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Abstract
Genome-wide association studies have identified >10,000 genetic variants associated with various phenotypes and diseases.
Although the majority are common variants, rare variants with >0.1% of minor allele frequency have been investigated by
imputation and using disease-specific custom SNP arrays. Rare variants sequencing analysis mainly revealed have played
unique roles in the genetics of complex diseases in humans due to their distinctive features, in contrast to common variants.
Unique roles are hypothesis-free evidence for gene causality, a precise target of functional analysis for understanding disease
mechanisms, a new favorable target for drug development, and a genetic marker with high disease risk for personalized
medicine. As whole-genome sequencing continues to identify more rare variants, the roles associated with rare variants will
also increase. However, a better estimation of the functional impact of rare variants across whole genome is needed to
enhance their contribution to improvements in human health.

Introduction

Over the last 15 years, genome-wide association studies
(GWAS) have identified >10,000 (common in most cases)
genetic variants associated with various diseases and phe-
notypes [1, 2]. Although the causal variants and genes to
directly increase or decrease different disease risks and
phenotypes remain unknown in most GWAS loci, posi-
tional (and functional) candidate genes in GWAS loci, as
well as integrated analysis with other functional datasets,
have elucidated novel biological pathways involved in a
target disease. Polygenic risk scores per individual suc-
cessfully identified high-risk individuals in a part of com-
plex diseases [3]. In these GWAS, rare variants with lower
minor allele frequency (MAF) (e.g., <1%) have been
examined using a customized SNP array and imputation.
Customized SNP arrays can be used to focus on the rare

variants in the genes of interest for different types of dis-
eases, namely Immunochip array for major autoimmune and
inflammatory diseases [4], Metabochip array for metabolic,
cardiovascular, and anthropometric traits [5], and iCOGS
array for hormone-related cancers [6]. Imputation using
reference panels has been used to infer the genotypes of rare
variants not directly genotyped by SNP arrays [7]. How-
ever, it is not able to analyze all rare variants. Custom arrays
have been used to focus on rare variants in genes of interest,
which are previously identified in European populations [4].
Imputation has a limited accuracy, especially for rarer var-
iants with <0.1% of MAF. This accuracy depends on the
size of the reference panel and genetic background and is
known to be lower in non-European populations [8].

In order to analyze the contribution of rare variants to
complex diseases, all rare variants will need to be identified
by sequencing individuals. Next-generation sequencing
(NGS) now allows for whole-genome sequencing (WGS) to
be performed for under 1000 dollars [9] and WGS studies
have reported on tens of thousands samples [10]. The
importance of rare variants is increasing. The role of rare
variants in the genetics of complex diseases in humans is not a
simple extension of that of common variants—that is, simply
for their association with diseases and phenotypes in WGS-
based association studies. Rare variants have distinctive fea-
tures, including lower linkage disequilibrium with flanking
variants, a higher impact of some rare variants on gene
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function and expression, and a larger population specificity,
with which rare variants play unique roles in the genetics of
complex diseases. In this review, we discuss the roles played
by rare variants in the genetics of complex diseases (Fig. 1),
including especially inflammatory bowel diseases (IBD)
consisting of Crohn’s disease and ulcerative colitis [11], and
hereditary cancers the authors have contributed to.

It is worth noting that the threshold of MAF in rare
variants has not yet been clearly defined. As shown in
Table 1, this threshold varies between 0.1% and 5% in
previous studies. The terms “low-frequency variants” and
“less common variants” are used to indicate variants whose
frequency lies between common variants and rare variants.
However, since the unique roles of rare variants described
in this review are slightly changed according to the
threshold of MAF but generally applicable to any threshold
of MAF, they will be defined where necessary.

Unique roles of rare variants

Hypothesis-free evidence for gene causality

The identification of causal genes responsible for disease
onset is one of the goals of biological research. Various

types of evidence are used to denote gene causality. Among
them, hypothesis-free evidence is obtained by a hypothesis-
free approach in which researchers do not start with a cer-
tain functional hypothesis [12]. GWAS is considered as a
hypothesis-free approach because GWAS systematically
analyzes SNPs across genome without a prior functional
hypothesis. This type of evidence is considered robust
because it does not depend on the accuracy of a prior
functional hypothesis. Rare variants could provide
hypothesis-free evidence for gene causality in complex
diseases.

