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Abstract
We investigate how the population nonlinearities

resulting from lateral inhibition and thresholding in
sparse coding networks influence neural response
selectivity and robustness. We show that when
compared to pointwise nonlinear models, such
population nonlinearities improve the selectivity to a
preferred stimulus and protect against adversarial
perturbations of the input. These findings are predicted
from the geometry of the single-neuron iso-response
surface, which provides new insight into the relationship
between selectivity and adversarial robustness.
Inhibitory lateral connections curve the iso-response
surface outward in the direction of selectivity. Since
adversarial perturbations are orthogonal to the
iso-response surface, adversarial attacks tend to be
aligned with directions of selectivity. Consequently, the
network is less easily fooled by perceptually irrelevant

perturbations to the input. Together, these findings
point to benefits of integrating computational principles
found in biological vision systems into artificial neural
networks.

Introduction

Inhibitory lateral connections abound in biological
neural networks. In the visual system, they are found in
the retina, LGN, and nearly all layers of visual cortex. In
the retina, horizontal cells provide inhibitory feedback
onto photoreceptors, performing a form of spatial
differentiation that is thought to reduce redundancy
in the signals sent down the optic nerve (Srinivasan,
Laughlin, & Dubs, 1982; van Hateren, 1992; Atick
& Redlich, 1990, 1992). In the lateral geniculate
nucleus, inhibitory interneurons are thought to mediate
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spatial and temporal sharpening of image contrast
(Hirsch, Wang, Sommer, &Martinez, 2015). In primary
visual cortex, inhibitory lateral connections have been
implicated as a mechanism responsible for nonlinear
response properties such as divisive normalization,
cross-orientation inhibition, and contrast-invariant
orientation tuning (Carandini, Heeger, & Movshon,
1997; Zetzsche, Krieger, & Wegmann, 1999; Douglas &
Martin, 2007; Priebe & Ferster, 2012; Zhu & Rozell,
2013).

In contrast to this pervasive feature of neurobiologi-
cal networks, the deep neural network architectures that
are now widely used for image analysis (LeCun, Bengio,
& Hinton, 2015; Rawat & Wang, 2017; Goodfellow,
Bengio, & Courville, 2016) and proposed as models of
the visual system (Yamins, Hong, Cadieu, Solomon,
Seibert, & DiCarlo, 2014; Doi & Lewicki, 2014; Yamins
& DiCarlo, 2016; Lindsey, Ocko, Ganguli, & Deny,
2019; Richards et al., 2019) utilize only a cascade of
linear filtering followed by pointwise nonlinearities (e.g.,
rectification) at each stage of processing. Here we ask
what could be gained by incorporating the population
nonlinearities that arise from recurrent inhibition
within the lamina of visual cortex (Xu, Olivas, Ikrar,
Peng, Holmes, Nie, & Shi, 2016). An important
computational property of these recurrent inhibitory
networks, in comparison to a layer of neurons within a
feedforward network, is that neurons can increase their
selectivity by recirculating information within the same
layer rather than relying upon additional downstream
layers of processing, thus making more efficient use of
neural resources. We focus here specifically on the form
of lateral inhibition proposed by the sparse coding
model, which hypothesizes that cortical networks
achieve sparse representations via neurons inhibiting
each other proportional to the overlap in their receptive
fields (Olshausen & Field, 1996; Rozell, Johnson,
Baraniuk, & Olshausen, 2008), an idea that is both
theoretically grounded and empirically supported
(Zetzsche & Krieger, 1999; Olshausen & Field, 2004;
Haider, Krause, Duque, Yu, Touryan, Mazer, &
McCormick, 2010; Chettih & Harvey, 2019; Beyeler,
Rounds, Carlson, Dutt, & Krichmar, 2019). We show
how these interactions give rise to both a higher degree
of selectivity and increased robustness in comparison
to the purely feedforward network layers lacking such
interactions.

Our analysis characterizes the response properties of
model neurons in terms of their iso-response surface,
that is, the surface in stimulus space defined by the set
of stimuli that produce equal responses from a neuron.
These surfaces can be curved for single-layer networks
with population nonlinearities, such as sparse coding,
and are always flat for single-layer networks with
pointwise nonlinear activation functions, such as those
composed of linear nonlinear poisson (LNP) neurons
(Zetzsche & Röhrbein, 2001; Golden, Vilankar, Wu, &

Field, 2016). Iso-response stimulus analysis has been
used to better understand neural computation for
visual (Rust, Schwartz, Movshon, & Simoncelli, 2005;
Bölinger & Gollisch, 2012; Horwitz & Hass, 2012) and
auditory (Gollisch & Herz, 2005) brain processing
regions (for a review, see Gollisch & Herz, 2012).
Previous work has suggested that curved iso-response
contours are indicative of a multiplicative AND-like
operation on the inputs, resulting in improved efficiency
and selectivity (Zetzsche & Barth, 1990; Zetzsche &
Krieger, 2001). Building on these ideas, Vilankar &
Field (2017) defined hyperselectivity as the drop-off
in response around a neuron’s preferred stimulus and
explored its relation to the iso-response curvature of
sparse coding neurons. Here, we extend the analysis to
provide a more complete description of the curvature
for a large sample of neurons in network models
trained on a data set of natural images. We then use
experimental designs adapted from neurophysiological
studies using full-field grating stimuli (Ringach,
Shapley, & Hawken, 2002) as well as natural stimuli to
show that the hyperselectivity of neurons in a sparse
coding network results in sharper tuning than in linear
or pointwise nonlinear neurons.

The drop-off in a neuron’s response around its
preferred stimulus can conversely be thought of as
robustness against perturbations that are not aligned
with the preferred stimulus direction. The lack of
robustness in deep neural networks has been a topic of
great interest to the machine learning community. It
has been shown that these networks are easily fooled by
small perturbations designed to maximally change the
network’s output while minimally changing the input
(Szegedy et al., 2013) or even by real-world photos
that fall outside the traditional training/test ensemble
(Hendrycks, Zhao, Basart, Steinhardt, & Song, 2019;
Recht, Roelofs, Schmidt, & Shankar, 2019). While we
recognize the importance of the training loss, here we
provide evidence to support the hypothesis that the
observed lack of robustness is in part due to the manner
in which these networks were constructed to begin with,
that is, as a passive, feedforward cascade of filtering
and pointwise nonlinearities. By contrast, sparse coding
uses a probabilistic, generative model that attempts to
explain what it “sees” in terms of a model of the world
(Olshausen, 2013b). Importantly, the representation
of an image is inferred through a dynamic process
that compares the model’s prediction against the data,
inducing an “explaining away” competition among
neurons (Pearl, 1988). As we shall see, this causes
the neurons to have iso-response surfaces that are
curved outward, away from the origin and in the
direction of selectivity, hence providing hyperselectivity.
Consequently, the response to a stimulus that is not
aligned with a neuron’s weight vector will be attenuated.
Here we show how this hyperselectivity makes neurons
more resistant to adversarial perturbations.
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We first review locally competitive algorithms
(LCAs; Rozell et al., 2008), a family of recurrent neural
networks with lateral connections for implementing
sparse coding, which forms the basis of our
investigation. Next we characterize the iso-response
surface and measure selectivity to orientated gratings as
well as natural stimuli for networks with and without
lateral connections. We demonstrate the relation
between selectivity and robustness with an analytic
argument and show that the curved iso-response
surfaces resulting from lateral inhibition encourage
adversarial perturbation vectors to be more aligned
with the data dimensions and thus more semantically
relevant. Finally, we demonstrate by experiment
improved robustness to adversarial attacks with
networks that include lateral inhibitory connections. We
contribute a novel perspective for relating iso-response
surfaces, selectivity, and adversarial robustness. Some
of this work has been previously described in (Paiton,
2019), although here we provide more complete
analysis, interpretation, and additional experiments.

Neuron response geometry

Sparse coding

Sparse coding is a generative model for representing
natural stimuli (Olshausen and Field, 1997). The model
aims to encode an incoming signal efficiently under
the assumption that it is composed of structured
components and unstructured additive noise. It assumes
a linear generative model:

s = �a + ε, (1)
where s ∈ RP is a vector of P image pixels, a ∈ RN is
a vector of N neuron activation coefficients, � is a
P × N dictionary matrix (the structured components),
and ε ∈ RP is Gaussian noise. Importantly, to encode
a given input, s, the model must infer appropriate
coefficients, a, as opposed to directly computing them
with a feedforward process. The encoding should be a
faithful and efficient representation of the data, which
is achieved by minimizing an energy function:

argmin
a

(
E = 1

2
‖s − ŝ‖22 + λ

N∑
i=1

C(ai)

)
, (2)

where ŝ = ∑N
i=1 �iai is the image reconstruction, λ

trades off the reconstruction accuracy against network
sparsity, and C(·) is the sparsity constraint cost
function. In some experiments, we will vary the degree
of overcompleteness of �, which is represented by the
ratio N

P .
Rozell et al. (2008) proposed a family of dynamical

neural networks called LCAs or LCA for a single

network type) to minimize Equation (2). LCAs describe
each activation coefficient, ak, as the thresholded output
of an internal state variable, uk, which is analogous to
a biological neuron’s membrane potential and evolves
according to the following differential equation:

u̇k(t) = 1
τ

⎡
⎣bk −

N∑
n�=k

Gk,nan(t) − uk(t)

⎤
⎦ , (3)

where τ represents the time constant of the dynamics,
bk = ��

k s is the feedforward drive, and Gi, j = ��
i � j is

an entry in the lateral connectivity matrix. The relation
between ak(t) and uk(t) is given by

ak(t)= Tλ(uk(t))

Tλ(uk(t))=
{

0, uk(t) ≤ λ
uk(t) − λ, uk(t) > λ.

