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ABSTRACT7

T cells exhibit high heterogeneity in both their gene expression profiles and antigen specificities. We analyzed fifteen single-cell
immune profiling datasets to systematically investigate the association between T-cell receptor (TCR) sequences and the gene
expression profiles of T cells. Our findings reveal that T cells sharing identical or similar TCR sequences tend to have highly
similar gene expression profiles. Additionally, we developed a foundational model that leverages TCR information to predict
gene expression levels in T cells.

8

Main9

As a crucial component of the adaptive immune system, T cells represent a highly heterogeneous cell population with diverse10

phenotypes and antigen specificities, enabling them to detect and combat a wide array of antigens. Single-cell immune profiling,11

which measures both gene expression (GEX) and T-cell receptor (TCR) sequences in individual cells, is a groundbreaking12

method for identifying and understanding T cell diversity. Prior studies have indicated that T cells grouped by clones often13

exhibit similar gene expression profiles in various conditions, including lung, liver, and colorectal cancers1–4, breast tumors5,14

yellow fever6, and homeostasis7. Computational methods like CoNGA8 and tessa9 have been developed to analyze GEX and15

TCR data concurrently. However, a comprehensive characterization of the association between TCR and GEX across various16

tissues and disease conditions is still missing. Such an understanding is vital for unraveling the coordinated immune response17

of T cells and could illuminate potential therapeutic approaches, including the design of TCR-engineered T (TCR-T) cell18

therapies10.19

In this study, we compiled paired GEX and TCR data for 846,168 T cells from 395 samples, derived from fifteen published20

single-cell immune profiling datasets2, 5, 11–22 (Figure 1a, Supplementary Table S1). These datasets encompass a broad spectrum21

of diseases, including breast tumor, clear cell renal cell carcinoma, lung cancer, melanoma, esophageal squamous cell carcinoma,22

COVID-19, HIV-1, HBV, flu-like illness, Kawasaki disease, Multisystem Inflammatory Syndrome in Children (MIS-C), and23

samples from healthy donors. Utilizing GEX data, we categorized T cells into two primary functional subtypes: CD4+ T cells24

and CD8+ T cells (Methods). We identified a total of 550,830 CD4+ T cells (65.1%) and 295,338 CD8+ T cells (34.9%)25

(Figure 1a). Analyzing TCR information, we identified 594,158 unique clones (Methods), where a clone is defined as a group26

of T cells sharing identical CDR3 amino acid sequences of both TCRα and TCRβ chains within each sample. Among these,27

64.2% of cells belong to clones with only one cell, 17.0% to small-sized clones (2 to 10 cells), 12.0% to medium-sized clones28

(11 to 100 cells), and 6.9% to large-sized clones (more than 100 cells).29

We first investigated the GEX similarity among T cells belonging to the same clone. We define a clone’s purity as the30

higher of two proportions: the proportion of CD4+ T cells and the proportion of CD8+ T cells within the clone. Remarkably,31

95.1% of clones with at least two cells exhibited 100% clone purity, indicating that these clones consist exclusively of either32

CD4+ T cells or CD8+ T cells. We observed that clone purities calculated from real data were significantly higher than those33

derived from randomly permuting the identities of CD4+ and CD8+ T cells in clones of various sizes (Figure 1b). Focusing34

on clones with at least two cells that consist solely of either CD4+ T cells or CD8+ T cells, we define the GEX dissimilarity35

within each such clone as the average GEX distance across all possible cell pairs (Methods). We then randomly permuted the36

cell assignments to the clones for CD4+ and CD8+ T cells separately and recalculated the GEX dissimilarities. Figure 1c37

and Supplementary Figure 1 demonstrate that GEX dissimilarities calculated from real data are significantly lower than those38

obtained after random permutations in both CD4+ and CD8+ T cell subsets. These findings indicate that T cells within the39

same clone exhibit highly similar GEX profiles.40

We next investigated the association between GEX similarities and TCR similarities across T cell populations with different41
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TCRs. We defined the TCR dissimilarity of two T cell clones as the Levenshtein distance between their TCRs (Methods). The42

GEX dissimilarity of two T cell clones is defined similarly to the single clone case (Methods). Figure 1d and Supplementary43

Figure 2 illustrate that GEX dissimilarity follows an increasing and then constant pattern as TCR dissimilarity increases.44

