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Abstract: High-throughput biology technologies have yielded complete genome sequences
and functional genomics data for several organisms, including crucial microbial pathogens
of humans, animals and plants. However, up to 50% of genes within a genome are often
labeled “unknown”, “uncharacterized” or “hypothetical”, limiting our understanding of
virulence and pathogenicity of these organisms. Even though biological functions of proteins
encoded by these genes are not known, many of them have been predicted to be involved in
key processes in these organisms. In particular, for Mycobacterium tuberculosis, some of
these “hypothetical” proteins, for example those belonging to the Pro-Glu or Pro-Pro-Glu
(PE/PPE) family, have been suspected to play a crucial role in the intracellular lifestyle
of this pathogen, and may contribute to its survival in different environments. We have
generated a functional interaction network for Mycobacterium tuberculosis proteins and used
this to predict functions for many of its hypothetical proteins. Here we performed functional
enrichment analysis of these proteins based on their predicted biological functions to identify
annotations that are statistically relevant, and analysed and compared network properties of
hypothetical proteins to the known proteins. From the statistically significant annotations
and network information, we have tried to derive biologically meaningful annotations related
to infection and disease. This quantitative analysis provides an overview of the functional
contributions of Mycobacterium tuberculosis “hypothetical” proteins to many basic cellular
functions, including its adaptability in the host system and its ability to evade the host
immune response.
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1. Introduction

Despite ever-increasing amounts of biological data, including primary data, such as genomic
sequences, and functional genomic data from high-throughput experiments, there is a deficiency in
functional annotation for many newly sequenced proteins. For instance, in most bacterial genomes,
as many as 40% of identified proteins are labeled “uncharacterized” or “unknown” or “hypothetical”
proteins [1]. Specifically, about half of the Mycobacterium tuberculosis genome is made up of proteins
of unknown functions. This limits the ability to exploit these data, confirming the paradigm of “a world
which is data rich yet information poor” where the deluge of data is caught by the need for efficient
computational methods to extract information from these data. Thus, one of the major tasks in the
post-genomic era is genome annotation, assigning functions to gene products based mostly on amino
acid sequence, in order to capitalize on the knowledge gained through these sequencing efforts [2]. To
this end, controlled vocabulary and well-defined protein function relationship schemes arose to represent
annotations of known genes and proteins, and to predict functional annotations of those which are
identified but so far uncharacterized. The terms used for describing a function should have definitions
and be placed within a structure of relationships in an ontology [3].

An ontology is an explicit specification of concepts that includes a set of objects, their properties and
their values, along with describable relationships between them. This is reflected in a representational
vocabulary for a specific domain, containing definitions of classes, relations, functions and other
objects [4–8]. The Gene Ontology (GO) [9,10] is one of the greatest contributions to the area of
functional annotations. It is the most widely adopted ontology by the life science community and
currently serves as the dominant and most popular functional classification scheme for functional
representation and annotation of genes and their products. The GO annotation (GOA-UniProtKB)
project arose in order to provide high-quality annotations to gene products, and is applied in the UniProt
knowledgebase (UniProtKB) [11–14]. It also provides a central dataset for annotation in other major
multi-species databases, such as Ensembl and NCBI [15]. Most of the annotations (approximately
98%) in the GOA dataset have been inferred electronically, with the IEA (Inferred from Electronic
Annotation) GO evidence code, but are of high quality [16,17]. They can also be inferred from sequence
homology searches, where functions of proteins of known function are assigned to a query protein using
sequence similarity search tools, such as the Basic Local Alignment Search Tool (BLAST) [18,19]. This
approach is referred to as homology-based annotation transfer and offers an easy and effective scheme
for suggesting possible functions for proteins under consideration, but its applicability is limited and has
thus left several proteins uncharacterized.

Proteins perform an astonishing range of biological functions in an organism. These include roles
as structural proteins, enzymes and for the transportation of materials within and between cells [20].
Each protein is a gene product that interacts with the cellular environment in some way to promote the
cell’s growth and function [21]. This suggests that these large numbers of uncharacterized proteins in
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organisms may play a crucial role in their survival and viability or may contribute to their fitness in
different environments, particularly since uncharacterized proteins are usually those that have no hits in
other genomes and are thus unique to certain organisms. Specifically for Mycobacterium tuberculosis
(MTB), some of these “hypothetical” proteins, for example those belonging to the Pro-Glu or
Pro-Pro-Glu (PE/PPE) family, are generally uncharacterized and their subcellular location is unknown.
These proteins have sequences with characteristic motifs Pro-Glu at positions 8–9 and Pro-Pro-Glu at
8–10 [22], where Pro and Glu stand for Proline (P) and Glutamic (E) amino acids. They have been
suspected to form a source of antigenic variation among different strains of MTB [23] and might
interfere with immune responses by inhibiting antigen processing [24]. Some annotation predictions of
these proteins indicate that they are expressed based on the changing micro-environments encountered
by the pathogen and play an important role in survival and multiplication of MTB in their chosen
environment, and even in mediating mycobacterium-host cell interactions [25–27]. This is also a highly
expanded family of proteins, thus knowing the functions of these proteins is important for enhancing our
understanding of this organism.

