different voxels found in the white-matter where mean f2> 0.05.

In another subject, similar results were found for ϕ2,θ2 distributions where 213212 voxels

were significantly different with mean PDD difference of 37.161˚. In the white matter where

mean f2 > 0.05, the mean PDD difference was 7.433˚ with 75.2˚ 95th-percentile CAUs for both

CPU and GPU. Compared to simulated data’s mean principal direction, both CPU and GPU

produced 18.4˚ mean difference and 8.5˚ median difference in the white matter where simu-

lated f2 values were> 0.05

Discussions and conclusions

A total of 2620428 pairs of distributions were created and compared across the whole brain.

78% of those distributions showed no significant difference between CPU and GPU. Of the

significantly different distributions, 13% were localized outside the three tissue class binary

Fig 5. Example distribution shape difference in f2. Example distribution shape differences in f2. Red squares with

dotted line denotes GPU samples and blue circles with dotted line denotes CPU samples.

https://doi.org/10.1371/journal.pone.0252736.g005
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masks, 50% were localized in grey matter, 18% in cerebrospinal fluid, and 19% in white matter,

localized within the corpus callosum in the midline, and bilaterally within the corona radiata,

internal capsule, and the anterior and posterior thalamic radiations. When analysis was

repeated on another subject, similar results were observed. Significantly different f1 distribu-

tions in a prominent white-matter structure, such as the body of corpus callosum in the mid-

line as displayed in Fig 2 (magenta label), have been noted with more than half of the samples

produced by CPU and GPU differing in value. In general, the corpus callosum contains a well-

Fig 6. Significantly different ϕ1 and θ1. Significantly different ϕ1 and θ1 distributions with S-ranges in 0.1–0.2 (Blue),

0.2–0.3 (light-blue), 0.3–0.4 (green),> 0.4 (magenta). Maximum S-score between ϕ1 and θ1 was used to categorize

each location into different range (enlarged view from area in red-square).

https://doi.org/10.1371/journal.pone.0252736.g006
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defined fibre bundle in the Left-to-Right orientation and thus we expected a higher f1 with

lower uncertainty. Instead, we observed that CPU estimated all samples to be> 0.9, while the

GPU had a larger spread of samples between values of 0.4 and 0.9. Since the corpus callosum

in human brain would generally be found near the centre of the whole brain diffusion data, the

relative operation order at which this voxel gets processed between the CPU and GPU would

have differed greatly (earlier in GPU vs. later in CPU), and this may explain why significant

difference was observed even in a prominent structure such as the corpus callosum. We also

examined the initialization stages of L-M fit and noted that the results differed between CPU

and GPU. For the L-M fit algorithm between CPU and GPU, the difference in operation order

of when a particular voxel gets initialized is less impactful since L-M fit simply minimizes

sum-of-squared residuals [6]. However, the different CPU and GPU-CUDA math libraries

can result in different initialization values. Although GPU-CUDA math operations are dou-

ble-precision capable [14], increased peak performance (e.g. higher speed-up) is found when

single-precision operations are used in their place which may differ in precision compared to

CPU math operations [28]. Our findings from Tables 1 and 2 show that larger L-M initializa-

tion difference at the start of MCMC sampling results in larger S-scores in significantly differ-

ent distributions. This suggests that differences in PDF samples appeared to be stemming from

a combination of the following: 1) differing starting points after the L-M fit, 2) differing opera-

tion order and 3) difference in math library. It is also observed that the L-M initialization dif-

ference maps (Fig 1) spatially resemble the inverse of a typical SNR map from a multi-channel

MR head-coil [29, 30]. Though we did not directly compare the SNR map of this dataset with

L-M differences, we note and speculate that the larger difference in L-M initialization values

between CPU and GPU that are mostly found near the inner most structure of the brain could

be possible due to less SNR typically found in this region of the brain due to the head-coil SNR

Table 3. Significantly different ϕ1, θ1.

S score (# of voxels) Average Δmean PDD Stdev Δmean PDD Median Δmean PDD Mean 95th-percentile CAU
CPU GPU

0.1–0.2 (112319) 2.186° 4.261° 1.053° 51.126° 51.092°
0.2–0.3 (71395) 2.186° 4.107° 1.075° 55.523° 55.523°
0.3–0.4 (12840) 2.280° 4.465° 1.080° 58.256° 58.307°
> 0.4 (1612) 2.482° 5.508° 1.055° 57.509° 57.855°
All 2.194° 4.232° 1.064° 53.224° 53.211°

For each S-score range, average of mean PDD difference, standard deviation of mean PDD difference, median of mean PDD difference and 95th-percentile cone of

angular uncertainty are tabulated.

https://doi.org/10.1371/journal.pone.0252736.t003

Table 4. Significantly different ϕ1, θ1 in the white-matter.

