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Abstract

Motivation: Identification of the genomic alterations driving tumorigenesis is one of the main goals

in oncogenomics research. Given the evolutionary principles of cancer development, computational

methods that detect signals of positive selection in the pattern of tumor mutations have been effect-

ively applied in the search for cancer genes. One of these signals is the abnormal clustering of muta-

tions, which has been shown to be complementary to other signals in the detection of driver genes.

Results: We have developed OncodriveCLUSTL, a new sequence-based clustering algorithm to de-

tect significant clustering signals across genomic regions. OncodriveCLUSTL is based on a local

background model derived from the simulation of mutations accounting for the composition of tri-

or penta-nucleotide context substitutions observed in the cohort under study. Our method can

identify known clusters and bona-fide cancer drivers across cohorts of tumor whole-exomes, out-

performing the existing OncodriveCLUST algorithm and complementing other methods based on

different signals of positive selection. Our results indicate that OncodriveCLUSTL can be applied to

the analysis of non-coding genomic elements and non-human mutations data.

Availability and implementation: OncodriveCLUSTL is available as an installable Python 3.5 pack-

age. The source code and running examples are freely available at https://bitbucket.org/bbglab/

oncodriveclustl under GNU Affero General Public License.

Contact: nuria.lopez@irbbarcelona.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identification of the alterations driving tumorigenesis is a major goal

of cancer research. Knowledge of the molecular mechanisms underly-

ing tumorigenesis is a necessary step for the implementation of preci-

sion cancer medicine. Given that cancer development is an

evolutionary process, the detection of signals of positive selection in

the somatic mutational pattern of genes has been exploited to identify

drivers across tumor cohorts. Specifically, the non-random spatial ac-

cumulation, or clustering, of mutations along the protein sequence

has been used to identify cancer drivers and provide clues about onco-

genic mechanisms (Chang et al., 2016; Tamborero et al., 2013a,

Tokheim et al., 2016). This signal is complementary to others (such

as recurrence and functional impact) and thus, their combination can

produce more comprehensive lists of driver genes (Porta-Pardo et al.,

2017; Rheinbay et al., 2017; Tamborero et al., 2013b).

Since the rate of mutation generation across the genome is highly

variable (Alexandrov et al., 2013; Lawrence et al., 2013; Polak, et al.,

2015; Schuster-Böckler and Lehner 2012; Stamatoyannopoulos et al.,

2009), clustering-based methods face the challenge of constructing

an accurate background model of the distribution of mutations to

correctly assess the significance of observed clusters. Ideally, such a

model would include all the genomic position-dependent covariates
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of the mutation rate. Alternatively, one can locally simulate the same

number of mutations as observed in the region following the proba-

bilities of k-nucleotide context-dependent substitutions and assess

whether the distribution of mutations along the region follows the ex-

pectation (Mularoni et al., 2016). This background model is not

affected by large-scale covariates of the mutation rate (e.g. replication

timing or chromatin state) and can thus be applied to any region of

the genome of any species.

Here we introduce OncodriveCLUSTL, a new linear clustering

algorithm to detect genomic regions and elements with significant

clustering signals. The algorithm is based on a local background

model derived from the observed tri- or penta-nucleotide substitu-

tion frequency of a cohort. OncodriveCLUSTL identifies known

mutation clusters and driver genes across TCGA cohorts. It outper-

forms the existing OncodriveCLUST (Tamborero et al., 2013a), and

complements methods based on different signals of positive selec-

tion. We show that OncodriveCLUSTL identifies mutation clusters

in human promoter regions and in mouse genes.

2 Implementation and availability

OncodriveCLUSTL is an unsupervised clustering algorithm implemented

in Python 3.5. It analyzes somatic mutations that have been observed in

genomic elements (GEs) across a cohort of tumor samples (Fig. 1a-1).