(4)

Note that our Tλ(·) is a nonnegative variant of what
was specified by Rozell et al. (2008). Other thresholding
functions can be derived for different choices of the cost
function C (·) (Rozell et al., 2008; Charles, Garrigues,
& Rozell, 2011). In this work, we employ a single
instance of the family of networks that implements an
l1 sparseness penalty: C(ai) = |ai|, although we expect
other sparsity-inducing choices would yield similar
results. For all of the experiments in this study, we
pre-trained the LCA weights by minimizing the energy
function in Equation (2) with respect to � via the
learning rule

��k = η(s − ŝ)ak, (5)
where η is the learning rate, the actual weight update is
the average over a batch of 100 inputs, and ak indicates
the activation after T update steps, ak(t = T ).

The dynamics of Equations (3) and (4) correspond
to a recurrent neural network, where each unit is driven
by a feedforward component given by the similarity
between its dictionary element and the signal, and
inhibited by lateral connections that have strength
proportional to the overlap in units’ feedforward
weights, as shown in Figure 1b. In contrast to a
standard neural network layer composed of linear
summation followed by pointwise nonlinearities, shown
in Figure 1a, the LCA network expresses a population
nonlinearity as the nonlinear mapping between s and
a is a function of the whole layer of neurons. In the
next section, we compare the iso-response surfaces that
result from these two different network architectures.

Characterizing neurons via iso-response
surfaces

The activation of a single model neuron is a
scalar-valued function, f , of a vector-valued input,
s ∈ RP. The set of all vectors that are mapped by f to
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Figure 1. Network architectures. The input, s, is a vector of pixels represented by the lower row of black dots. The neurons are the
upper row of black dots and have internal states, u. The dark arrows are connections for neuron k. All other connections are denoted
by dotted lines. (a) A standard architecture for a feedforward rectified (ReLU) encoder. (b) The architecture for the LCA network,
which includes feedforward driving connections, �, as well as a lateral connectivity matrix, G.

the same response value c is known as the level set at c
of f . For a given input s such that f (s) = c, we call the
connected component of the level set at c that contains
s the iso-response surface of f at s. It is the set of all
inputs obtainable by a smooth transformation of s that
are mapped to the same output value c. This surface
is generically P − 1 dimensional. In order to better
understand and to visualize this high-dimensional
object, we consider its lower-dimensional projections.
We call a parameterized curve, γ (t), along this surface
and including the point s an iso-response curve at s.
An iso-response contour at s is an iso-response curve
at s that is restricted to a two-dimensional subspace of
RP. Alternatively, it is the iso-response surface of the
activation function restricted to this subspace.

To visualize a target neuron’s iso-response contours,
we measure the neuron’s response to a data set of
images that all lie on a two-dimensional subspace of
RP, shown in Figure 2. We use the target neuron’s
feedforward weights �k as one of the two vectors that
define the subspace. To determine the second axis of the
subspace, we start by choosing a random comparison
neuron with a weight vector (� j, j �= k). In the likely
event that the comparison vector is not orthogonal to
the target vector, we use one step of the Gram-Schmidt
process to find an orthogonal vector that is coplanar
with the comparison and target neurons. As opposed
to randomly selecting the orthogonal direction, this
method will increase the likelihood of competition
between neurons for LCA networks and thus increase
the curvature (Golden et al., 2016; Vilankar & Field,
2017). Each point within a reasonable radius (given
the norms of the weight vectors and training stimuli)
of the origin in the two-dimensional plane can be
injected into RP to produce images that will have a high
degree of correspondence to features that are relevant
to the target neuron (although this is most true for the
upper-right quadrant, we assume it is approximately

also true for the rest of the quadrants). Finally, we bin
the points according to the target neuron’s normalized
output amplitude so that the bin boundaries reveal the
neuron’s iso-response contours.

Now let us consider a linear neuron model. The
iso-response contours of linear neurons are straight:
Any input perturbation that is orthogonal to the weight
vector will result in equal activation. Writing s for the
input and e for the perturbation, we have

��
k (s + e) = ��

k s + ��
k e. (6)

This will be constant for perturbations, e, such that
��

k e = 0. These perturbations are orthogonal to �k or,
more generically, in the N − 1 dimensional nullspace
of the linear map ��

k . Therefore, the activation of the
neuron is constant in a linear subspace of dimension
P − 1, or a hyperplane, and all of its iso-response
contours are straight and orthogonal to the weight
vector (see Figure 2, top left).

Pointwise nonlinearities are the more traditional
form of nonlinearities and are seen in many deep neural
network architectures and computational neuroscience
models. They can be defined as nonlinearities that are a
function of only a single neuron in a layer and include
rectification, sigmoid, and hyperbolic tangent (among
other functional variants). Pointwise nonlinearities
also produce straight iso-response contours because
the nonlinearity is performed after a linear projection.
Writing g for the nonlinearity of the neuron k, we have

g(��
k (s + e)) = g(��

k s + ��
k e), (7)

which is once again constant for orthogonal
perturbations, ��

k e = 0 (see Figure 2, top right and
bottom left).

Population nonlinearities represent an alternative
class of nonlinearities, where the output is also a
function of multiple neurons in a set. These include
divisive normalization (e.g., Geisler & Albrecht, 1992;
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Figure 2. Empirically measured iso-response contours. A fine
sampling of points in a two-dimensional plane is injected into a
256-dimensional image space and used as inputs to a target
model neuron. For each subplot, neuron k’s outputs for all
images were normalized and then divided into 10 bins, which
are indicated by the color. Weight vectors for neurons �k and
� j are shown, although the � matrix differs from model to
model. ν indicates an orthogonal vector found using the
orthogonalization process described in the text. All pointwise
nonlinear models will produce straight contours that are
orthogonal to the �k weight vector, while the population
nonlinear model can produce exo-origin bent (i.e., bent away
from the origin) contours. C indicates curvature, which is
measured using the method discussed in Appendix A.3.

Carandini & Heeger, 2012; Sanchez-Giraldo, Laskar,
& Schwartz, 2019) and the network nonlinearity,
present in sparse coding. By contrast, for a population
nonlinearity, the gradient of the activation with respect
to a small perturbation in the input is a function of all
other neurons in the layer. Consider: for a perturbation
that is orthogonal to a target neuron’s weight vector,
it is generically the case that some other neuron will
have a nonorthogonal weight vector, which can result
in a net change in all neuron outputs. Writing g for the
population nonlinearity and pk for the kth canonical
basis vector (i.e., a one-hot vector that selects neuron
k), the activation of a neuron k can be written

p�
k g(�

�(s + e)) = p�
k g(�

�s + ��e), (8)

where the term inside g is again constant along linear
spaces in a nullspace, in this case that of the weight
matrix. When the output layer has more neurons than
the input layer, as in overcomplete sparse coding, this
nullspace only contains the zero vector, and therefore,
g will not be constant along any linear subspace. In
this case, the iso-response contours for population
nonlinear neurons will generically be curved (Figure 2,
bottom right). The curvature can be toward the
origin (endo-origin) or away from it (exo-origin).
Our experiments herein as well as work from others
support the hypothesis that exo-origin curvature
is indicative of general selectivity—there will be a
drop-off of the neuron’s response when the input is
perturbed away from its preferred stimulus (Zetzsche
& Röhrbein, 2001; Vilankar & Field, 2017). We focus
on a single method for implementing population
nonlinearities, and in the Discussion, we point to
several alternative approaches that warrant additional
comparisons.

Population iso-response surface analysis

By observing many individual response contours, we
can gain a better intuition about the higher-dimensional
response surface. We do this by calculating the response
contours for different two-dimensional cross sections of
the P-dimensional image space and then summarizing
the estimated curvature in all of the observed planes.
As described earlier, we define one axis of all planes
as the target neuron’s weight vector. Next, we propose
two different methods for finding the orthogonal axis.
The first method, which we call the “comparison”
plane method in Figure 3, is to iteratively apply the
process we described above for a large sampling of
other neurons in the layer. Specifically, we select 300
comparison neuron vectors randomly from the set of
alternative neuron weights for each target vector. This
analysis method is general in that one could have used
most-exciting images or any other variety of stimuli to
define the planes, although for understanding selectivity
and robustness of single-layer networks, we found that
the feedforward weights are the most interpretable
choice. For the second method, which we call the
“random” plane method in Figure 3, we compute a set
of planes defined by random orthogonal vectors that
are also orthogonal to �k. This method will result in
less curvature but provides a more complete description
of the high-dimensional response geometry. Since our
“random” plane selection method still uses the neuron’s
weight for one axis, the likelihood of competition
(and therefore curvature) is higher than if both axes
were chosen randomly. This is because the angles
between LCA weight vectors are much more diffusely
distributed around orthogonal than they would be
for random vectors (Vilankar & Field, 2017; Paiton,
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Figure 3. LCA neurons have high-dimensional exo-origin curvature. The top plot is a three-dimensional response surface plot, where
the color axis used in Figure 2 is now indicated by the z-axis. The y- and x-axes are indicated by projections of the ν and �k vectors,
respectively. Two different types of curvature indicated, which are dependent on each other but not equal. The histograms show
second-order coefficients for polynomial fits to points measuring (left column) iso-response curves and (right column) response
attenuation curves. The black vertical dashed lines indicate 0 curvature and color darkness indicates the network overcompleteness.
See text for details about comparison (red lines) versus random (blue lines) orthogonal vectors. We plot the logarithm of the
frequency to emphasize the behavior of the tails, although we provide a linear version in Figure A.2.