In 2001, two groups [13, 14] identified three common
variants (p.Arg702Trp, p.Gly908Cys, and p.Leu1007Prof-
sTer2) in NOD2 that independently increased the risk of
Crohn’s diseases [9]. In addition, the French group
sequenced the coding regions of NOD2 in 457 patients with
Crohn’s disease and 103 unaffected individuals to identify
rare nonsynoymous variants. They found that patients had
more rare nonsynonymous variants (17%) than unaffected
individuals (5%). These results suggest that not only three
common variants, but also rare variants, contribute to an
increased risk of Crohn’s disease because linkage dis-
equilibrium between common variants and rare variants is
low. Since the identification of enrichment of rare variants
is conducted without a prior functional hypothesis, rare
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Fig. 1 Unique roles of rare variants in the genetic of complex diseases.
Rare variants have unique roles which are different from common
variants characterized by lower impact on gene function, and higher
linkage disequilibrium with flanking variants. In this manuscript, four

unique roles are discussed, and they contribute to different parts in the
genetics of complex diseases in humans, which ultimately leads to the
improvement of human health
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variants could provide hypothesis-free evidence for gene
causality independent of common variants.

This finding gained further attention around 2008, when
GWAS became more widely reported. Several early GWAS
in 2006 and 2007 [15–18] typically identified a few SNPs
showing genome-wide significant association. Given a low-
expected odds ratio (<1.2), large sample sizes were needed
to improve the identification of SNPs with genome-wide
associations. Three groups combined their GWAS data as a
meta-analysis with adjustment for differences in SNP arrays
by imputation [19] to identify as many as 32 loci (21
additional loci in this meta-analysis) associated with
Crohn’s disease. Meta-analysis for other complex diseases
also identified more loci around the same time, including 30
loci for polygenic dyslipidemia [20] and 10 loci for color-
ectal cancer [21]. Although meta-analysis dramatically
increased the number of loci identified, the causal variants
and genes remained largely unknown. To identify likely
causal genes, various fine-mapping strategies were used,
including expression quantitative trait locus (eQTL), func-
tional annotation of genetic variants, PubMed text mining,
protein–protein interactions, pathway prioritization proto-
col, and Bayesian methods to identify credible sets [22].
Among these, the use of Bayesian methods for the identi-
fication of credible sets [23] and the identification of rare
variant enrichment follow the advantage of the hypothesis-
free approach of GWAS.

Two groups from Belgium [24] and the USA [25] tried to
identify rare variant enrichment in positional candidate
genes (63 and 56 genes, respectively) in IBD using NGS.
IL23R showed that controls had more rare variants than
Crohn’s disease patients [24]. This enrichment was also
observed in ulcerative colitis patients, consistent with
GWAS results [18]. In addition, single rare coding variants
in CARD9, IL18RAP, CUL2, C1orf106, PTPN22, and
MUC19 showed additional associations [25]. As described
in Table 1, the enrichment of rare variants was also inves-
tigated in other complex diseases. Whole exome and gen-
ome sequencing have also been used for IBD and other
complex diseases. Luo et al. identified a novel rare missense
variant in ADCY7 associated with ulcerative colitis [26]. In
addition, IBD genes implicated by causal coding or eQTL
variants showed the enrichment of rare variants in Crohn’s
disease [26]. In the era of WGS, the enrichment of rare
variants has been widely investigated (Table 1).

A statistical method about rare variants was also evolved.
A higher statistical power was obtained in the above ana-
lysis method if all rare nonsynonymous variants were
functional with the same magnitude and direction of
impact on gene function. However, nonsynoymous variants
can be nonfunctional, while others may have opposite
effects in terms of function. Researchers also wanted to
include various covariates such as sex and age into statistics

analysis. As results, various statistical analyses have been
proposed to maintain or increase statistical power in
these different scenarios, which were grouped into four
categories: burden tests, variance-component tests, com-
bined tests, and other tests [27]. Details were reviewed by
Povysil [28].