S score (# of voxels) Average Δmean PDD Stdev Δmean PDD Median Δmean PDD Average 95th-percentile CAU
CPU GPU

0.1–0.2 (18753) 2.286° 3.297° 1.285° 37.973° 37.991°
0.2–0.3 (8996) 3.316° 4.895° 1.586° 44.925° 44.889°
0.3–0.4 (1419) 4.890° 7.303° 1.715° 48.315° 48.240°
> 0.4 (188) 6.052° 11.896° 1.066° 40.770° 41.438°
All 2.751° 4.277° 1.381° 40.621° 40.622°

For each S-score range, average of mean PDD difference, standard deviation of mean PDD difference, median of mean PDD difference and 95th-percentile cone of

angular uncertainty are tabulated.

https://doi.org/10.1371/journal.pone.0252736.t004
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profile. This could also possibly explain why large difference was even noted in prominent

white matter such as body of corpus callosum: the scan orientation is such that this structure is

farther away from the head-coil elements. It could be possible to reduce the amount of differ-

ences between the two algorithms by acquiring data with higher SNR as much as possible, or

to use DWI post-processing steps to estimate and reduce the noise (e.g. MRTrix dwidenoise)
from the data before starting the parameter estimation step [31]. In the absence of ground-

truth data to compare, we have created simulated ball-and-stick whole brain data using [25] to

Fig 7. Distribution shape of ϕ1 and θ1. Distributions of ϕ1 and θ1 that are significantly different were derived from

one representative voxel with a particularly high S-score of 0.501. The voxel was located within the corpus callosum.

Red squares and line denote GPU samples while blue circles and line denote CPU samples.

https://doi.org/10.1371/journal.pone.0252736.g007
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establish a benchmark error margins in output parameters of CPU and GPU. We found that

for all bedpostx parameters, CPU and GPU both produced samples with similar magnitude of

differences against the simulated data. This suggests that CPU and GPU would perform similar

to each other when estimating against a ground-truth data, if available. We found that S-scores

of significantly different distributions were no greater than 0.3 for 94% of significantly differ-

ent distributions, i.e. 30% or less samples caused the difference. Distributional shape differ-

ences were characterized by: a) peak height differences for fibre fractions and b) number of

peaks and peak value differences for diffusion direction angles. Larger difference in shape

resulted in larger difference in mean values or principle diffusion direction angles. Mean angu-

lar differences in principle diffusion directions were 2.751˚ and 36.776˚ for significantly differ-

ent [ϕ1,θ1] and [ϕ2,θ2] respectively. Their 95th percentile CAUs were 53.2˚ and 83.5˚

respectively. We see the effect of larger CAUs, especially for [ϕ2,θ2], stemming from angle sam-

ples that are antiparallel to each other or interchangeable angle samples between two viable

sub-fibre population. We saw from Fig 8 that between CPU and GPU, one may produce coher-

ent PDD (e.g. GPU samples from Fig 8) while the other produce two clusters of PDD that are

located antiparallel to each other (e.g. CPU samples from Fig 8). Also, as depicted from Fig 10,

two viable sub-fibre populations in a region where crossing-fibres are present can be misla-

beled between CPU and GPU and thus create larger angular differences and uncertainties.

When swapping those fibres to align for correct sub-fibre population, the differences between

PDDs decreased overall. Algorithms such as probtrackx does tract streamlining with tract

propagation constraints that propagate streamlines smoothly, and avoid internal looping or

Fig 8. Distribution of principal diffusion directions. The effect of distribution shape difference in ϕ1, θ1 samples on

principal diffusion directions is illustrated in 3d plot. Red squares denote GPU samples while blue circles denote CPU

samples.

https://doi.org/10.1371/journal.pone.0252736.g008

PLOS ONE CPU and GPU bedpostX output comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0252736 April 21, 2022 15 / 21

https://doi.org/10.1371/journal.pone.0252736.g008
https://doi.org/10.1371/journal.pone.0252736


sharp turns. This is achieved by treating antiparallel angles as the same (i.e. multiplying anti-

parallel angles by -1 prior to propagation), and sampling from fibre-population that has mini-

mal angular difference from previous propagation direction. These constraints would

effectively allow consistent tract streamlines to be produced from CPUs and GPUs, despite the

difference in PDF distributional shapes in the PDD angles. Previously, Jbabdi et al. have

reported similar inconsistency in sub-fibre population labeling in bedpostx and they consoli-

dated the orientations of sub-fibres by performing a swaping operation, similar to our method

of swapping the angular samples where f2>f1 [27] which resulted in better aligned mean direc-

tions between CPU and GPU. We note that one of the limitations of this current work is that

there was no investigation into effect of using multi-shell models while doing the comparisons.