2019). For each plane, we compute the model outputs
for 900 inputs evenly spaced in a two-dimensional grid
pattern centered on the origin. The first method is the
same as what was used by Vilankar & Field (2017),
although they measure curvature for single-neuron
pairs. To better understand the response geometry of
the entire network, we analyze 100 randomly selected
neurons and 600 orthogonal planes per neuron (300 per
method), resulting in 54 million image presentations
per overcompleteness level.

In addition to the curvature of iso-response lines, it
is also relevant to measure the curvature of response
attenuation lines, which are orthogonal to the target

neuron’s weight vector (Figure 3, top). This type of
curvature indicates how much a neuron’s response
decreases as the stimulus becomes less like its weight
vector and is a direct measure of selectivity against
orthogonal perturbations. For pointwise nonlinear
neurons, these two lines have zero curvature, and for
population nonlinear neurons, it is possible for them to
have different curvatures.

We measured the curvature of the two contour
types (iso-response and response attenuation) in
each plane for all neurons tested using the method
described in Appendix A.3. Figure 3 demonstrates
that LCA neurons have exo-origin iso-response
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Figure 4. LCA neurons are more selective to oriented gratings than linear or sigmoid nonlinear neurons. On the left is a histogram of
the circular variance (Ringach et al., 2002), a measure of orientation selectivity, for all of the neurons in each model. In the middle, we
show a random sampling of weights learned by each model. On the right, we show corresponding orientation response curves. For
the response curves, the horizontal axis represents the angle of the input stimulus, which varies from 0 to π . The vertical axis is the
response of the neuron and has been normalized by dividing the response by the maximum across the 36 neurons shown. All
networks received 256 pixel inputs and have 768 latent units.

curvature and response attenuation curvature in
nearly all data-relevant planes. The high-dimensional
curvature for LCA neurons can be thought of as an
irregular hyper-cone, which indicates selectivity against
perturbations away from its feedforward receptive field.
This is an important quality that we desire from our
model neurons. In visual neuroscience, we often use
the neuron’s linear receptive field (in our model that is
analogous to its weight vector) to represent the stimulus
that the neuron is selective for. With a pointwise
nonlinear neuron model, it is possible to deviate far
away from its weight vector in any orthogonal direction
without changing the neuron’s response. LCA neurons,
on the other hand, have a higher degree of selectivity to
perturbations away from their receptive field. Therefore,
neurons with exo-origin response curvature produce
outputs with a higher degree of correspondence to
what we believe they are looking for in the world. The
link between exo-origin iso-response curvature and
selectivity has been shown experimentally (Horwitz &
Hass, 2012; Bölinger & Gollisch, 2012) as well as argued
theoretically (Zetzsche & Röhrbein, 2001; Vilankar &
Field, 2017). We expand on previous work in Figure 3
by showing that the amount of response curvature is
increased as one increases model overcompleteness
for a large sample of population nonlinear neurons.
In the following section, we draw additional
connections by showing improved orientation and
natural stimuli selectivity for LCA neurons when
compared to linear and pointwise nonlinear neuron

models, which we argue is predicted by the response
curvature.

Selectivity

Orientation selectivity

Orientation selectivity is a distinguishable feature
of the response properties of simple cells in Layer 4
of V1. However, since the discovery of orientation
selectivity (Hubel & Wiesel, 1959), the mechanism for
the computation has remained unclear. We trained
three network types on one million natural image
patches (van Hateren & van der Schaaf, 1998):
reconstruction independent components analysis
(Linear Autoencoder; Le, Karpenko, Ngiam, & Ng,
2011), a sparse autoencoder with pointwise sigmoid
nonlinearities (Sparse Autoencoder; Ng, 2011),
and LCA (Sparse Coding; Rozell et al., 2008) (see
Appendices A.1 and A.2 for data set and network
details). In accordance with typical orientation
selectivity experiments, in Figure 4, we first measure
the selectivity of neurons in each of these networks to
full-field oriented gratings. Although all models are
able to learn oriented Gabor-like filters, sparse coding
exhibits a higher degree of selectivity than both the
linear and pointwise nonlinear alternatives, supporting
the hypothesis that lateral competition facilitates
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Figure 5. Natural image selectivity. Selected images are chosen for individual neurons by selecting those that evoke at least 50% of the
maximum activation achieved from 100,000 natural image patches. (Top) LCA neurons are excited by fewer natural image patches
than linear neurons with identical feedforward weights. Additionally, increasing overcompleteness reduces the average number of
selected images per neuron. The box extends from the lower to upper quartile values, the notch indicates the median number, and
the whiskers indicate the 5th and 95th percentiles. (Bottom) Selected images for LCA neurons have a closer angle to their feedforward
weights than linear neurons. Experimental details can be found in Appendix A.4.

hyperselectivity. Experimental evidence recorded from
V1 simple cells in monkeys (Macaca fascicularis) shows
neurons that exhibit the full range of circular variance
selectivity values for similar stimuli (Figure 1, Ringach
et al., 2002), suggesting that at least some of them
are more selective than what can be achieved by a
single-layer pointwise linear nonlinear model.

Natural scene selectivity

A common point of confusion in the field has been
the assumption that a locally oriented receptive field is a
sufficient condition for a neuron to exhibit the degree of
orientation selectivity that is observed in physiological
studies (Daugman, 1985; Ferster, Chung, & Wheat,
1996; Bell & Sejnowski, 1997; Eichhorn, Sinz, & Bethge,
2009). However, others have demonstrated that adding
a population nonlinearity improves selectivity and
efficiency (Geisler & Albrecht, 1995; Sompolinsky &
Shapley, 1997; Sinz & Bethge, 2009). The difference
between linear and nonlinear selectivity is obfuscated
by the oriented grating stimuli used to estimate neuron
selectivity, which are obviously more controlled than
an organism’s natural visual experience. For example, a

carefully designed linear filter (e.g., a highly elongated
Gabor) could have narrow orientation selectivity for
grating stimuli without having curved iso-response
contours. On the other hand, one could easily construct
a high-contrast, nonoriented stimulus that activates the
linear filter by the same amount as a medium-contrast
oriented stimulus. Thus, the interpretation of a single
neuron’s response when probed with a wider range of
stimuli is considerably more ambiguous than suggested
by its tuning to oriented gratings. To illustrate this,
in Figure 5, we probe linear and LCA neurons with
a more generic class of stimuli and find that linear
neurons respond to a variety of examples that are not
as well matched to their preferred stimuli. To measure
nonlinear selectivity, we find images out of a set of
100,000 that achieve at least 50% of the maximum
activation, which we call “selected images.”We estimate
this for each neuron in an LCA network as well as a
linear network with identical feedforward weights (i.e.,
the same linear computation as was used in Figure 4
but with the weights changed to be exactly the same
as the LCA network). We then measure the average
number of selected images per neuron for different
overcompleteness levels as well as the angles between
each neuron’s weight vector and its selected images.
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We find that LCA neurons exhibit higher selectivity (as
measured by the average number of selected images per
neuron) than linear neurons. Additionally, we find that
LCA neurons prefer images that are closer in angle to
their weight vectors than linear neurons. LCA neurons
also become slightly more selective as one increases
overcompleteness, while the linear system exhibits
approximately equal selectivity. Thus, a population
nonlinear encoding process selects for images that are
better matched to a neuron’s receptive field.

As we illustrated in Figure 2, linear or pointwise
nonlinear neuron responses do not change for input
perturbations that are orthogonal to their weight
vector. However, if the target neuron has exo-origin
bent contours, then orthogonal perturbations from
the neuron’s weight vector will result in attenuation
of its output. Therefore, if a neuron has exo-origin
iso-response contours around an oriented stimulus
direction, then it will be selective against any generic
perturbation away from that orientation. We would
argue that this constitutes a more generic and
meaningful way to quantify the neuron’s orientation
selectivity than simply probing it with grating stimuli.

In the previous experiments, we showed a population
nonlinear network that is selective to a narrower set
of natural stimuli and grating orientations than the
pointwise nonlinear network. However, the same
principles should apply for stimulus perturbations
that are derived to maximally change the neuron’s
output. In other words, selectivity to a preferred
stimulus can alternatively be framed as robustness
against nonpreferred stimulus perturbations. In the
deep learning literature, these perturbations are termed
adversarial and demonstrate a deep network’s inability
to learn robust representations of objects in the world.