Statistical analysis is conducted in functional units
because variants in the same functional unit are expected to
show similar functions for the same target. In most cases,
the coding regions of one gene have been used as a func-
tional unit, since a target is the same and the annotation of
variants, including synonymous, nonsynonymous, and loss-
of-function variants, could be reliably determined. Multiple
genes have also be investigated in the form of functional
units, including prior knowledge associated gene sets
[29, 30], sets of candidate genes selected by eQTL [26, 31],
and known pathways [32], although some are not
hypothesis-free approaches. Gene ontology is also used to
characterize genes with variants [33]. Other researchers
have focused on specific regions within a single gene.
Specific known domains [32] and regions with different
missense tolerance ratios [34] are used to identify func-
tionally important parts. In this way, the role of hypothesis-
free evidence for gene causality is being evolved.

Precise target of functional analysis for
understanding disease mechanisms

GWAS and other hypothesis-free genetic analysis methods
are expected to identify unknown mechanisms that cannot
be identified using knowledge-based research. The identi-
fication of causal variants is plausible for further functional
analysis. However, this is difficult, especially for common
variants, since they are generally found in high linkage
disequilibrium with flanking variants. In addition, it is
common to have multiple causal variants, including rare
variants in one GWAS locus. Therefore, it is challenging to
identify a causal variant according to the association pattern.
For example, the IRGM locus was previously identified in a
GWAS on Crohn’s disease, wherein a 20-kb common
deletion 2 kbp upstream of IRGM was considered to be a
likely causal variant due to the fact that it showed perfect
linkage disequilibrium with the highest signal and an eQTL
effect on IRGM [35]. Three years later, a common synon-
ymous variant (c.313C>T) was also considered as a
potential causal variant. This variant also showed perfect
linkage disequilibrium with the highest signal, but had been
disregarded due to lacking an amino acid change. Brest
et al. [36] found that microRNA (miR-196) was over-
expressed in the inflammatory intestinal epithelia of patients
with Crohn’s disease. c.313C>T was located within the seed
region of miR-196 with different IRGM expression under
the control of miR196.

14 Y. Momozawa, K. Mizukami



Similar difficulty was observed in the FTO locus of
individuals with obesity. While a top variant identified by
GWAS was assumed to regulate FTO by a series of func-
tional tests in 2009–2010 [37, 38], in 2014 it was found to
interact with the promoters of IRX3 located several hundred
kilobases away and obesity-associated variants were asso-
ciated with IRX3 expression [39]. Indeed, Irx3-deficient
mice showed a reduction in body weight of 25–30% pri-
marily through the loss of fat mass and increase in basal
metabolic rate with browning of white adipose tissue.
Functional analyses are indispensable for the identification
of the mechanisms of variants in disease onset. However, it
remains difficult for researchers to validate mechanisms
revealed by functional analysis since they are unable to test
all possible mechanisms.

A potential strategy to decrease the possibility of this
type of misinterpretation is to focus on loss-of-function
(LoF) variants, such as nonsense, frame-shift, and splice-
site variants, since the ambiguity about the direction and the
magnitude of impact on gene function is limited. In parti-
cular, rare LoF variants showing significant association with
diseases are ideal. CARD9 in IBD is one such example.
While a common GWAS signal in this locus is considered
to change the expression level of CARD9 [31], IVS11
+1C>G presumably skipping exon 11 was also identified
using target sequencing in candidate genes. The frequencies
in cases and controls were 0.20% and 0.64%, respectively
(P < 1×10−16; odds ratio= 0.29) [25]. A subsequent study
with this rare LoF variant showed that ubiquitin ligase
TRIM62 regulates CARD9-medicated anti-fungal immunity
and intestinal inflammation [40]. Other examples about
functional analysis with rare variants associated with dis-
eases are provided in Table 2.