The biological analysis of organisms has evolved from the single gene approach to a whole genome
focus, providing the opportunity to look at genes within their context in a cell [28]. The quantity
of biological data has grown exponentially as a result of worldwide DNA sequencing efforts and
high-throughput biology technologies. Integration of these vast amounts of data and identifying
functional connections between characterized and hypothetical proteins have the potential to facilitate
functional annotation of proteins of unknown function. Indeed, the protein-protein functional network
approach is being used increasingly in the post-genomic era to provide a better understanding of
cell functioning and organism development. This functional network is crucial for the systems-level
understanding of biological processes and predicting the system’s behavior for the purpose of building
a predictive disease model. Previously, we generated functional interaction networks between proteins
in MTB strain CDC1551 and used them to predict, where possible, GO biological process terms and
functional classes of uncharacterized proteins [2,17], and identified potentially important MTB proteins
using network topological properties [29].

Here, we have updated the network to include additional interaction data, predict functions for
hypothetical proteins, and analyze the properties of these proteins. Many of these hypothetical
proteins have been suspected to play important roles in adhesion of the microbial pathogen in the
host system and immune modulation, and also in its intracellular lifestyle, for example, the previously
mentioned PE/PPE proteins. The unique sequences in a given organism are often key determinants
for species-specific phenotypic properties, such as pathogenicity, and can be interesting drug targets in
pathogenic organisms [30]. We believe that this analysis expands our knowledge regarding the functional
roles of hypothetical proteins in the MTB system’s behavior.

2. Results and Discussion

To investigate the role of MTB hypothetical proteins in the molecular biology of the system, we
statistically evaluate the topological values of these proteins compared to the network topological values
and to those of other proteins in the MTB protein-protein functional network. Network centrality
measures can be used to quantify the role of proteins in the dynamics of the system, e.g., their
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contribution to the adaptability of the pathogen in the host, enabling the bacterium to colonize host
lungs, adapt to their environment, successfully overcome host immune defense, multiply and become
numerous enough to cause damage. Furthermore, we evaluated the quality of the annotation predictions
and analyzed the biological relevance of the hypothetical proteins using their predicted functional classes
and GO biological process terms.

2.1. General Topological Parameters of the MTB Functional Network

From the new functional network generated here, a reliability threshold is applied to reduce the
impact of bias in functional interactions coming from experimental predictions and computational
approaches [29]. Thus, we have only considered those ranging from medium to high confidence, and
for functional interactions with low confidence, only those predicted by at least two different approaches
were considered. In total, 3 interactions of low confidence predicted by at least two different approaches
have been included in the functional network. We determined general properties of this MTB protein
functional interaction network (summarized in Table 1).

Table 1. General MTB functional network topological parameters.

Parameters Value

Number of Proteins (Nodes) 4136
Number of Functional Interactions (Edges) 59,919
Average Degree (in and out) 28.974
Average Shortest Path Length 3.6274
Maximum Path Length 11
Number of Connected Components 23
% of Nodes in Largest Component 98.7%
Number of Hubs 201

This new functional network configuration seems to preserve certain topological values compared
to the one reported previously, such as the number of hubs, number of connected components and the
percentage of proteins in the largest connected component. The functional network exhibits a scale-free
topology, i.e., the degree distribution of proteins approximates a power law P (k) = k−γ, with the
degree exponent γ ∼ 1.50. Note that here protein hubs are “single points of failure” able to disconnect
the functional network. This means that most of the proteins have few interacting partners but some
have many partners, allowing any pair-wise protein set in a given connected component to communicate
through its relative shortest paths [28,29]. Furthermore, the network has a “small world” architecture,
indicating that the transmission of biological information from a given protein to others is achieved
through only a few steps (approximately 4), independently of the number of proteins.

Finally, note that even though this novel MTB functional network shares several properties with
the previous one in which interologs and functional interactions inferred from protein domain-domain
interactions were not included, it fits more perfectly these properties, particularly a “small world”
architecture. In this unified configuration the average shortest path length value is 3.6274, which is
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closer to the order of magnitude log (n) [31,32], where log is the decimal logarithm and n = 4136
the number of proteins in the network under consideration. This behavior is expected as integrating
additional biological evidence into a single network increases the confidence level.

2.2. Topological Analysis of MTB Hypothetical Proteins

We used different network centrality scores to check whether the values associated with the
hypothetical proteins are significantly higher than network topological values and those of other proteins
in the network. The p-values in Table 2 were obtained from the t-test under the alternative hypothesis
that the network topological values of hypothetical proteins are lower than those proteins with known
GO biological process terms or the average network topological values, referred to as expected values.