This finding contradicts the linear relationship proposed in a previous study9. We observed that GEX dissimilarity ceases to45

increase and is no longer significantly smaller than GEX dissimilarity calculated using randomly selected clone pairs when46

TCR dissimilarity exceeds 1 or 4 in CD4+ T cells or CD8+ T cells, respectively. These results suggest that T cell clones with47

similar TCRs tend to have similar gene expression profiles.48

These analyses indicate a substantial correlation between TCR and GEX. Building on this, we hypothesize that TCR49

information alone can act as a predictor for GEX information. To test this hypothesis, we developed a deep learning framework50

based on Transformers23 to predict GEX from TCR (Methods, Fig. 2a). The model comprises a convolutional block and51

a Pre-Layer Normalization (Pre-LN) Transformer block. The convolutional block, commonly used in other studies24–26,52

extracts local features such as motifs within sequences. These features are then input into the Transformer block, which53

captures complex dependencies between them by modeling positional relationships through positional encoding and attention54

mechanism. The Pre-LN configuration stabilizes the training process, eliminating the need for a learning rate warm-up stage55

required by the original Post-Layer Normalization (Post-LN) setting23, 27. Pre-trained with vast amounts of data, this model can56

function as a foundational model that can be adapted to various new diseases and tissues through fine-tuning.57

We tested the foundational model without fine-tuning using a cross-validation (CV) procedure, where one study was left58

out for testing and all other studies were used for training in each CV round (Methods). The performance was evaluated by59

Pearson Correlation Coefficients (PCCs) between the predicted and observed gene expression values in the test set. Figure60

2b shows the predicted and observed gene expression values for certain example genes, including CD8A, KLRB1, CD4, and61

NKG7. These are well-known marker genes for determining T cell phenotypes28–30 and are among the genes with the best62

prediction performance (Figure 2c). We identified two distinct types of genes for which the TCR information either has or lacks63

predictive power (Figure 2d). Genes where the TCR model has predictive power are enriched in GO terms such as immune64

response (Methods, Figure 2e). We then evaluated the performance of the foundational model with fine-tuning, wherein the65

model was allowed to utilize information from the left-out study (Methods). After fine-tuning, the model showed improved66

performance for almost all genes, with an average increase of 10.4% in PCC (Figure 2f). Given that each study represents67

a distinct disease type and tissue, these results imply that fine-tuning enables the model to better generalize to diseases and68

tissues not encountered during its pre-training stage.69

In summary, we have demonstrated that T cells with identical or similar TCR sequences exhibit highly similar gene70

expression profiles. This finding supports the design of a set of gene expression markers to identify T cells that recognize71

specific types of antigens, such as neoantigens2. Furthermore, it allows for the prediction of specific gene expression levels72

based on TCR sequences using a foundational model and fine-tuning. The performance of this approach can be further enhanced73

with single-cell immune profiling across a broader range of samples, tissues, and diseases, which will be generated in future74

studies.75

Methods76

Single-cell data preprocessing77

Gene expression count matrices and TCR CDR3 amino acid sequences were downloaded from fifteen single-cell immune78

profiling datasets (Supplementary Table S1). For single-cell gene expression data, cells with fewer than 200 expressed genes,79

more than 2500 expressed genes, or with over 20% of reads assigned to the mitochondrial genome were filtered out. For single-80

cell TCR sequencing data, only cells with high-confidence, full-length sequences, and CDR3 sequences with exactly one TCRα81

chain and one TCRβ chain were retained. Cells passing filtering criteria for both single-cell gene expression and single-cell82

TCR sequencing were used in downstream analysis. Seurat (version 4.3.0.1) was used to31 process the gene expression data83

for each sample using default settings. The gene expression count matrix was normalized using the NormalizeData function.84

Highly variable genes were identified using the FindVariableFeatures function with “vst” method. Data were scaled using the85

ScaleData function. Principal Component Analysis (PCA) was conducted on the 2000 most variable features using the RunPCA86

function. To address dropout issues in the single-cell RNA-seq data, SAVER (version 1.1.2)32 imputation was performed on the87

normalized gene expression values, and the imputed values were log2 transformed.88

CD4+ and CD8+ cells were identified in each dataset using a procedure similar to that described in a previous study2.89