If researchers were to directly analyze the participants, it
would be possible to deeply understand biological
mechanisms behind genetic associations. Generally,
studies have identified variants associated with phenotypes
in previously collected individuals. When participants are
recruited to a study, the volume of phenotype analysis is
limited due to financial and practical constraints for the
optimal number of participants that ensures the best
statistical power. However, when a specific potentially
causal variant is being studied, recruitment is limited to
participants with the genotypes of interest to allow
researchers for deep phenotyping, which is called Recall-
by-Genotype [41].

One example of the Recall-by-Genotype is TYK2. TYK2
is differentially associated with common autoimmune dis-
eases, including Crohn’s disease, ulcerative colitis, anky-
losing spondylitis, multiple sclerosis, and psoriasis [42].
Dendrou et al. tried to resolve genotype-to-phenotype dif-
ferences in autoimmunity in this locus with a potentially
rare causal variant. They performed fine-mapping to Ta
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identify rs34536443 (p.Pro1104Ala). Among their analyses,
they recalled individuals from the Oxford BioBank for
blood donation in a balanced, age- and sex-matched fashion
based on preselected heterozygotes and homozygotes of a
minor allele. In their study, peripheral blood mononuclear
cells were separated into CD3+ T cells, CD4+ T cells,
CD8+ T cells, CD19+ B cells, and CD14+ monocytes,
followed by cytokine stimulations of peripheral blood
mononuclear cells, which are unlikely to be collected
without Recall-by-Genotype. The authors found that a
potentially causal variant (rs34536443) had a demonstrable
impact on TYK2 function, leading to impaired type I IFN,
IL-12, and IL-23 signaling. This indicates that studies
analyzing disease mechanisms have a greater chance of
elucidating the causal mechanism of disease if they study a
specific causal variant in subjects with genotypes of interest.

New favorable target for drug development

Accumulating information on the associations between
genes and diseases is also important for drug development.
Drug candidates with genetically supported targets are more
likely to be successful in Phase II and III clinical trials [43].
Genetic associations can also be used to identify new
favorable drug targets. In particular, rare variants that
worked protectively against disease have been used to
identify new drug targets because their allele mimics the
effect of modulating drug target genes [44, 45]. A notable
example is PCSK9. In black individuals, there are two rare
nonsense variants (p.Tyr142Ter and p.Cys679Ter) in
PCSK9, with 2.6% of individuals having at least one non-
sense variant [46]. In 2006, a study on a cohort of black
individuals found that nonsense mutations in PCSK9
resulted in a reduction in the mean LDL cholesterol and the
risk of coronary heart disease of 28% and 88%, respectively
[46]. In 2017, a monoclonal antibody inhibiting PCSK9,
evolocumab, reduced the LDL cholesterol levels in indivi-
duals receiving statin therapy and the risk of cardiovascular
events in a randomized, double-blind, placebo-controlled
trial [47]. This drug was subsequently approved and
launched.

Along with the development of genetic analysis techni-
ques, methods used for the identification of rare variants
that provide protection against disease have evolved. Cur-
rently, researchers use biobanks to target 18,228 LoF and
135 phenotypes at one time to systematically identify 27
associations, showing the value of collecting population-
scale genomic data [48]. Another idea involves focusing on
consanguineous unions, as they are more likely to result in
offspring carrying homozygous LoF. In the Pakistan Risk of
Myocardial Infarction Study, researchers sequenced the
protein-coding regions in 10,503 adult participants to
identify 49,138 rare LoF variants. They systematically
identified their impact on >200 biochemical and disease
traits, especially in homozygotes of LoF [49]. Another
group sequenced the exomes of 3222 British adults of
Pakistani heritage and identified 1111 rare-variant homo-
zygous genotypes with LoF in 781 genes, although no
significant relationship between gene knockouts and clinical
consultation or prescription rate was found [50]. While such
large-scale screening is promising for identifying new tar-
gets for drug development, more traditional strategies,
including series of studies performing gene identification,
functional analysis, and mechanisms identification, have
also resulted in drug development, such as IL23R for
Risankizumab [51] (Table 3).