Table 2. Comparison of network topological properties of hypothetical proteins to the
standard network topological values and those of proteins with previously known GO
biological process terms.

Average values p-values
Metric

Hypothetical Other proteins Expected value Other proteins Expected value

Degree 16.16892 37.77267 28.09381 < 2.2× 10−16 < 2.2× 10−16

Closeness 0.277673 0.293277 0.27568 5.562× 10−08 0.9792
Betweenness 6948.217 13913 15003 < 2.2× 10−16 < 2.2× 10−16

Eigenvector 0.000314 0.00591 0.00340 < 2.2× 10−16 < 2.2× 10−16

These results indicate that the network topological values of hypothetical proteins tend to be
significantly smaller than expected values and network topological values of other proteins. The
hypothetical proteins are usually those unique to the organism or environment, so they may not need
to be as well connected as other core proteins playing more house-keeping related roles. The low degree
may also be due to the limited data available for these proteins. However, for the closeness centrality
measure, the closeness score of hypothetical proteins is larger than the expected value. This is also
evident from the scatter plot in Figure 1, which shows that many of the hypothetical proteins have high
closeness scores compared to the expected value of closeness scores and those of many characterized
proteins with GO biological process terms. Closeness score is a measure of the probability that a protein
is functionally relevant for several other proteins by bringing proteins or subnetworks together, and does
not imply a high degree.

The plot shows which proteins are predicted to be central (above a threshold closeness value). Like
the rest of the proteins, the hypothetical proteins’ closeness values are scattered between about 0.17 and
0.36, with 583 of them predicted to be central.

This suggests that some of the hypothetical proteins are in fact potentially important in the MTB
functional system and help maintain the “small world” property. Thus, they contribute to ensuring rapid
spread of biological information within the system, independently of the system’s complexity. These
hypothetical proteins may provide the organism with an evolutionary advantage in the sense that the
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system would be able to efficiently respond to perturbations in the environment and to quickly exhibit a
qualitative change of behaviour in response to these perturbations [29].

Figure 1. Scatter plot showing proteins that are central in the MTB functional network.
Each protein in the genome is plotted by its closeness value and coloured by whether it is
characterised and central.
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We also checked which hypothetical proteins have been shown to be essential for growth [33] or
infection [34] in H37Rv. Sixty hypothetical proteins are in this combined essential list, 27 of them were
also predicted to be central in the network. This again suggests that some of the hypothetical proteins
are important in the lifestyle and survival of the pathogen and thus worthy of further investigation.

2.3. Evaluation of Function Predictions

Section 3.2 shows the ROC and P-ROC curves for function prediction algorithm evaluations. As
mentioned in this section, we were able to predict functional classes for 82% and GO BP terms for
95% of the uncharacterized proteins. We assessed the validity of predicted GO BP terms by measuring
the power of the prediction model to capture GO annotations for these proteins coming from their
InterPro matches [35] and corresponding InterPro2GO mappings (both downloaded from the EBI). The
correspondence was measured using semantic similarity scores between predicted GO BP terms and
those from InterPro matches. The magnitude of this power for a protein p is given by

sp =
1

|Ip|
∑
t∈Tp

SGO (t, Ip) (1)

where Tp is the set of predicted GO BP terms of the protein p, SGO (t, Ip) = max{SGO (t, s) : s ∈ Ip}
with SGO (t, s) the GO-universal semantic similarity score between GO terms t and s [36], and |Ip|
stands for the number of GO BP terms in the set Ip = ∪

t∈IPRp

mapGO(t), with IPRp the InterPro terms of

the protein p and mapGO(t) the set of GO BP terms mapping the InterPro term t.
Out of 1770 proteins with predicted GO BP annotations, only 18 proteins have InterPro matches with

GO terms. These are likely to be new InterPro matches or mappings, otherwise the GO annotations
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would already be in the protein GO data. With the prediction annotation model used, InterPro terms of
16 proteins out of 18 have been captured, representing 89%. These proteins together with their matched
GO BP annotation predictions, InterPro accessions and their GO mapping, and power scores are shown
in Table 3. In this table, the integer beside GO IDs for predictions or InterPro mapping represents their
levels in the GO-DAG, with the root of biological process (GO:0008150) assumed to be located at the
level 0. In most cases, the power score is 1, indicating that InterPro-associated GO terms of the protein
under consideration have also been predicted by the annotation model used. Power scores different
from 1.0 are due to different levels of the GO terms identified by InterPro and the prediction. In some
cases, InterPro terms are more specific than GO BP annotation predictions and vice versa. It is worth
mentioning that GO BP annotation predictions did not match InterPro GO terms for two proteins out
of 18, namely P0A5G9 with InterPro entries IPR002145 and IPR010985 corresponding to the same
GO BP term “GO:0006355” and O06191 with InterPro entry IPR005471, also mapping to the GO BP
“GO:0006355”. The predicted BP terms for both proteins were related to lipid metabolism, while the
InterPro mappings are to “regulation of transcription, DNA-dependent” (GO:0006355).