Fig 9. Significantly different ϕ2 and θ2. Significantly different ϕ2 and θ2 distributions with S-ranges in 0.1–0.2 (Blue),

0.2–0.3 (light-blue), 0.3–0.4 (green),> 0.4 (magenta). Maximum S-score between ϕ2 and θ2 was used to categorize

each location into different range (enlarged view from area in red-square).

https://doi.org/10.1371/journal.pone.0252736.g009
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It is reasonable to suggest that with higher b-values there will be better angular resolutions

which might lead to better agreement between CPU and GPU results. The challenge in investi-

gating this would be that the CPU bedpostx process will take far too long compared to the

GPU as much more data need iterative estimation in a linear fashion, and one would require

the use of multi-core High Power Computing resources to do this type of investigation in a

reasonable amount of time. Still, b = 1000 with a monoexponential model estimation is valu-

able to investigate between CPU and GPU as most clinical MRI can acquire this type of data

with conventional MR system setup and speed-up in bedpostx in the GPU can be most effective

in this type of front-line clinical setting. Another limitation of this work is that the random-

number generator type is not the same between CPU and GPU and thus there is no way of tell-

ing how much effect the random number generators have on the differences observed between

the two algorithms. The authors have looked at preliminary data where the GPU bedpostx
algorithm was modified to use the linear-congruential random number generator to obtain

the same amount of samples and when compared against the CPU samples, they appeared to

have similar amount and magnitude of difference as this current work, which suggests the

effect of random number generator in producing differing results would be small. This would

then lead us to believe that sample differences are more attributable to difference in implemen-

tation of CPU-GPU precision points, math libraries between CPU and GPU-CUDA and more

importantly the operation order: L-M initialization then MCMC sequentially v.s. L-M parallel

then MCMC parallel. As DWI data are collected with greater amount of gradient directions,

combination of different b-values, higher-resolutions, conventional DWI post-processing

steps will require more computational resources to finish processing in a reasonable amount

of time, and GPUs can offer qualitatively the same results with minimal quantitative difference

compared to underlying uncertainty with excellent speed [4]. In summary, although signifi-

cant differences were found between outputs of CPU and GPU bedpostx parameter distribu-

tions, differences may have limited impact upon stochastic tractography with single-shell DTI

Table 5. Significantly different ϕ2, θ2.

S score (# of voxels) Average Δmean PDD Stdev Δmean PDD Median Δmean PDD Average 95th-percentile CAU
CPU GPU

0.1–0.2 (139329) 37.222° 29.403° 34.915° 83.215° 83.217°
0.2–0.3 (74108) 35.832° 29.359° 31.452° 83.954° 83.944°
0.3–0.4 (10184) 37.399° 29.434° 34.635° 83.899° 83.963°
> 0.4 (716) 38.699° 29.378° 36.395° 82.968° 82.964°
All 36.776° 29.397° 33.798° 83.490° 83.490°

For each S-score range, average of mean PDD difference, standard deviation of mean PDD difference, median of mean PDD difference and 95th-percentile cone of

angular uncertainty are tabulated.

https://doi.org/10.1371/journal.pone.0252736.t005

Table 6. Significantly different ϕ2, θ2 in the white-matter.

S score (# of voxels) Average Δmean PDD Stdev Δmean PDD Median Δmean PDD Average 95th-percentile CAU
CPU GPU

0.1–0.2 (16560) 5.718° 9.812° 2.617° 69.024° 69.076°
0.2–0.3 (8736) 7.715° 11.949° 3.481° 73.807° 73.771°
0.3–0.4 (1210) 11.600° 16.677° 4.492° 73.100° 73.226°
> 0.4 (87) 14.084° 20.294° 4.151° 71.539° 70.290°
All 6.668° 11.092° 2.924° 70.789° 70.811°

https://doi.org/10.1371/journal.pone.0252736.t006
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data: a) differences were observed in only 22% of total distributions; b) differences were

sparsely distributed in major tract areas; c) differences in fibre orientations were small com-

pared to background angular uncertainty. The latter appears to arise from antiparallel angles

and random assignment of principle directions in the presence of multiple viable sub-fibre

populations which are not problematic in fibre-tracking using ProbtrackX. It appeared that

the combination of differences in operation orders between CPU and GPU and math-library

differences affects the magnitude of difference between the two algorithms and collecting data

with optimized SNR along with offline post-processing steps to reduce noise level may

improve output consistency between the two algorithms.
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