Genetic marker with high disease risk for
personalized medicine

Most odds ratios of common variants identified by GWAS
are <1.2 in complex diseases. Therefore, most single var-
iants associated with complex disease are not clinically
useful, but some complex diseases are caused by a single
pathogenic variants in some genes, including BRCA1 and
BRCA2 in hereditary breast cancer and ovarian cancer
syndrome [52], MLH1, MSH2, MSH6, and PMS2 in Lynch
syndrome [53], and LDLR and PCSK9 in atherosclerotic
cardiovascular disease [54]. In an individual with a patho-
genic variant of BRCA1, the cumulative risk for breast
cancer and ovarian cancer at 80 years of age is 72% and
44%, respectively [55]. These individuals are expected to

Table 3 Drugs for complex
diseases developed or under
development based on the
association between rare variants
and complex diseases

Disease Gene Drug Ref

Acute coronary syndromes NPC1L1 Ezetimibe (NPC1L1 inhibitor) [125]

Asthma CRTH2 OC000459 (CRTH2 antagonist) [126]

Breast and ovarian cancer BRCA1/2 Olaparib (poly (ADP-ribose) polymerase inhibitor) [127]

Crohn’s disease IL23R Risankizumab (IL23 inhibitor) [51]

Erythromelalgia SCN9A Funapide (Nav1.7 blocker) [128]

Hypercholesterolaemia PCSK9 Alirocumab, Evolocumab (PCSK9 inhibitor) [129]

Osteoporosis CTSK,
SOST

Odanacatib (cathepsin K inhibitor), Romosozumab
(sclerostin antibody)

[130]

16 Y. Momozawa, K. Mizukami



have a longer median progression-free survival and a lower
risk of disease progression or death by treatment with a
PARP inhibitor [56]. Interventions such as risk-reducing
bilateral mastectomy, salpingo-oophorectomy, and breast
magnetic resonance imaging for early detection could be
applied to carriers of pathogenic variants [57]. The same
benefits could be obtained by their relatives. Therefore, rare
variants have great potential for use as biomarkers in per-
sonalized medicine.

This seems a typical example of well-established perso-
nalized medicine. However, rare variants have many chal-
lenges in order for them to work well. In addition, there are
also more potentials in this field. The greatest challenge in
this field is the annotation of variants. Recently, a multiple
gene panel for the analysis of several genes in one genetic
test was used in-clinic to identify genetic variants in a
patient. For breast cancer screening, 11 genes, including
BRCA1 and BRCA2, are recommended for genetic testing in
the National Comprehensive Cancer Network guidelines
[57]. Typically, ~10 genetic variants are identified on
average in one individual [58] but a subject wants to know
whether she has a pathogenic variant that increases risk
among the variants detected; this is not easy. If the variant is
a LoF variant, in most cases it would be a pathogenic
variant. However, this is not always true. The insertion of 4-
bp frameshift (p.Lys1358fs, rs55740729) in MSH6 is
known to be a benign variant in Lynch syndrome. Indeed,
this variant was equally observed in colorectal cancer
patients (2.13%) and controls (2.09%) in a Japanese cohort
[59]. In contrast, synonymous variants are likely benign
because they do not undergo changes in their amino acid
sequences. However, p.Gln1395Gln in BRCA1 is registered
as pathogenic in ClinVar [60] since it alters splicing [61].
Nonsynonymous variants are less straightforward because it
is difficult to estimate the direction and magnitude of the
impact of each nonsynonymous variant on gene function.
To resolve this, guidelines have been developed that allow
determining the clinical interpretation of variants. The
guidelines by the American College of Medical Genetics
and Genomics and the Association for Molecular Pathology
have 16 criteria for pathogenicity and 12 criteria for benign.
These criteria have to be checked for each variant to
determine the appropriate clinical interpretation [57].
Despite this guideline providing a consensus in the com-
munity of genetic research, inconsistencies in clinical
interpretation have been found between different labora-
tories [62], and recommendations for the modification of the
criteria regarding LoF variants have been discussed [63].