Table 3. Proteins that have InterPro matches mapped to GO terms and their similarities to
predicted GO terms.

UniProt-ID InterPro-ID GO mapping GO Prediction Power

P67745 IPR000835 GO:0006355 [8] GO:0006355 [8] 1.00000
Q8VKE6 IPR002514 GO:0006313 [8] GO:0006313 [8] 1.00000
Q7D8E8 IPR001845 GO:0006355 [8] GO:0006355 [8] 1.00000
Q7D5V1 IPR000836 GO:0009116 [6] GO:0009116 [6] 1.00000
Q7D8W2 IPR001087 GO:0006629 [3] GO:0006629 [3] 1.00000
Q8VJC1 IPR006059 GO:0006810 [3] GO:0006810 [3] 1.00000
Q7D9M5 IPR020946 GO:0055114 [2] GO:0055114 [2] 1.00000
P64725 IPR002539 GO:0008152 [1] GO:0008152 [1] 1.00000
P71788 IPR013216 GO:0008152 [1] GO:0008152 [1] 1.00000
Q10777 IPR000873 GO:0008152 [1] GO:0008152 [1] 1.00000
O05796 IPR013216 GO:0008152 [1] GO:0008152 [1] 1.00000
O07197 IPR013094 GO:0008152 [1] GO:0008152 [1] 1.00000
P0A5F5 IPR005674 GO:0008152 [1] GO:0008152 [1] 0.66604

IPR000383 GO:0006508 [4] GO:0044238 [2]
O06547 IPR013216 GO:0008152 [1] GO:0044237 [2] 0.24819
Q7D8C2 IPR013216 GO:0008152 [1] GO:0042158 [5] 0.03033
O05294 IPR012908 GO:0006886 [6] GO:0044237 [2] 0.01435

GO:0006505 [8]

In order to assess the quality of the function predictions, we manually checked the agreement
between the function predictions and InterPro matches where available. Of the 1676 proteins that
had either functional class or GO BP or both predicted, 937 had InterPro matches, and of these, 621
proteins had matches to entries other than those for PE/PPE, PE-PGRS, Conserved hypothetical protein,
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Uncharacterised conserved protein, or Domain/Protein of unknown function. The TubercuList functional
classes are quite broad, so often the agreement between matches is speculative, but in the majority of
cases, functional predictions either agreed with InterPro matches directly or were certainly plausible,
based on the protein domains or families matched. In a few cases either the predicted functional
class or GO terms agreed with the InterPro matches, but there were very few cases of direct clashes
between the predictions and InterPro domains. The InterPro matches for hypothetical proteins identified
6 potential toxin and 6 antitoxin proteins of type II toxin-antitoxin systems, and these were predicted to
belong to the virulence, detoxification, adaptation functional class. There are 5 additional antitoxin
and 4 toxin proteins in this organism that were already annotated to the virulence, detoxification,
adaptation functional class. Other hypothetical proteins predicted to belong to this functional class have
GO annotations suggesting involvement in processes such as transcription regulation, lipid metabolism,
regulation of growth and response to stress.

2.4. Functional Analysis of MTB Hypothetical Proteins and Adaptability

In this section, we look at potential functions that are carried out by hypothetical proteins. Specifically,
we are interested in the biological processes in which they are involved, as well as in the functional
classes to which they belong in order to assess the potential biological role of these proteins in this
pathogen. The distribution of the number of proteins with predicted TubercuList functional classes
and statistical significance (p-value) of these hypothetical proteins belonging to a given functional class
are shown in Table 4. Note that in our context a p-value represents the probability of observing the
number of predicted proteins in the functional class under consideration by chance, and is computed
using formula Equation (4).

Table 4. Repartition per class of hypothetical proteins in the MTB proteome before and after
function prediction. PE/PPE- indicates the number of predicted proteins originating from the
PE/PPE family.