Robustness

Iso-response surfaces predict adversarial
directions

Generically, adversarial attacks are constructed
utilizing a method for producing small changes to
neural network inputs that create large, potentially
targeted, differences in the network outputs. Early
investigations of these attacks on deep networks were
done by Szegedy et al. (2013), who framed adversarial
images as a counter example to the hypothesis that deep
networks are able to achieve local generalization to
pixel regions in the vicinity of training examples. Work
from Goodfellow, Shlens, & Szegedy (2014) presented
evidence that the direction of the perturbation is more
important than the specific point in space, which is
further supported by the discovery of universal and

transferable adversarial examples (Moosavi-Dezfooli,
Fawzi, Fawzi, & Frossard, 2017; Kurakin, Goodfellow,
& Bengio, 2016a; Jetley, Lord, & Torr, 2018). In this
section, we show that the direction of perturbation
to maximally modify a neuron’s output is defined by
its iso-response surface. Specifically, we adopt the
iso-response analysis framework to better understand
adversarial attacks on neural networks with and
without population nonlinearities. We show that
the response geometry of LCA neurons predicts
data-aligned adversarial perturbations, resulting in
semantically meaningful adversarial attacks. Finally, we
provide evidence suggesting that competition via lateral
connections constrains an adversary, resulting in larger
perturbation magnitudes.

The variety of attack strategies, networks, and
targets poses difficulties for making concrete analyses.
As a starting point, consider the simple case of an
adversarial attack seeking to maximize the activation
of a single neuron k by means of a perturbation e to an
input s. This type of attack is untargeted, in the sense
that there is not a specific new value that we seek from
the neuron. We can write the adversary’s loss Lk as

Lk(e) = fk(s) − fk(s + e), (9)

subject to the constraint e ∈ {e : ‖e‖∞ < ε} =: �.
Consider an iterative adversarial attack that performs
projected gradient descent on the above loss function
(Kurakin, Goodfellow, & Bengio, 2016b). That is, we
compute iterates ei by

qi+1 = η∇e fk(s + ei) + ei
ei+1 = sgn(qi+1) 	 min(|qi+1|, ε) (10)

for a step size η > 0, where the second line is
performing projection onto the constraint set, �, via
the combination of element-wise sign, multiplication,
and minimum operations. Within the constraint set,
then, the adversary is simply following the gradient of
the activation with respect to the inputs. By reversing
the sign of the loss Lk, we have that an adversary
seeking to minimize the activation of a neuron moves
along the negative gradient.

Without additional knowledge about the gradient
field, these insights do not help predict the trajectory
of the attack. However, it can be shown that all of
the iso-response contours will be orthogonal to the
gradient, and so the attack will travel orthogonally to
those contours. Locally, the neuron’s activation can be
written, up to terms O(‖e‖2), as

fk(s + e)= fk(s) + ∇ fk(s)�e + O(‖e‖2) (11)

and so, to first order, the activation is constant for
directions orthogonal to the gradient, is nonconstant
along non-orthogonal directions, and changes
maximally along the subspace spanned by the gradient.
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Figure 6. Adversarial attacks are orthogonal to iso-response contours. The left and middle plots show adversarial attacks following
Equation (9) for low-dimensional models with straight and bent iso-response contours, respectively. Here, contours were computed
using Euler’s method. The large black arrows indicate weight vectors, the small arrows indicate gradient directions, and the colored
arrow indicates the trajectory of an iterative adversarial attack against a single neuron, where color corresponds to the target
neuron’s activation. Note that both the attack and the gradient field are orthogonal to the iso-response contours. The right plot
shows the trajectory of a projected gradient descent adversarial attack on the LCA network with 768 latent units and a linear classifier
trained on the MNIST data set (the leftmost network in Figure 7). The neuron’s weight vectors are displayed as images along with the
input image, a 1, and the final attack output, which resembles the final classification output, a 3. The original and interim attack
image positions are computed by projecting the image data onto the plane spanned by the two weight vectors.

Put another way, we can trace any curve γ (t) along
the iso-response surface passing through the input s,
defined by fk(γ (t)) = fk(s) = c, and the derivative with
respect to t of f (γ (t)) will be 0. Therefore, by the chain
rule,

0 = ∇t [ f (γ (t))] (12)

= ∇ f (γ (t))�∇tγ (t) (13)

and thus the path along every curve restricted to the
iso-response surface is orthogonal to the gradient. This
includes iso-response contours.

Combining these facts, we have that, inside the
constraint set, an iterative attack on a single neuron
follows a trajectory orthogonal to its iso-response
contours. This allows us to predict the trajectory of
an adversarial attack, up until it hits the borders of
the constraint set, using knowledge of the iso-response
contours. In turn, this allows us to make several
predictions about the behavior of certain adversarial
attacks.

We can predict that a gradient-based adversarial
attack on a pointwise rectified neuron k will move
parallel to the weight vector of that neuron, �k, since
the iso-response contours are orthogonal to that vector,
as depicted in the left panel of Figure 6. For a layer with
population nonlinear neurons, the situation is different
(Figure 6, middle panel). The adversarial attack moves
orthogonally to the iso-response contours, which have
exo-origin curvature centered at the weight vector. The

result is that the attack moves toward, and then along,
the weight vector, rather than just parallel to it.

We have shown in Figure 3 that exo-origin curvature
is especially pronounced in subspaces spanned by
pairs of weight vectors. The sparse coding objective
used to train LCA encourages these weight vectors to
collectively span subspaces that come very close to data
points. This suggests that in the vicinity of samples from
the data distribution, where adversarial attacks start,
the effects of exo-origin curvature will be particularly
strong. An adversarial attack on a generic deep network
containing an LCA layer will not, in general, simply
seek to maximize the activation of a single neuron
in that layer. However, insofar as an attack seeks to
increase a target neuron’s activity, it will still need to
travel in a direction with positive inner product with the
gradient. The results of Figure 3 indicate that almost
all of these directions will point toward the weight
vector whose activity is being increased, due to the
near-ubiquity of exo-origin curvature in data-relevant
planes. It is not shown in the figure, but the opposite is
also true—to decrease activity, an attack must be away
from the the target neuron’s weight vector. Although
additional analysis is required, we predict that this
principle will hold for gradient-free attacks (Brendel et
al., 2017; Rauber, Brendel, & Bethge, 2017), which still
must produce perturbations that influence individual
neurons.

Combined, these findings allow us to make concrete
predictions about the behavior of attacks on networks
that contain an LCA layer. Due to the presence of
exo-origin curvature, adversarial attacks will need to
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move closer to the weight vectors of neurons whose
activations must be increased to obtain the same
adversarial effect as attacks on a network whose layers
lacked exo-origin curvature, for example, a network
with only pointwise nonlinear layers. The strength of
this effect will be determined by the ability of the LCA
neurons to effectively span the high-density regions of
the data distribution and the extent to which the actual
target of the attack relies on the activation of any given
neuron or set of neurons being maximized. In other
words, a single LCA layer will not be as effective when
paired with deeper classifiers or more complicated data
sets. We believe this begs for the development of deeper
generative architectures with population nonlinearities.

The third panel of Figure 6 shows several of these
predictions borne out in a concrete, realistic example.
It depicts an adversarial attack on a classification
network composed of a linear classifier on top of
an LCA layer, both trained on the MNIST data set
(LeCun, 1998; data set, model, and attack details are
described in the Appendix). As in Figure 2, the two
weight vectors depicted as arrows define a plane. The
trajectory of an adversarial attack projected onto that
plane is plotted, along with the original image, classified
correctly as a “1,” and the final adversarially perturbed
input, classified with 90% confidence as a “3.” Note the
similarity of the adversarially perturbed input to both
the target class and to the weight vector (pictured at
the tip of the arrows). Furthermore, the attack begins
travelling in a direction approximately orthogonal to
the iso-response contour in this plane indicating that,
for the early phase of the attack, the single-neuron
attack approximation is good. In the following section,
we demonstrate that attacks against this same network
also require increased perturbation magnitudes for
equal adversarial confidence than attacks against a
more typical pointwise nonlinear network. We find that
this result holds for both the MNIST and grayscale
CIFAR-10 classification data sets.

Sparse coding provides defense against
adversarial attacks

To test how population nonlinearities affect
more typical adversarial attacks, we trained fully
connected, leaky ReLU (Maas, Hannun, & Ng, 2013)
discriminative models on the MNIST and grayscale,
cropped CIFAR-10 data sets (with preprocessing
detailed in Appendix A.1) as our control (denoted “w/o
LCA”). Our comparison model is an LCA layer trained
without supervision and a classifier trained on LCA
activations (denoted “w/ LCA”). The LCA network was
trained using the unsupervised learning rule defined
in Equation (5), and the supervised classifier weights
were trained by minimizing the cross-entropy between
the one-hot ground-truth labels and the softmax

output of the final fully connected layer. The models
were controlled to have the same number of trainable
weights and were trained to have comparable validation
accuracy and weight convergence. We additionally
matched confidence calibration (Guo, Pleiss, Sun,
& Weinberger, 2017) for each classifier, so that the
confidences associated with their predicted class labels
equally reflected their correctness on the test set (see
Appendix A.6 for additional details). We trained
two-layer and three-layer networks for both data sets,
where the “w/ LCA”version would have a one-layer and
two-layer classifier, respectively. Finally, for both the
two- and three-layer networks, we varied the number of
first layer neurons.