Another difficulty is the differences in pathogenic var-
iants between populations. Most pathogenic variants are
singleton variants. For example, 75.8% of 244 pathogenic
variants in 11 genes found in breast cancer in Japanese
individuals were singleton [58] but there are founder

mutations shared in patients. Since founder mutations are
specific to racial, ethnic, or geographic groups [64], they
change the importance of genes in such groups. For
example, three founder mutations in BRCA1/2 have a
combined prevalence of as high as 2–3% in American
Ashkenazi Jews [65], while this prevalence is estimated to
be 0.1–0.5% in other populations based on Exome Aggre-
gation Consortium data [66]. Other genes were also influ-
enced by population-specific rare variants. In European
populations, c.1100delC in CHEK2, one of the 11 genes
recommended for genetic testing, is common to breast
cancer patients in the UK (1.2–1.3%), Netherlands
(2.5–3.8%), Finland (2.1–2.9%), Germany (0.33–1.1%),
and Australia (0.68%) [67]. On the other hand, this founder
mutation has not been observed in Japanese individuals,
resulting in the number of patients with pathogenic variants
in CHEK2 in European populations (1.12% of breast cancer
patients) to be threefold higher than in the Japanese popu-
lation (0.38%) [58]. As another example, NBN was
recommended for genetic testing as a founder mutation
(c.657del5, p.Lys219Asnfs, rs587776650) in NBN asso-
ciated with breast cancer [68] and prostate cancer [69] in
European populations. However, this variant was not found
in Japanese breast or prostate cancer patients, and there
were no associations between other pathogenic variants in
NBN and both cancers in Japanese cohorts [58, 70].
Therefore, NBN does not need to be included in Japanese
cohorts. The inverse may also be true: Japanese-specific
founder mutations in one unknown gene may contribute to
increased risk of certain cancers in Japanese. However,
there are limited efforts to identify such variants [71, 72].

Despite the various obstacles, the use of variants as
biomarkers in personalized medicine has more great
potential. Although most research focuses on specific genes
and cancers, including BRCA1/2 for breast and ovarian
cancer and MLH1, MSH2, and MSH6 for colorectal cancer,
more recently, other genes and diseases have been investi-
gated due to the expansion of multi-gene panels. For
instance, in as late as 2018, 5.5% of pancreatic cancer
patients were found to have germline pathogenic variants in
BRCA1/2, as well as ATM, CDKN2A, TP53, and MLH1
(odds ratio= 2.6–12.3) [73]. These proportions and odds
ratio are comparable to those of breast cancer. Among
metastatic pancreatic cancer patients with germline patho-
genic variants in BRCA1/2, progression-free survival was
reported longer after treatment with a PARP inhibitor in
2019 [74]. Therefore, since other cancers and genes would
have such possibilities for personalize medicine with rare
variants, further investigations are needed.

Population screening for large-scale precision prevention
is another potential approach [75]. Although the ethical,
social, and legal implications should be carefully con-
sidered, several population screening studies have already
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been conducted mainly in specific high-risk populations,
including Ashkenazi Jews. Even a clinical trial of genomic
screening of newborn babies is being running [76]. How
these new techniques are introduced into society will
require careful consideration. Data accumulation is indis-
pensable for this consideration.

Future perspectives

As described above, rare variants play unique roles in the
genetics of complex diseases. It is worth noting that the four
roles described above are not mutually exclusive. Rare
variants in BRCA1/2 played all roles, although the third role
was different. A deeper understanding of the function of
BRCA1/2 has led to the development of a new concept,
denoted as synthetic lethality [77]. Since NGS will continue
to be used to identify new rare variants, these unique roles
are likely to become more important. However, several
barriers remain to be overcome.

Sample size

Rare variants require much larger sample sizes than com-
mon variants to obtain a sufficiently high statistical power.
For instance, when the effect size of a variant is 0.1 (cor-
responding to an odds ratio of ~1.2) phenotyping standard
deviation units, a common variant with MAF= 10% needs
~10,000 individuals to obtain genome-wide significance at
P= 5 × 10−8 with 80% statistical power. MAF of variant=
1% and 0.1% requires ~100,000 and 1 million individuals,
respectively. Despite improvement ideas in sample collec-
tion [78], genome-sequencing methods [79], and data ana-
lysis [80], achieving such large volumes remains a
challenge. To overcome this, various methods are used,
including statistical analysis [28], imputation [7], target
sequencing, and the use of other populations.