Functional Class # Proteins before Prediction PE/PPE- p-values # Proteins after % change

1 virulence, detoxification, adaptation 176 85 1 3.33067× 10−16 261 32.6
2 lipid metabolism 230 80 6 9.76996× 10−15 310 25.8
3 information pathways 245 93 3 9.76996× 10−15 338 27.5
4 cell wall and cell processes 618 418 62 3.33067× 10−16 1036 40.3
5 insertion seqs and phages 82 65 4 1.11022× 10−16 147 44.2
6 PE/PPE 147 −115 - - 32 -
7 intermediary metabolism and respiration 884 637 38 4.95160× 10−14 1521 41.9
8 unknown 1637 −1351 - - 286
9 regulatory proteins 176 88 1 9.54792× 10−15 264 33.3

Total 4195 1466 115 - 4195 37.8

Most of them appear to be involved in intermediary metabolism and respiration, as well as in cell
wall and cell processes. Almost 72% of these hypothetical proteins are predicted to belong to these two
functional classes and a larger number of proteins from the PE/PPE family (100 out of 115 predicted)
were assigned to these two classes. The cell wall of MTB plays a key role in its virulence and contributes
crucially to the persistence of the pathogen in the host [37–39]. Its unusually low permeability is thought
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to contribute to the intrinsic drug resistance of mycobacteria [40]. Furthermore, it contributes to the
establishment of the interface between the host and pathogen [41], mediating molecular interactions
between specific microbial products and host cells. This leads to modification of host cell functioning,
thus allowing the parasite to invade host organs and tissues to ensure its survival, and resulting in disease
in the host. This, together with the additional 85 virulence-related predictions, suggests that some MTB
hypothetical proteins may contribute to the survival and virulence of the pathogen. The fact that a
high number of these proteins are predicted to be involved in intermediary metabolism and respiration,
suggests that they may provide the pathogen the ability to switch from one metabolic path to another
including aerobic and anaerobic, thus allowing the pathogen to survive within the host in different
environments ranging from high oxygen potential in the lungs to micro-aerobic/anaerobic conditions
within the tuberculous granuloma [17]. These proteins may, therefore, play a role in the persistence of
the parasite in the host system.

Finally, we performed GO biological process term enrichment analysis of these hypothetical proteins
based on their predicted terms. A summary of the most enriched processes in which these proteins are
predicted to be involved are shown in Table 5.

Table 5. GO process terms significantly over-represented in the newly predicted GO set
compared to complete set of GO terms.

GO ID GO name Frequency p-Value

GO:0006730 one-carbon metabolic process 364 0.00000
GO:0009132 nucleoside diphosphate metabolic process 74 0.00000
GO:0009123 nucleoside monophosphate metabolic process 72 0.00000
GO:0009141 nucleoside triphosphate metabolic process 71 0.00000
GO:0006353 transcription termination, DNA-dependent 88 1.11022× 10−16

GO:0019538 protein metabolic process 87 1.11022× 10−16

GO:0022900 electron transport chain 354 2.22045× 10−16

GO:0006793 phosphorus metabolic process 324 2.22045× 10−16

GO:0009061 anaerobic respiration 135 2.22045× 10−16

GO:0009307 DNA restriction-modification system 73 2.22045× 10−16

GO:0006662 glycerol ether metabolic process 277 3.33067× 10−16

GO:0015074 DNA integration 157 3.33067× 10−16

GO:0019419 sulfate reduction 86 3.33067× 10−16

GO:0051090 regulation of sequence-specific DNA binding transcription factor activity 64 3.33067× 10−16

GO:0006139 nucleobase-containing compound metabolic process 336 4.44089× 10−16

GO:0006259 DNA metabolic process 169 4.44089× 10−16

GO:0006313 transposition, DNA-mediated 113 4.44089× 10−16

GO:0006797 polyphosphate metabolic process 672 5.55112× 10−16

GO:0006796 phosphate-containing compound metabolic process 643 5.55112× 10−16

GO:0000103 sulfate assimilation 603 5.55112× 10−16

GO:0044238 primary metabolic process 548 5.55112× 10−16

GO:0006281 DNA repair 246 5.55112× 10−16

GO:0006413 translational initiation 156 5.55112× 10−16

GO:0009116 nucleoside metabolic process 107 5.55112× 10−16
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Table 5. Cont.

GO ID GO name Frequency p-Value

GO:0044255 cellular lipid metabolic process 444 6.66134× 10−16

GO:0044262 cellular carbohydrate metabolic process 317 6.66134× 10−16

GO:0001121 transcription from bacterial-type RNA polymerase promoter 273 6.66134× 10−16

GO:0006302 double-strand break repair 200 6.66134× 10−16

GO:0009225 nucleotide-sugar metabolic process 177 6.66134× 10−16

GO:0006310 DNA recombination 170 6.66134× 10−16

GO:0006260 DNA replication 156 6.66134× 10−16

GO:0006396 RNA processing 109 6.66134× 10−16

GO:0015977 carbon fixation 534 7.77161× 10−16

GO:0042126 nitrate metabolic process 477 7.77156× 10−16

GO:0006082 organic acid metabolic process 244 7.77156× 10−16

GO:0006266 DNA ligation 150 7.77156× 10−16

GO:0006104 succinyl-CoA metabolic process 144 7.77156× 10−16

GO:0009060 aerobic respiration 118 7.77156× 10−16

GO:0006352 transcription initiation, DNA-dependent 112 7.77156× 10−16

GO:0044249 cellular biosynthetic process 618 8.88178× 10−16

GO:0006351 transcription, DNA-dependent 333 8.88178× 10−16

GO:0009399 nitrogen fixation 271 8.88178× 10−16

GO:0016042 lipid catabolic process 107 8.88178× 10−16

GO:0009117 nucleotide metabolic process 101 8.88178× 10−16

GO:0043620 regulation of DNA-dependent transcription in response to stress 96 8.88178× 10−16