For the results shown in Figures 6 (right), 7, and
8, we conducted a random targeted gradient descent
attack. Following the confidence-based attack from
Szegedy et al. (2013), our attack was unbounded and
halted once the classifier confidence in the target
adversarial label reached 90%. Therefore, the attack is
modified from Equation (10) to account for the target
label and remove the projection step:

s∗i+1 = Clips∗
{
s∗i + αsign

(∇sL(s, ytarget)
)}

, (14)

where s∗0 = s is the unperturbed image, L(·) is the cross-
entropy loss function, ytarget is a random (incorrect)
label, α is the step size, and the clip operation constrains
the adversarial images s∗i ∈ [0, 1]. See Appendix A.5 for
additional parameter and architecture details.

Figure 7 shows that swapping the first layer of
computation with an LCA layer improves robustness
against adversarial attacks. As stated previously,
the amount of improved robustness achieved by
incorporating LCA computation is going to be
constrained by how much the classifier relies on the
activation of any given LCA neuron. However, we
found that the improved robustness conferred by LCA
computation was still evident, albeit less pronounced,
with the networks trained on grayscale CIFAR-10 as
well as with deeper classifiers trained on either data
set. Additionally, Figure 8 confirms that the LCA layer
qualitatively influences the perturbations, and in the
case of MNIST, it clearly perturbs the image toward the
target category. Although we do not have a method to
quantify how “semantically relevant” a perturbation is,
from the digit images, one can usually identify the target
class more readily in the attacks on the w/ LCA model
than the w/o LCA model, as was predicted from our
iso-response surface analysis. Although LCA has an
impact on the perturbation for the CIFAR-10 networks,
the complexity of the data makes the category relevance
of the perturbation unclear. In the experiments depicted
in Figure 6, we can see that a larger perturbation from
the starting point of the attack is required for equal
activation of the neuron. Although our analytical
arguments do not directly speak to the magnitude of
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Figure 7. LCA protects against traditional adversarial attacks. We conducted a random targeted gradient descent attack on a two-layer
network without lateral competition in the first layer (w/o LCA, blue) and with lateral competition (w/ LCA, red). The box extends
from the lower to upper quartile values and the whiskers indicate the 5th and 95th percentiles for 10,000 test images from MNIST or
CIFAR-10. The solid black line indicates the mean and the dashed black line indicates the median. In all but one case, the w/ LCA
network outperforms the w/o LCA network in terms of the data-averaged mean squared distance between the original input and the
perturbed image.

the perturbation, we believe the additional constraints
imposed by bent iso-response contours force the attack
to have increased size to achieve a given confidence
criterion, which explains the results found here.

Discussion and conclusions

Scene analysis is a challenging problem faced by
biological and artificial vision systems. Fortunately,
biology provides us with hints about important
computational principles to solve such a problem. In
this work, we investigated one such principle, recurrent
inhibition, using the theoretical framework of sparse
coding together with insights about the response
geometry of model neurons. We first developed
a scalable method for measuring model neuron
iso-response and response attenuation surface curvature
for high-dimensional stimuli and multiple network
types. This methodology allowed us to perform a
population-level response surface analysis for a large
number of neurons and image planes to show that
exo-origin response curvature is a general property of
the LCA network. Next, we provided experimental

evidence to support the hypothesis that such surface
curvature connotes a higher degree of selectivity by
comparing against models without surface curvature.
Finally, we developed a connection between selectivity
and adversarial robustness based on the geometry
of the neuron response surface, and we showed
that the surface can be used to predict adversarial
attack directions. We also presented evidence that the
exo-origin bent iso-response surface is a sufficient
constraint on gradient-based adversarial attacks to
result in an increase in the required perturbation
magnitude to confuse a classifier with equal confidence.

Earlier work from Zetzsche and colleagues suggested
that curved iso-response contours not only indicate
sharper tuning but also require an overcomplete sparse
coding scheme to optimally cover the signal space
(Zetzsche & Krieger, 1999; Zetzsche & Röhrbein, 2001;
Zetzsche & Nuding, 2005). Iso-response manifold
shape has also previously been proposed to provide a
direct functional interpretation of neural computation
in closed-loop biological neuron recording experiments
with controlled, parameterized stimuli (Gollisch &
Herz, 2012). For example, Bölinger and Gollisch (2012)
demonstrated that ganglion cell neurons in salamander
retina that have selectivity to homogeneous receptive
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Figure 8. LCA influences perturbation magnitudes and directions. Images are visualizations of example data points from Figure 7. The
boxed text in the top left of the images indicates the original or target label. S∗ is the input image at whatever time step corresponded
to 95% classifier confidence in the target label and e is the perturbation that was added to the original image. The MNIST colors are
inverted to make the perturbations more visible.

field contrast tend to exhibit exo-origin iso-response
curvature, while neurons that lack this selectivity do
not. Iso-response surface analysis was also applied to
macaque V1 color tuning data by Horwitz and Hass
(2012). Their models apply a pointwise nonlinearity,
g, to the input pixels and then sum to produce the
neuron output: z = ∑

i (g (si)). We can think of this
as equivalent to a two-layer network, which brings to
light the fact that multilayer networks with pointwise
nonlinearities can produce curved iso-response
contours. However, we note that although a multilayer
network could theoretically emulate the computation
performed by the LCA (or a related) network (Hornik,
Stinchcombe, & White, 1989), there is no guarantee
that it will happen, as it is not measured by the typical
training loss. We suggest that explicitly including
population interactions as an inductive bias (Mitchell,
1980; Sinz, Pitkow, Reimer, Bethge, & Tolias, 2019)
will improve computational efficiency for appropriately
configured hardware and provide additional guarantees
in terms of selectivity and robustness. For our
experiments, we chose an LCA network as a population
nonlinear function. In accordance with previous work,
we believe these results to be general to networks with

similar response surface curvature. However, more
work must be done to use response surface geometry
as a method for contrasting alternative models, such
as those that explicitly implement multiplicative
interactions via sigma-pi neurons (Zetzsche & Barth,
1990), competition with divisive normalization (Ren,
Liao, Urtasun, Sinz, & Zemel, 2016; Sanchez-Giraldo
et al., 2019), or mixed endo- and exo-origin curvature
with group sparse coding (Paiton, Shepard, Chan, &
Olshausen, 2020).

We provided evidence suggesting that a network with
exo-origin response curvature is more selective against
adversarial perturbations, a worst-case example of
stimulus variations, than a network with flat response
surfaces. It has also been argued that adversarial
robustness is closely related to general robustness to
noise perturbations, although a causal link between
the two is still refuted (Fawzi, Moosavi-Dezfooli,
& Frossard, 2016; Hendrycks & Dietterich, 2018;
Ford, Gilmer, Carlini, & Cubuk, 2019). Here we
only addressed adversarial robustness, but from our
analysis, we predict that increased selectivity will
result in robustness against both noise and adversarial
perturbations. Indeed, a large body of work has
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demonstrated noise robustness for overcomplete
sparse coding networks (e.g., Li & Wu, 2007;
Olshausen, 2013a; Lu, Yuan, & Yan, 2013; Ahmad
& Scheinkman, 2019), which complements our study
to provide a more complete assessment of general
robustness.

The features learned by a network are tightly linked to
its adversarial examples (Goodfellow et al., 2014; Ilyas
et al., 2019; Nakkiran, 2019). Much of the research on
adversarial defenses has proposed modifications to the
weight learning rules or to the training data to improve
robustness of the network’s decision boundaries (e.g.,
Madry, Makelov, Schmidt, Tsipras, & Vladu, 2017;
Lopes, Yin, Poole, Gilmer, & Cubuk, 2019). However,
the form of the computation performed by the network
also influences the features learned. In addition to
explicitly focusing on the features of the network,
we advocate for including a recurrent synthesis step
in the encoding function. This form of recurrence is
suggested to facilitate Bayesian inference in the brain
(Lee & Mumford, 2003; Pearl, 1988) and there exists
in the literature several additional works that motivate
its success as an adversarial defense. For example,
humans are robust to adversarial perturbations that
affect deep networks in that humans can clearly identify
the correct label. However, in time-limited regimes that
are suspected to result in predominantly feedforward
brain computation (Thorpe, Fize, & Marlot, 1996;
Serre, Oliva, & Poggio, 2007), adversarial attacks
have been shown to influence human decision making
(Elsayed et al., 2019), suggesting that slower recurrent
computations could aid in adversarial robustness in
addition to features the human visual system is selective
for. Including an analysis-by-synthesis network with
recurrent inference (in the form of gradient descent)
as a defense method was also proposed by Schott,
Rauber, Bethge, & Brendel (2018), who demonstrated
provable adversarial robustness on MNIST. Our
method is in the same family of models as theirs,
and our theoretical arguments provide a plausible
alternative explanation for their reported robustness
(see Appendix A.7 for additional details). Comparing
these two methods provides a critical link that suggests
a key to general adversarial robustness may lie in the
analysis-by-synthesis framework that is shared between
them.