As described above, several methods to determine the
effects of rare variants in different scenarios have been
developed to increase statistical power. However, more care
is needed in rare variants than common variants. Associa-
tion analysis with rare variants is influenced by various
factors, including the geographical area of the samples, the
timing of sampling, sequencing coverage, and the selection
of qualifying variants [28]. Among these, the timing of
DNA sampling requires further explanation. One reason is
due to age-associated somatic variants in myeloid cancer-
associated genes, such as DNMT3A, TET2, ASXL1, and
TP53 in DNA extracted from blood [81]. The prevalence of
somatic variants increases with age, from 0% in individuals
in their 20 s to 29.4% in individuals over 100 years old.
Therefore, somatic TP53 variants frequently confound
genetic testing results, although they are intended to analyze

germline variants [82]. Another example is treatment-
induced somatic variants. Chemotherapy-induced somatic
variants in PPM1D, which caused pseudo-associations
between breast and ovarian cancers, and variants in
PPM1D because patients received chemotherapy to induce
somatic variants in PPM1D [83]. Therefore, the statistical
analysis of rare variants requires more care from sampling.

Imputation has evolved by increasing the number of
samples and variants, as well as including various popula-
tions. Recent public reference panels include UK10K pro-
jects (3781 samples, 42.0 million variants, European),
Haplotype Reference Consortium (32,470 samples, 40.4
million variants, predominantly European), and Trans-
Omics for Precision Medicine (60,039 samples, 239.7
million variants, multiethnic) [84]. An important resource is
a website used to perform imputation [8]. Imputation is a
computer-intensive task, and not all researchers have access
to the servers needed for imputation. Thanks to this website,
the number of variants identified from SNP arrays can be
increased to enable the analysis of rare variants by
imputation.

Target sequencing is used to sequence specific regions of
interest based on prior knowledge. The target sequencing of
functionally candidate genes was frequently conducted in
the 1990s and 2000s before GWAS, although it has been
criticized for its low replication rate [85, 86]. However,
when focusing on positional candidate genes located in
GWAS loci, the rate improves, most likely due to the
selection of genes by GWAS increasing the possibility that
a target gene is causal for disease. Indeed, the target
sequencing of candidate genes identified by GWAS has led
to the identification of rare variants associated with diseases
with reasonable p values (Table 1). Target sequencing could
be used to analyze rare variants in a much greater number of
samples than WGS and whole-exome sequencing, and
thereby reveal the contribution of rare variants with better
statistical power.

Another possibility is to use other populations. Even if a
certain variant in one gene needs a huge number of indi-
viduals to obtain significant associations between variants in
one gene and diseases in one population, another population
might have a higher frequency of such a variant or more
frequent variants with similar functional impact in the same
gene to have better statistical power. A typical example is
the association between a LoF variant (p.Arg684Ter) in
TBC1D4 and type 2 diabetes in Greenland [87]. The allele
frequency of this variant was 17% in this population, but
0.003% in other European populations. Therefore, this
variant was not identified to be associated with type 2
diabetes and related phenotypes, most probably because p.
Arg684Ter was neither genotyped nor imputed in previous
GWAS using European populations. For the same disease,
GWAS in Japanese populations identified GLP1R, which
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was previously missed due to lower frequency of variants in
European populations [88]. Using the same concept, GWAS
with multi-ethnic and admixed populations was conducted
to show substantial benefits for fine-mapping and insight on
clinical implications [89]. In addition, population specific
custom SNP arrays have been used, including Infinium
Asian Screening Array, Axiom Japonica Array, and Infi-
nium Multi-Ethnic AMR/AFR. They include population-
specific rare variants. These efforts will also compensate for
inequitable access to precision medicine in minority popu-
lations with a disproportionately higher burden of chronic
conditions.