GO:0001522 pseudouridine synthesis 92 8.88178× 10−16

GO:0006314 intron homing 137 9.99201× 10−16

GO:0006066 alcohol metabolic process 635 1.11022× 10−15

GO:0090305 nucleic acid phosphodiester bond hydrolysis 222 1.11022× 10−15

GO:0006284 base-excision repair 212 1.11022× 10−15

GO:0006289 nucleotide-excision repair 210 1.33227× 10−15

GO:0009451 RNA modification 101 1.33227× 10−15

GO:0008610 lipid biosynthetic process 184 1.66534× 10−15

GO:0044267 cellular protein metabolic process 58 3.66374× 10−15

GO:0006268 DNA unwinding involved in replication 53 7.32747× 10−15

GO:0006270 DNA-dependent DNA replication initiation 52 1.36557× 10−14

GO:0006412 translation 207 4.56302× 10−14

GO:0031554 regulation of transcription termination, DNA-dependent 50 5.19584× 10−14

GO:0030261 chromosome condensation 56 1.21125× 10−13

GO:0006801 superoxide metabolic process 693 2.91767× 10−13

GO:0000725 recombinational repair 46 8.03135× 10−13

These results show that the majority of newly predicted functions for uncharacterized proteins
include basic cellular processes such as transcription, translation, transport, respiration as well as lipid
metabolism. Of note is the term “anaerobic respiration” which supports the suggestion above about
metabolic flexibility. As mentioned previously, 85 unknown or PE/PPE class proteins were assigned to
the virulence, detoxification, adaptation class. In addition, there were 60 proteins already in this class,
but with no GO BP terms before function prediction. Most of these 145 proteins were assigned GO
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terms related to either transcription or lipid metabolism. Two examples include Q7DAC1 and Q7D5E5,
putative uncharacterized proteins, both of which are essential, central and predicted to be involved in
lipid metabolism, and more specifically, steroid metabolic processes. Q7D5E5, contains a permease
domain (IPR003453), which in other proteins is involved in lipid transfer in the cell. These results are in
agreement with the suggestion above that these proteins may play an important role in the survival of the
MTB pathogen in the host. Many of these hypothetical proteins are unique to MTB or the mycobacteria
as they could not be characterized by sequence similarity [17].

3. Materials and Methods

We used the MTB protein functional network generated previously [17,29], which includes data from
STRING, microarrays, sequence similarity and shared domains, and complemented this with additional
interaction data from protein domain-domain interactions and interologs. Protein domain-domain
interactions are interactions between proteins whose domains are known or predicted to interact [42].
Interologs are interacting proteins in one organism whose corresponding orthologs also interact in
another organism [43]. For predicting interologs, we collected all the interacting pairs of proteins
from the IntAct database [44–46] and for each interaction pair, we identified orthologs of both of the
proteins constituting the pair in MTB and inferred that these orthologs in MTB also interact. The
MTB strain CDC1551 orthologs file was downloaded from the EBI Integr8 project [47,48]. To predict
interactions from protein domain-domain interactions, we use known and predicted domain-domain
interactions derived from the InterDom database [49,50], which is a database storing putative protein
domain-domain interactions. We identified the corresponding domains in MTB and used these to infer
new protein-protein interactions. A summary of the number of interactions and confidence scores of the
new MTB protein-protein functional interaction network are shown in Table 6.

Table 6. The number of associations in the MTB functional network, shown separately for
each data source and confidence range from low to high.

Association Evidence by Type Low Confidence Medium Confidence High Confidence

Previous Functional Network 6850 32488 25605
Domain-domain 0 5082 864
Interologs 0 0 1701
Combined Score 6844 30142 29776

For scoring protein domain-domain interactions, the predicted interacting domains were considered as
domains shared between proteins and we applied the scoring scheme as described in [2]. For interologs,
protein-protein interactions from the IntAct database were assumed to be of reasonable quality and
we thus set the interologs scores at 0.75. For each evidence source, functional interaction scores are
categorized into three different confidence levels, namely low, medium and high confidence. The final
row in Table 6 shows the number of interactions in each confidence range for the final combined score



Int. J. Mol. Sci. 2012, 13 7294

computed by combining link confidence score between two proteins ı and  for an integrated view of all
datasets through a unified network under assumption of independence, and given by