Recent studies on adversarial robustness have
focused on the decision boundaries of classifiers, such
that the attack perturbation is just large enough to push
the classification decision away from the correct label
(decision-based attack). We do not assess how neuron
response curvature impacts the classification decision
boundary location or curvature, although we recognize
this connection as important for understanding
adversarial vulnerability (Fawzi, Moosavi-Dezfooli,
& Frossard, 2017; Moosavi-Dezfooli, Fawzi, Fawzi,
Frossard, & Soatto, 2017; Moosavi-Dezfooli, Fawzi,

Uesato, & Frossard, 2019). Our attack follows other
works that account for model confidence (Szegedy et
al., 2013; Nguyen, Yosinski, & Clune, 2015; Carlini
& Wagner, 2017; Frosst, Sabour, & Hinton, 2018)
(confidence-based attack). Although we do not provide
decision-based attack results, other empirical work
suggests that robustness in this regime can be improved
with population nonlinearities, sparsity, and recurrence.
For example, robustness to decision-based attacks
has been shown by imposing sparsification (Marzi,
Gopalakrishnan, Madhow, & Pedarsani, 2018; Alexos,
Panousis, & Chatzis, 2020), recurrence (Krotov &
Hopfield, 2018; Yan et al., 2019), and specifically with
the LCA network (Springer, Strauss, Thresher, Kim,
& Kenyon, 2018; Kim, Yarnall, Shah, & Kenyon,
2019; Kim, Rego, Watkins, & Kenyon, 2020). We
offer a theoretical explanation for these findings.
Congruent with these studies, we also find that our
method for improving adversarial robustness does not
significantly impact test accuracy and also results in
more semantically relevant adversarial perturbations.
We provide an accordant hypothesis that supports an
alternative method for encoding information in the
neural network, which will improve robustness and has
no explicit bearing on the data augmentation methods
or weight learning rules. Although we have not tested it,
we predict that defense methods that explicitly modify
the weight learning rule or data augmentation could
be combined with our own method to further improve
robustness.

Although there are notable exceptions, a majority
of neuron models and deep neural networks still
use pointwise nonlinearities due to the ease in
implementation. This study makes a case for explicitly
incorporating into neural computation models
population nonlinearities that cause neurons to have
exo-origin bent iso-response surfaces. This is not a novel
perspective; for decades, researchers have identified
competitive population nonlinearities as important for
modeling neural function. As examples, we note that
they have been utilized in neural computation models
(Hopfield, 1982; Hinton & Sejnowski, 1983; Olshausen
& Field, 1997; Rao & Ballard, 1999) to improve model
fits to psychophysical data (Schütt & Wichmann, 2017)
and V1 neuron response data (Geisler & Albrecht, 1995;
Zhu & Rozell, 2013), improve generalization for image
classification (Krizhevsky, Sutskever, & Hinton, 2012),
and increase efficiency for image compression and
storage (Ballé, Laparra, & Simoncelli, 2016; Zarcone
et al., 2018). Our contribution here is to provide an
analytical explanation for, and empirical evidence
of, the increased selectivity to preferred stimuli and
adversarial robustness enabled by inhibitory lateral
connections.

Keywords: sparse coding, lateral inhibition, orientation
selectivity, visual cortex, robustness
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Appendix

Appendices

A.1. Data preprocessing
Figures 2, 3, and 4 were all produced using data

from models that were trained on the van Hateren
natural scenes data set (van Hateren & van der Schaaf,
1998). The van Hateren data set was preprocessed
by transforming the pixel values to log intensity,
whitening, normalizing to have zero mean and unit
standard deviation, and finally extracting 16-pixel
×16-pixel patches. Image whitening was done using
an approximate Fourier method on the whole images
(see section 5.9.3 of Hyvärinen, Hurri, & Hoyer,
2009, for an example), where we first performed a
two-dimensional Fourier transform on the image, then
multiplied it by a whitening filter, and finally performed
an inverse Fourier transform. The whitening filter was
composed by multiplying together a ramp (that has a
slope of 1 and rises with frequency) component and a
low-pass (starting at 0.7 times the Nyquist frequency)
component.

For the MNIST data set, we individually
preprocessed the images by dividing the pixel values by
255. All adversarial attacks and analysis were done after
(i.e., not including) the full preprocessing pipeline.

To reduce the size of the models tested, we
constructed a smaller scale CIFAR-10 data set. In
order, we preprocessed the images by dividing the
pixels by 255, converting each image to grayscale,
subtracting the mean from each image, dividing by the
per-image standard deviation, and finally cropping it
to 28 by 28 pixels. For the training data, we cropped
random squares, and for the test data, we cropped
the centers. The adversarial attacks and analysis were
back-propagated through the last three preprocessing
steps, such that the mean squared distance metric used
in Figure 7 was computed on 32-by-32 pixel images
ranging from 0 to 1.

A.2. Model descriptions and training parameters
All models used in this study were fully connected.

The autoencoder models used for Figures 2 and 4
had a single hidden layer with 768 units. The linear
autoencoder was the RICA model from Le et al. (2011)
and was trained using the following objective function:

1
2
||s − ŝ||22 + λ

∑
i

log cosh ui, (15)

where ui is the linear output of the encoding operation:
u = sW + b, s is the input image, ŝ is the image
reconstruction, b is the bias, andW is the encoding

weight matrix. The ReLU autoencoder was trained
using the following objective function:

L= 1
2
||s − ŝ||22 + β1

1
2

∑
i, j

w2
i, j

+β2
1
2

∑
j

(
1 −

∑
i

Wi, j

)2

, (16)

where the last term in the objective is a normalization
term that encourages the weights to have unit l2 norm in
the pixel (indexed with i) dimension, which is helpful for
learning weights with localized and oriented structure.
The sparse autoencoder is implemented from Ng (2011)
and uses a pointwise sigmoid neuron nonlinearity. It
was trained using the following objective function:

L= 1
2
||s − ŝ||22 + β1

1
2

∑
i, j

w2
i, j

+ β2
1
2

∑
j

(
1 −

∑
i

Wi, j

)2

+ λ
1
2

∑
j

ρ log
ρ

ρ̂ j
+ (1 − ρ ) log

1 − ρ

1 − ρ̂ j
, (17)

where ρ is the target firing rate and ρ̂ j is the average
firing rate of neuron j, and λ is the sparsity constraint
parameter. Table 1 gives all of the parameters
used for training the models on the van Hateren
data set.

For Figures 3 and 5, we trained the LCA model
on the van Hateren natural image data set with three
levels of overcompleteness that had 512, 1,024, and
2,560 neurons. All parameters for these models were
unchanged from the 768-neuron version outlined in
Table 1, except for (1) λ, which was 0.55, 0.8, and
0.8 for each level of overcompleteness, respectively,
and (2) the number of inference steps was increased
from 75 to 120.

For the MNIST classification experiments, we used
the parameters defined in Table 2. The “L-ReLU”
nonlinearity is the leaky rectifier introduced by Maas
et al. (2013). For all data sets, the LCA inference
time constant, τ , from Equation (3), was 0.033. The
CIFAR-10 supervised model parameters were largely
the same, with the differences that (when it was used)
the dropout keep probability for the “w/o LCA”models
was increased from 0.5 to 0.8 and the supervised
learning rate was 0.0005. The LCA model was always
pre-trained using the parameters specified in Table 1,
except that the dictionary learning rate for MNIST was
0.1 and for CIFAR-10 was 0.001.
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Parameter Linear AE ReLU AE Sparse AE LCA

Figure 2, top-left; 4 2, top-right 2, bottom-left; 4 2, bottom-right; 4
Number of neurons 768 768 768 768
Dropout 1.0 0.3 1.0 1.0
Learning rate 0.3 0.001 0.002 0.01
β1 N/A 0.002 0.06 N/A
β2 N/A 0.0001 1.0 N/A
λ 1.25 N/A N/A 0.72
ρ N/A N/A 0.01 N/A

Table 1. Model training parameters for the van Hateren data set for Figures 2 and 4. AE, Autoencoder; N/A, Not Applicable.

Parameter w/o LCA 2-layer w/o LCA 3-layer w/ LCA 2-layer w/ LCA 3-layer

Number of neurons 768; 10 768; 512; 10 768; 10 768; 512; 10
Dropout keep probability 0.5; 1.0 0.5; 0.5; 1.0 1.0; 1.0 1.0; 0.5; 1.0
Supervised learning rate 0.0001 0.0001 0.0001 0.0001
Activations L-ReLU; Identity L-ReLU; L-ReLU; Identity LCA; Identity LCA; L-ReLU; Identity

Table 2. Model training parameters for the MNIST data set for Figures 7 and 8.

A.3. Curvature details and additional experiments
To compute the two-dimensional curvature planes

(as in Figure 2), we use an even tiling of 30 × 30 points
in a two-dimensional space with axes defined using
the procedure in the second section. Each point in
the two-dimensional plane is then injected into the
higher-dimensional space and rescaled to have an l2
norm that is equal to 31.7, which is the measured norm
of the 1 million van Hateren training examples (after
preprocessing) described above. We compute curvature
using the two-dimensional points and corresponding
normalized activations from these planes. We first
extract points corresponding to both the iso-response
and response attenuation lines. To do this, we mirror
the activations in the upper-right quadrant to the
lower-right quadrant. For the iso-response line, we find
iso-valued contours for a target activation of 0.5 using
the measure.find_contours function from the Python
scikit-image package (Van der Walt et al., 2014). For
the response attenuation line, we record activity values
along a one-dimensional slice perpendicular to the
�k axis at a position that corresponds to the same
target activation of 0.5. This process gives us two
one-dimensional lines: The iso-response line is a set of
two-dimensional coordinates corresponding to points
that produce approximately the same activation, and
the response attenuation line is a set of activations for
a one-dimensional slice of y (ν direction) positions
at a specific x (�k direction) coordinate. We then fit
both extracted lines to second-order polynomials
using the polynomial.polyfit function from the Python
Numpy package (Van Der Walt, Colbert, & Varoquaux,
2011). For each line, we use the coefficient on the

squared term of the polynomial fit to quantify the
curvature.