Estimation of the functional impact of a rare variant

In all four roles of rare variants, it is always important to
select functional causal variants. If nonfunctional variants
are included, statistical power decreases and functional
analysis may be in the wrong direction. Even LoF requires
filtering and manual curation for removing artefacts not to
dilute association signals [90, 91]. For nonsynonymous
variants, several in silico programs, such as SIFT, Poly-
Phen, Condel, and CADD, provide an estimation of the
impact of each variant. However, the resulting estimation of
each variant may not be sufficiently accurate [92]. Func-
tional assays have been developed to estimate the functional
impact of rare variants. Nonsynonymous variants in
BRCA1/2 have been frequently assayed, focusing on the
homology-directed DNA repair function, embryonic stem
cell viability, transcriptional activation, drug-sensitivity,
protein–protein interaction, and splicing [93], as their
functional impact is directly linked to changes in clinical
management. However, these efforts have not been suc-
cessful in decreasing variants with unknown functional
impacts due to the fact that functional assays focus on
specific functions in BRCA1/2, which do not mimic full
function in vivo [93]. However, the accurate classification
of variants in BRCA1 using saturation genome editing has
been recently reported [93]. In this study, the functional
impact of ~4000 variants was assessed, and was almost
perfectly concordant with the established clinical inter-
pretation of pathogenicity in ClinVar. A similar strategy
could be applied to other genes, although the experimental
condition needs optimization according to the genes being
studied. In addition, while the clinical interpretation of a
large number of variants in BRCA1/2 has been already
submitted to ClinVar [60] and could be used as “ground
truth positive” to optimize experiments, a limited number of
variants in other genes have been deposited. Therefore, the
sharing of clinical interpretation data on variants in other
genes is indispensable for the development of high-
throughput functional assays in other genes.

Beyond coding regions

The unique roles of rare variants have been mainly played
in coding regions. However, there is evidence that rare
variants in non-coding regions have a large impact on gene
expression and disease. A large deletion at the 3′-end of
EPCAM is known to cause allele-specific epigenetic silen-
cing of the neighboring DNA mismatch repair gene MSH2,
leading to Lynch syndrome [94]. Hernandez et al. reported
that singletons contribute to ~25% of cis eQTL heritability
across genes [95]. A variant in the 5′ untranslated region
that is known to result in the methylation-associated silen-
cing of BRCA1 is dominantly inherited in some families
affected by breast and ovarian cancer [96]. The association
between genetic variants and multi-omics data, including
transcriptome, post-transcriptional regulation, epigenome,
protein post-translation modification, metabolome, and
microbiome data, has helped to improve our understanding
of rare variants in non-coding regions [97]. However, esti-
mating the impact of rare variants on target genes at the
single-base resolution remains a challenge. Nevertheless, a
new model with a novel experimental approach, CRISPRi-
FlowFISH, has been proposed for interpreting the functions
of variants in non-coding regions [98]. In addition, various
in silico prediction tools for non-coding regions are being
developed, including regBase [99], RegSNPs-intron [100],
and GRAM [101]. Overall, a better understanding of var-
iants in coding and non-coding regions and single variant
annotation across whole genome would take advantage of
population-based sequencing data to provide great benefits
to human health.

Integration of genetic and non-genetic information

One of the goals in the characterization of variants is to
provide diagnosis and forecast of future disease risk. In this
context, researchers will have to consider all genetic var-
iants across the entire genome, including structural variants
such as copy number variations, insertion, inversions, and
translocations [102]. The functional impact of each variant
discussed above should also be included in the calculation.
In addition, electronic health record including digital image,
data from health monitoring device, and other environ-
mental exposure might be considered alongside. Artificial
intelligence is expected to deal with all the information
[103]. However, there are various challenges and limita-
tions, including regulatory issues, interpretability, and data
and machine bias. Therefore, large-scale training and vali-
dation datasets about genomics, electronic health record and
other information are needed for artificial intelligence to
integrate genetic and non-genetic information to provide
diagnosis and forecast of future disease risk.
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Conclusion

Rare variants play unique roles in the genetics of complex
diseases in humans, including as hypothesis-free evidence
of gene causality, a precise target of functional analysis for
understanding disease mechanisms, a new target for drug
development, and a genetic marker with high disease risk
for personalized medicine (Fig. 1). Advances in WGS will
continue to allow for the identification of rare variants,
where a better estimation of the functional impact of each
rare variant across the whole genome will provide para-
mount benefits to human health.
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