Sı = 1−
3∏
d=1

(
1− sdı

)
(2)

where sdı is the confidence score of a functional interaction between ı and  predicted using the type
of data d. All interactions whose scores are strictly less than 0.3 (<0.3) are considered to be low
confidence, scores ranging from 0.3 to 0.7 (0.3 ≤ score ≤ 0.7) are classified as medium confidence and
scores greater than 0.7 (>0.7) yield high confidence. This functional network is used to predict, where
possible, functional classes and GO biological process terms of uncharacterized proteins. Furthermore,
we compared topological features of these uncharacterized proteins to global network parameters and to
those of other proteins, and derived statistically significant annotations among these hypothetical proteins
based on the hyper-geometric or binomial distribution model.

3.1. Topological Features of the MTB Hypothetical Proteins

To investigate the topological features of hypothetical proteins, we used network centrality
measures [29], namely protein degree, closeness, betweenness and eigenvector scores. We compute
network centrality scores for all the proteins in the functional network produced using the approach
described in [29] as these scores provide an indication of the essentiality of a given protein to the system.
The scores for hypothetical proteins are compared to the standard network topological values and to the
rest of proteins in the functional network to check whether hypothetical protein scores are significantly
higher than network topological values and that of other proteins, i.e., whether these hypothetical proteins
correspond to bottlenecks in the MTB functional network and thus may be key components of the
organism’s cellular processes.

The standard network topological values (see Table 1) are 28.974 for average degree and 3.6274 for
average shortest path length. The average closeness score is 1/3.6274, which represents approximately
0.27568. For the betweenness centrality measure, the total number of shortest paths expected to pass
through the protein in the functional network of interest, is about 15003.

3.2. Protein Annotation Prediction

In previous work [17], we suggested the use of the underlying biological principle, referred to as
“trace” of the functional network structure under consideration to predict functions of uncharacterized
proteins by observing the level 1 and 2 neighbors’ functional annotation occurrence patterns. The
approach from [2] was used to predict, where possible, functional classes from TubercuList [51] and
GO biological process terms of uncharacterized proteins including PE/PPE proteins.

We denote Level 1, the approach that exploits the guilt-by-association, or level 1 interacting neighbors,
to predict the functional class of uncharacterized proteins. The Level 2 approach uses the level 2
interacting neighbors and the Level 1-2 approach combines level 1 and level 2 interacting neighbors
to predict the functional class. The Level 1:2 approach uses level 1 neighbors to classify a protein but
complemented by level 2 neighbors, used only in the case where level 1 neighbors of the protein under
consideration are also uncharacterized, in order to improve coverage.
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These four approaches are evaluated using Receiver Operating Characteristic (ROC) [52,53] and
Precision-Recall Operating Characteristic (P-ROC) [54] curve analyses and proteins with known
functions using the ROCR [55] package under the R programming language [56,57]. In order to compare
the performance of these approaches, we combined their related ROC and P-ROC curves, and results are
shown in Figure 2a,b. These results indicate that the Level 1 or Guilt-by-association approach yields
the best quality prediction, so we used this approach to classify uncharacterized proteins. We were
able to predict functional classes for 1466 uncharacterized proteins out of 1784, representing 82% of
uncharacterized proteins (unknown + PE/PPE functional classes). This brings the number of proteins
with predicted functional classes to 3877 out of 4195 found in the non-redundant list of the MTB proteins
from the UniProt database [58–60], which represents 92% of the proteome.

Figure 2. Performance analysis of the functional class prediction approaches. (a) ROC
curve; (b) P-ROC curve.
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For predicting GO biological process terms, we evaluated five approaches, namely the GO-GA,
GO-PIND, GO-GAPIND-1, GO-GAPIND-2 and GO-FS approaches described in [17], with scores and
GO semantic similarity computed using GO-universal similarity metrics [36]. The GO-GA approach
refers to the Guilt-by-association approach that uses the GO annotation in which relationships between
GO terms in the GO directed acyclic graph (GO-DAG) are considered through semantic similarity
scores. The GO-GAPIND approaches is a GO annotation prediction model in which the potential
annotations of the protein target are annotations occurring among its direct interacting partners and those
of other proteins whose direct interacting partners share significant similarity with the set of the direct
interacting partners of the protein target. GO-GAPIND-1 uses only level 1 interacting neighbors and
GO-GAPIND-2 combines level 1 and 2 interacting neighbors. Finally, the GO-FS approach exploits
level-1 and level-2 neighbors similarity weights to identify neighbors that are more likely to share
functions with the protein target. Note that all these approaches achieved their best precision at the
GO score threshold of 0.1.