Figure A.1 gives a random sampling of neurons and
comparison planes for the 10× over complete LCA
network. Figure A.2 shows the same data from Figure 2
but with a linear y-axis.

A.4. Details and controls for the selectivity experiments
To produce the grating stimulus, we first computed

the optimal spatial frequency for each neuron’s
weight vector by finding the peak amplitude of the
vector’s Fourier transform. Next, we constructed a
set of full-field grating stimuli with the target spatial
frequency, 16 equally spaced orientations from 0 to π
radians, and 8 equally spaced phases from −π to π
radians. Finally, we use circular variance to measure
the orientation selectivity, which produces a bounded
metric between 0, indicating increased activity (with
respect to the mean) for only one of the discrete set of
orientations and 1, indicating equal activation to all
orientations. For each orientation, θ j , we computed
the mean activation across phase, a j . The circular
variances are then defined as V = 1 − |R|, where
R is

R =
∑

j a jei2θ j∑
j a j

(18)

Many of the model neurons tested have bimodal
selectivity distributions. Computing the alternative
full-width at half max (FWHM) selectivity measure
requires isolating a singular lobe, which is often done by
hand, and fitting it with a Gaussian. Given the ad hoc
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Figure A.1. LCA response curvature. A random sampling of neurons (rows) and comparison directions (columns) for the 10×
overcomplete LCA model with the corresponding curvature value.

Figure A.2. Empirically measured iso-response contours. These data are the same as in Figure 2, but with a linear scale on the y-axis.
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Figure A.3. Image and weight masking procedure. From left to right, the columns indicate learned basis functions, their
two-dimensional Fourier transforms, their Hilbert amplitude envelopes, thresholded envelopes converted into binarized masks,
masked basis functions, natural image samples, and masked natural image samples.

nature of the FWHM measure, the lack of a complete
description of response attenuation away from the
preferred stimuli, and the large number of neurons
tested in our experiment, we chose to use the circular
variance as our metric for orientation selectivity (see
Ringach et al., 2002, for a comparison between the two
methods).

To measure neuron selectivity to natural images,
we constructed two networks: the LCA network as
described above and a linear feedforward network with
identical weights (repeated for all overcompleteness
levels). We compiled a test set of 10,000 random
natural image patches that were not in the training set
but otherwise underwent the same preprocessing as
described above. For each neuron, we defined “selected
images” as all images that evoked at least 50% of the
maximal response from the full test set. As shown
in Figure A.3, for each neuron, we constructed a
binary image mask by computing the Hilbert analytic
envelope of the weight (normalized between 0 and 1)
and converted it to binary by setting all pixel values
above a threshold of 0.5 to 1 and below to 0. We then
measured the angle between the masked neuron’s
weight and masked interesting image vectors as a metric
for how close the image was to the neuron’s preferred
feature.

We found that differences in learned weight spatial
frequencies do not account for the improved selectivity
found with the population nonlinear model. To this
point, Figure A.4 demonstrates that the LCA network
outperforms the pointwise nonlinear and linear
networks for all spatial frequencies. We demonstrate in
Figure A.5 that selectivity is increased as one increases
LCA overcompleteness, although the effect is smaller
than the amount gained when comparing to pointwise
nonlinear models.

Figure A.4. Weight spatial frequency alone does not account for
improved selectivity. We compare the basis function spatial
frequency against selectivity and find that the population
nonlinear sparse coding network consistently shows improved
selectivity (as indicated by lower circular variance) regardless of
the weight spatial frequency. Each model learns unique basis
functions from the same training set due to different network
architectures and learning rules. Here spatial frequency is
calculated by computing the radius to the peak in the
two-dimensional Fourier transform of the basis function. Each
dot indicates a basis function.

A.5. Details and controls for adversarial attacks
In Tables 3 and 4, we show the clean test accuracies

for the models trained on the MNIST and CIFAR-10
data sets, respectively. In the main article, all results
are for a confidence-based gradient descent attack
modeled after Kurakin et al. (2016b), but where the
only limiting projection is that the perturbed image is
within the [0,1] pixel bounds, following Equation (14).
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Figure A.5. Comparing network overcompleteness against selectivity. The amount of orientation selectivity that is gained as one
increases overcompleteness is much smaller than the effect observed between types of nonlinearities. The vertical axis indicates
probability density, which is normalized such that the integral over the range is 1 for each model.

Model Accuracy

w/ LCA 2-Layer 768 98.45%
w/o LCA 2-Layer 768 98.40%
w/ LCA 2-Layer 1568 98.76%
w/o LCA 2-Layer 1568 98.04%
w/ LCA 3-Layer 768 98.58%
w/o LCA 3-Layer 768 98.10%
w/ LCA 3-Layer 1568 98.60%
w/o LCA 3-Layer 1568 98.16%

Table 3. Test accuracy on the MNIST data set.

Model Accuracy

w/ LCA 2-Layer 1568 56%
w/o LCA 2-Layer 1568 61%
w/ LCA 2-Layer 3136 59%
w/o LCA 2-Layer 3136 62%
w/ LCA 3-Layer 1568 68%
w/o LCA 3-Layer 1568 71%
w/ LCA 3-Layer 3136 69%
w/o LCA 3-Layer 3136 70%

Table 4. Test accuracy on the grayscale and cropped CIFAR-10
data set.

We stop the attack per input image as soon as the
adversarial confidence reaches 90%. We used standard
gradient descent with a step size of α = 0.005 and
a maximum of 500 steps on the entire test data set
with randomly chosen adversarial target labels. We

found that our results were robust to a large number
of different step sizes, and with the reported step size,
the models always reached the confidence threshold
and usually well before the 500-step limit. There have
been a considerable number of adversarial defense
methods published that were ultimately proven to be
ineffective under careful scrutiny (Carlini et al., 2019).
To ensure that the recurrent nature of the LCA model
did not cause gradient obfuscation that can occur
(Athalye, Carlini, & Wagner, 2018), we monitored by
hand the gradient values for all models and each attack
type. We additionally performed attacks with the l2
regularized minimization method described by Carlini
and Wagner (2017) on MNIST with the two-layer
768-neuron models and found minimal difference in
the result, as shown in Figure A.6. The attack uses
an Adam optimizer with a step size of 0.005 and
a maximum of 500 steps to find a solution to the
following minimization problem:

minimize
∥∥∥∥12 (tanh (s∗) + 1) − s

∥∥∥∥
2

2

+ c ∗ f
(
1
2
(tanh (s∗) + 1) , ytarget

)
(19)

where f (x) = max (Z(x)i − Z(x)t, −κ ) for logit values
Z(x) produced by the classifier at the adversarial target
label index, t, and the maximum non-target label
index, i. The parameter κ encourages the solver to find
an adversarial instance that will be classified as the
target class with high confidence for high parameter
values (Carlini and Wagner, 2017). The parameter
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Figure A.6. LCA network defends against an l2 regularized attack. Carlini and Wagner (2017) describe a regularized attack (see also
Equation (19)) that produces successful adversarial perturbations with a smaller l2 distance than the standard gradient descent
attack. The two columns are results when using different regularization constants, c, which trades off between adversarial confidence
and perturbation size and κ , which encourages a certain degree of adversarial confidence. Each column shows: (Left) the w/ LCA
model reaches the threshold adversarial confidence (black dashed line, 90%) after more steps than the w/o LCA variant. (Middle) LCA
results in larger mean squared distances (MSDs) at most time steps. The colored vertical dashed lines show the time step when each
model first reached the confidence threshold. (Right) A slice of the MSD at the time step when each model first reached the
confidence threshold, with the same vertical axis scaling as the middle plot and plot details as in Figure 7. For the left two plots, the
lines give the mean across all 10,000 test images and the hatched lighter region is the standard deviation.

c is a trade-off between the l2 norm constraint on
the perturbation and the adversarial loss. We found
comparable results when testing c ∈ [0.5, 1.0] and
κ ∈ [0.0, 0.9, 10.0]. Although we have not exhaustively
addressed every method proposed for validating our
results (Carlini et al., 2019), we believe our analytical
support and controls provide enough confidence to
warrant continued study.