Mutations in each GE are smoothed along its sequence using a Tukey-

based kernel density function, and clusters are identified (Fig. 1a-2, 3)

and scored based on the number and the shape of the distribution of

mutations. Cluster scores are summed up to produce a GE clustering

score. The significance of the observed clusters and GEs is assessed

through the analysis of n iterations, where mutations are randomly

sampled within a window of nucleotides centered at each mutation

(local), following the frequency of cohort tri- or penta-nucleotide

changes (Fig. 1a-4, 5; Supplementary Methods for further details). By de-

fault, P-values are adjusted using the Benjamini-Hochberg method and

GEs below 1% false-discovery rate (FDR) are considered significant.

OncodriveCLUSTL source code and examples are freely available at

https://bitbucket.org/bbglab/oncodriveclustl. A web version of

OncodriveCLUSTL can be run at https://bbglab.irbbarcelona.org/

oncodriveclustl.

3 Performance

3.1 Mutations in human protein-coding genes across 19

TCGA cohorts
OncodriveCLUSTL detects well-known cancer genes in the

COSMIC Cancer Gene Census (CGC; Sondka et al., 2018) with

Fig. 1. OncodriveCLUSTL algorithm and results. Overview of OncodriveCLUSTL (a). OncodriveCLUSTL detects well-known cancer genes (b) and complements meth-

ods based on different signals of positive selection (c). OncodriveCLUSTL can be successfully applied to mutations in promoter regions (d) and mouse genes (e)

OncodriveCLUSTL: a sequence-based clustering method to identify cancer drivers 4789

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz501#supplementary-data
https://bitbucket.org/bbglab/oncodriveclustl
https://bbglab.irbbarcelona.org/oncodriveclustl
https://bbglab.irbbarcelona.org/oncodriveclustl


clusters of different sizes (Fig. 1b; Supplementary Figs S3 and S8;

Supplementary Table S2 and S3) (Ellrott et al., 2018). It outperforms

the previously developed protein-clustering method OncodriveCLUST

(Tamborero et al., 2013a), which builds a background model obtained

from synonymous mutations, in both true and false positives rates

(Supplementary Figs S4, S8 and S9; Supplementary Methods for fur-

ther details). These findings demonstrate that the improved clustering

detection method and the local background model fine-tune the detec-

tion of drivers. OncodriveCLUSTL also exhibits similar specificity and

sensitivity as the 3D protein-clustering method HotMAPS (Tokheim

et al., 2016) (Fig. 1c, Supplementary Figs S5 and S8–S11).

Interestingly, although the linear clustering analysis performed by

OncodriveCLUSTL can miss the detection of 3D clusters

(Supplementary Fig. S10), it can identify CGCs with clusters of trun-

cating or silent mutations (Supplementary Fig. S10) as well as CGCs

without a PDB structure or protein model (Supplementary Fig. S11),

which are missed by HotMAPS. In addition, the results of

OncodriveCLUSTL complement those of methods based on distinct

signals of positive selection (OncodriveFML, Mularoni et al., 2016;

dNdScv, Martincorena et al., 2017) (Fig. 1c, Supplementary Figs S6

and S7), thus highlighting the relevance of combining methods exploit-

ing different signals to enhance comprehensiveness in driver’s

identification.

3.2 Mutations in promoters across a cohort of tumor

whole-genomes
Consistent with the study describing the dataset (Fredriksson et al.,

2014), OncodriveCLUSTL found a significant cluster in the TERT

promoter (Fig. 1d), the mutations of which result in the upregulation

of TERT (Supplementary Fig. S12). Significant clustering was also

detected in few other promoters, which need to be carefully vetted to

be nominated as cancer drivers, as we and others have shown that

some local mutational processes can also lead to mutation clustering

(Sabarinathan et al., 2016; Zou et al., 2017).

3.3 Mutations in C3H mouse genes in chemically

induced hepatocarcinomas
As described by the authors of the dataset (Connor et al., 2018),

OncodriveCLUSTL identified significant clustering in Braf, Hras

and Egfr (Fig. 1e).

4 Conclusions

OncodriveCLUSTL is a new method to identify sequence-based clus-

tering signals across the genome. It shows satisfactory sensitivity

and specificity, outperforming the existing OncodriveCLUST and

complementing other methods of driver detection in coding sequen-

ces. It can also be successfully applied to the detection of mutational

clustering in non-coding regions and in non-human data.
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