Int. J. Mol. Sci. 2012, 13 7296

The known protein GO annotation data for the MTB proteome were extracted from the Gene Ontology
Annotation (GOA) project [11–14] knowing that most of these annotations if not all have been inferred
electronically, with IEA as the evidence code for GO. We relied on the fact that the quality of these IEA
annotations is high (up to 100% precision and, in the worst case scenario, InterPro2GO, SPKW2GO
and EC2GO precisely predict the correct GO term 60 to 70% of the time) [16]. The ROC and P-ROC
curves for the five different protein function prediction approaches are depicted in Figure 3a,b, and show
that all these approaches achieve good performance in terms of the ROC analysis. To produce these
curves, we used leave-one-out cross-validation strategy in which positives for a given known protein
are GO terms annotating the protein, and a true positive is any predicted GO term whose semantic
similarity score with protein’s known annotations is at least 0.4. Negatives are annotations occurring
among a protein’s neighbors whose semantic similarity score with protein’s known annotations is less
than 0.4. The P-ROC curves show the difference between these different approaches and reveal that the
combination of GO-GA and PIND approaches yields better quality annotations.

Figure 3. Performance analysis of the function prediction approaches for BP ontology.
(a) ROC curve; (b) P-ROC curve.
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In order to ensure higher genome coverage, we ran the prediction model, which uses the
GO-GAPIND-2 method to predict GO biological process terms for uncharacterized proteins in the MTB
proteome. The GO annotation data extracted from the GOA website contained a total of 2340 proteins
characterized with biological process terms. After running the annotation prediction model on the new
MTB functional network, the annotations of 1770 proteins out of 1855 uncharacterized proteins were
predicted, representing 95% of previously uncharacterized proteins in the MTB proteome. Thus, the
resulting annotation dataset consists of 4110 proteins with predicted GO biological process terms, which
represents approximately 98% of the whole proteome. Eighty-five proteins are still uncharacterized,
representing about 2% of the MTB proteome.
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3.3. Annotation Enrichment Analysis

Commonly used approaches to assess the statistical significance of term occurrences from a random
model include Ficher’s exact test, Chi-squared test, or hyper-geometric and binomial tests. They consist
of computing the p-value for each term’s frequency in the experiment defined as the probability that the
number of genes annotated with the term under consideration in the target set occurs by chance or is
comprised of randomly drawn genes. These different tests are performed under the null hypothesis that
the number of genes annotated by the term under consideration have the same probability of falling in
the reference set and in the target set. Fisher’s exact and Chi-squared tests are non-parametric and less
powerful than binomial and hyper-geometric tests [61].

Using the hyper-geometric distribution, the p-value, which is the probability of observing at least `
genes from a target gene set of size n by chance, knowing that the reference dataset, considered to be a
background distribution, contains m such annotated genes out of N genes is given by

P [X ≥ `] = 1−
`−1∑
k=0

(
m

k

)(
N −m
n− k

)
(
N

n

) (3)

where the random variable X represents the number of genes within a given gene subset, annotated
with a given term. For the large sample size, the hyper-geometric distribution converges to a binomial
distribution [62], in which case the p-value is computed as follows:

P [X ≥ `] = 1−
`−1∑
k=0

(
n

k

)
pk (1− p)n−k (4)

where the probability p is estimated by the relative frequency of occurrence of each GO term in the
reference dataset. In these two cases, the lower the p-value, the less likely it is that the observed frequency
of the term is due to chance, and thus the more meaningful the term is in the target gene set. The
implementation of p-value allows an automatic ranking of all terms in the dataset under consideration.
This was used for enrichment analysis on the newly predicted functions for the hypothetical proteins.

4. Conclusions

The existence of hypothetical proteins in genomes constitutes a major issue for comparative and
functional genomics analyses. In particular for pathogenic organisms, these hypothetical proteins
hamper the search for new and effective drug targets, and weaken progress towards the advancement of
research on these organisms and enhancement of our understanding of their virulence and pathogenicity.
In this study, we used network topological scores and predicted annotations of the MTB hypothetical
proteins from a protein-protein functional network to elucidate potential roles of these proteins in the
functioning of the system. This was achieved by performing statistical analysis of network topological
scores of these proteins and annotation enrichment analysis of predicted annotations for these proteins.

We showed that in the context of MTB, some of these proteins may contribute to the survival of the
bacterial pathogen within the host system and they may have a particular role in helping the organism
evade the host immune response and in persistence and latency. They are thus likely to be important
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for the specific lifestyle of the organism and adaptability of this pathogen in the host, so functional
characterization of these proteins is essential. Currently, there is a need for novel and effective drugs
with new biological mechanisms of action against drug susceptible and drug-resistant strains. These
need to be reliably administered with a shorter regimen to overcome the disease caused by this particular
organism, which constitutes a public health challenge, claiming millions of lives and new cases every
year. Such quantitative analysis may help us better understand the biology of the organism as a whole
system and identify potential drug targets at the molecular level for the disease.
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