A.6. Confidence calibration
We conducted an unbounded (i.e., limited only to

be within the original pixel range of [0, 1]) adversarial
attack and stopped the attack once the classifiers
reached a 90% softmax confidence in the adversarial
label. To ensure our stopping criterion resulted in fair
comparisons across classifiers, we matched confidence
calibration (Guo et al., 2017) for each model using

a temperature scaling, T , on the logits (i.e., the last
network layer) before computing a softmax:

confidence = softmax
(
logits
T

)
. (20)

Choosing an appropriate T for each classifier improves
correspondence between model confidence and
accuracy. This allows us to more reliably claim that the
stopping confidences associated with the adversarial
labels equally reflect the accuracies of the models on
the test set. This is important because prediction logits
can be arbitrarily scaled to result in arbitrary reported
confidences without affecting accuracy. We empirically
measured calibration for each model using the expected
calibration error (ECE) (Naeini, Cooper, & Hauskrecht,
2015), which approximates the difference in expectation
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Figure A.7. MNIST and CIFAR adversarial images. S is the original
input and S∗

T is the final adversarial image. In addition to larger
pixel magnitudes, the w/ LCA MNIST attacks have a clear target
category relevance. The CIFAR target category can not be
predicted from the adversarial attacks on either model type,
but there is a difference in magnitude as well as a qualitative
difference in the attack structure.

between the model’s confidence and accuracy:

ECE =
M∑
m=1

|Bm|
n

|confidence(Bm) − accuracy(Bm)|, (21)

where n indicates the number of images that fell into
each of M = 50 equally spaced partitioned subsets

Model Data Set Temperature ECE

w/ LCA 2-Layer 768 MNIST 0.65 0.009%
w/o LCA 2-Layer 768 MNIST 1.0 0.007%
w/ LCA 2-Layer 1568 MNIST 0.68 0.006%
w/o LCA 2-Layer 1568 MNIST 0.5 0.005%
w/ LCA 3-Layer 768 MNIST 0.75 0.008%
w/o LCA 3-Layer 768 MNIST 1.0 0.001%
w/ LCA 3-Layer 1568 MNIST 1.0 0.008%
w/o LCA 3-Layer 1568 MNIST 1.0 0.005%
w/ LCA 2-Layer 1568 CIFAR10-Gray 0.289 2.101%
w/o LCA 2-Layer 1568 CIFAR10-Gray 0.2528 2.232%
w/ LCA 2-Layer 3136 CIFAR10-Gray 0.3 2.172%
w/o LCA 2-Layer 3136 CIFAR10-Gray 0.29 2.167%
w/ LCA 3-Layer 1568 CIFAR10-Gray 0.48 2.128%
w/o LCA 3-Layer 1568 CIFAR10-Gray 0.45 2.103%
w/ LCA 3-Layer 3136 CIFAR10-Gray 0.54 2.186%
w/o LCA 3-Layer 3136 CIFAR10-Gray 0.49 2.126%

Table 5. Calibration temperature values and resulting ECE
scores for all models and data sets.

(Bm) of the test set. To match calibration for each
model, we chose values for T such that corresponding
ECEs were within 1

100 of a unit for MNIST and 1
10 of

a unit for CIFAR. Table 5 reports the T values and
corresponding ECEs for each tested model. When
tuning the temperature, we would ideally prefer all data
points to lie along the confidence-accuracy diagonal,
although we were unable to achieve this for any model.
Thus, we optimized for the more important criterion
that the calibration between individual w/ LCA and w/o
LCA pairs is as close as possible.

A.7. A direct comparison to the analysis-by-synthesis
adversarial defense

Recent work from Schott et al. (2018) proposes a
verifiable adversarial defense method for the MNIST
data set, which we will refer to as VAE-ABS. A crucial
innovation from their work is the use of analysis
by synthesis (ABS) to determine an appropriate
representation from a set of class-specific generative
models. The LCA network also performs ABS via
a similar inference process. In summary, the key
differences between the inference methods are in the
latent dimensionality, sparseness of the latent code,
decoder architecture, and prior. Here we will investigate
the impact of the alternate decoder and prior.

The VAE-ABS architecture starts with 10 (one for
each class) class-specific variational auto-encoder (VAE)
networks (Kingma and Welling, 2013). When testing
for adversarial robustness, for a given input image,
they perform inference by minimizing the negative
class-specific log-likelihood. Going forward, we will
only consider the optimization process for a single



Journal of Vision (2020) 20(12):10, 1–28 Paiton et al. 27

class-conditioned VAE since inference is performed
independently among VAEs and the arguments can
be applied to each of them. We first rewrite the
log-likelihood using variables that are consistent with
this article:

L∗
y(s)= maxa log pθ (s|a) − DKL [N(a, σ1)||N(0, 1))]

= mina
1
2

N∑
i=1

[s − fVAE(a; θ )]2i

+ 1
2

M∑
j=1

[
a2j + σ 2 − log σ 2 − 1

]

= mina
1
2

N∑
i=1

r2i + λ

M∑
j=1

C(a j ), (22)

where L∗
y(s) is the maximum a posteriori (MAP)

estimate of the log-likelihood conditioned on the
class, y, and the image, s; fVAE(a; θ ) is the generated
image for the class-specific VAE; r is the reconstruction
error; DKL is the KL-divergence; σ is the conditional
Gaussian standard deviation; λ = M

2 (σ
2 − log σ 2 − 1)

is a constant; and C(a j ) = a2j . Additionally, pθ (s|a) is
the data likelihood, which is a function of the generative
arm of the VAE network that is parameterized by θ .
Comparing Equations (22) and (2) reveals that the
likelihood expressions are different in the decoder
function and the prior imposed on the latent variables,
which manifests itself in the form of the latent variable
activation cost, C(·). As is the case with our network,
they compute the MAP estimate by descending the
negative log-likelihood gradient:

− ∂L

∂ak
= ∂ f (a; θ )

∂ak

N∑
i=1

[s − f (a)]i − λ
∂C(ak)

∂ak
. (23)

For our fully-connected LCA network, the decoder,
f (·) := fLCA(a; �) = �a, is linear, and the gradient
with respect to an individual latent variable, ak, is �k.
However, the VAE-ABS decoder, f (·) := fVAE(a; θ ), is
a cascade of four convolutional network layers with
exponential-linear (Clevert, Unterthiner, & Hochreiter,
2015) activations, and thus the derivative, ∂ fVAE

∂ak
, is the

product of a series of piecewise linear and exponential
functions. In both cases, the generated image is a
function of the entire latent vector, a. This means that
the each latent variable’s update step is a function of
the other (class-specific for VAE-ABS) latent variables.
Therefore, like the LCA network, the VAE-ABS latent
encoding is a population nonlinear function of the
input.

Rozell et al. (2008) define the LCA network using
an equivalent gradient expression that is in terms of a

neuron’s membrane potential and a nonlinear threshold
function (our Equations (3) and (4), respectively). For
the VAE-ABS defense, they perform gradient descent
with the Adam optimizer directly on Equation (22).
However, for the sake of comparison, we will perform
the same LCA algebra steps on the VAE-ABS gradient
derivation to show that the corresponding threshold
function is linear. We define the LCA internal state as

uk = ak + λ
∂C(ak)

∂ak
(24)

in order to arrive at the membrane update rule defined
in Equation (3). The LCA membrane update can be
equivalently described in terms of the reconstruction
error, τ u̇k + uk = (s − �a)�k + ak (Paiton, 2019). By
adding ak to the right-hand side, we are able to keep the
form for uk and Tλ unchanged for the LCA network. If
we rewrite this in terms of the gradient of the decoder,
we get

τ u̇k + uk =
[ N∑

i=1

ei
[
∂ f (a)
∂ak

]
i
+ ak

]
. (25)

As before, this equation is equivalent for the two
networks as long as f (·) is taken to mean fLCA(a; �)
or fVAE(a; θ ). The membrane potential will also be the
same as was defined in Equation (24), although for
LCA ∂C(ak )

∂ak
= sign(ak) and for VAE-ABS ∂C(ak )

∂ak
= 2λak.

Therefore, the VAE-ABS internal state would be
uk = ak + 2λak = 3λak and the corresponding
threshold function is linear:

Tλ(uk) = uk
3λ

. (26)

By rewriting the VAE-ABS update step in this way, we
can see that a key distinction between the VAE-ABS and
the LCA networks is where the inference nonlinearity
comes from. In the LCA network, the nonlinearity
comes from the threshold function (which in turn
comes from the prior), while in the VAE-ABS network,
the nonlinearity comes from the decoder.

There are some additional distinctions between
their approach and ours. First, they use a Bayesian
classifier with class-specific generative models, while
we use a single generative model and a linear (in some
experiments, nonlinear in others) perceptron classifier.
They argue that adding a standard classifier on top of
the VAE-ABS network would introduce adversarial
vulnerability, which we agree with. Indeed, this idea is
supported by Figure 7, where we can see that increasing
the depth of the classifier (2L vs. 3L) decreases the
advantage of using the LCA network as the first layer.
Second, their class-specific generative models all use a
low-dimensional (i.e., undercomplete) and dense latent
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code, while we use an overcomplete sparse code. They
argue that their choice results in a smooth optimization
space for the MAP inference process, resulting in a
higher chance of reaching the global minimum and
adhering to their estimates of the lower bound for
adversarial examples, but they do not provide additional
evidence to support this claim. We show that increasing
overcompleteness increases iso-response curvature
(Figure 3), and we provide a theoretical argument that
suggests that curvature provides improved robustness.
However, our experimental results (Figure 7) do
not suggest an improvement for moderate levels of

overcompleteness. We suspect that this lack of an
improvement might be the result of not increasing
overcompleteness enough. Note in Figure 3 that the
difference in response curvature between 2× and 4×
overcompleteness is quite small compared to those
and the 10× overcomplete network. In the Discussion
section, we also provided several other studies that
suggest robustness benefits for using an overcomplete
code. We identify exploring the various differences,
including overcompleteness, more carefully in the
context of adversarial robustness as a promising area
for future research.