Briefly, a density curve was fitted to the log2-transformed and SAVER-imputed CD8A expression values of all cells within each90

dataset. The trough of the bimodal density curve was used as the cutoff value. Cells with log2-transformed and SAVER-imputed91

CD8A expression values higher than this cutoff were classified as CD8+ cells, while the rest were categorized as CD8- cells.92

CD4+ and CD4- cells were identified using a similar approach.93

For training and testing the Transformer model, samples lacking information on any of the following T cell marker genes94

were filtered out: CD4, CD8A, CD8B, NKG7, CST7, CCL5, GZMA, CTSW, KLRB1, CMC1, and CCR7. Genes expressed in95
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at least 5% of cells in all samples (except those from GSE18751520, which include only CD4+ T cells) were retained.96

TCR and GEX dissimilarity97

TCR dissimilarity between two clones was defined as the Levenshtein distance between their CDR3β amino acid sequences.98

GEX dissimilarity between two T cells i and j, denoted as di, j, was defined as the Euclidean distance between their first 1099

principal components (PCs) obtained from their gene expression profiles.100

Denote the set of T cells in clone k as Ck. GEX dissimilarity within clone k is defined as
∑i, j∈Ck ,i ̸= j di, j

(|Ck |
2 )

. GEX dissimilarity101

between clone k and clone k′ is defined as
∑i∈Ck , j∈Ck′

di, j

|Ck||Ck′ |
.102

Transformer model architecture103

The Transformer model was trained and tested for each gene separately. For each clone within a sample, the log2-transformed104

and SAVER-imputed gene expression levels were averaged across all T cells belonging to that clone and sample. The gene105

expression levels across clones and samples were then standardized to have a mean of zero and unit variance. For TCR106

sequences across clones and samples, both CDR3α and CDR3β amino acid sequences were tokenized by converting each107

amino acid into a unique integer index. Zero padding was added to ensure that all encoded CDR3α and CDR3β sequences108

have fixed lengths of La and Lb, respectively. Consequently, the inputs to the Transformer model are encoded CDR3α and109

CDR3β arrays with shapes n×La and n×Lb, respectively, where n is the training sample size. These input arrays were then110

mapped into dense vectors with dimensions n×La ×512 and n×Lb ×512 through an embedding layer.111

Six convolutional blocks, each consisting of two (BN - GeLU - 1×1 Conv) layers connected via a residual connection and112

followed by 1×1 max-pooling, were used to extract local features within sequences. The number of filters in these blocks,113

which represents the dimension of the output space in the convolution, progressively increases from 256 to 512. This approach114

is similar to that used in a previous study for predicting gene expression using DNA sequences24. The kernel size and stride115

length of the convolutional blocks are 5 and 1, respectively.116

A Pre-Layer Normalization (Pre-LN) Transformer block, incorporating positional encoding based on fixed sine and cosine117

functions23, was then utilized to capture complex dependencies. This block consists of two sub-layers: a multi-head self-118

attention mechanism and a point-wise fully connected feed-forward network23. Layer normalization was applied before each119

sub-layer to stabilize the training process27. Additionally, dropout and residual addition were implemented after each sub-layer120

to reduce the risk of overfitting and mitigate the vanishing gradient problem. We used the same hyperparameters as those in the121

original Transformer paper23. For multi-head attention, eight attention heads (h = 8) were employed, with the sizes for the122

query, key, and value in each head being 64. The input and output dimensions for the feed-forward network are 512, and the123

hidden layer dimension is 2048.124

After employing GlobalAveragePooling1D to compute the average of features along the sequence dimensions, both CDR3α125

and CDR3β sequences result in output sizes of 512. These are then concatenated, and a 1D dense layer with a linear activation126

function is used to calculate the expression level for each clone and gene.127

Foundation model pre-training128

10% of the training data was set aside as the validation set, and mean squared error (MSE) was employed as the loss function.129

The batch size for training was set to 32. We used the Adam optimizer33 to minimize the training loss, with an initial learning130

rate of 0.001, β1 = 0.9, β2 = 0.999, and ε = 1e−07. The learning rate was reduced by a multiplicative factor of 0.5 when131

the validation MSE ceased to improve after 8 epochs. Early stopping was implemented to prevent overfitting, triggered if the132

validation MSE did not improve for 20 epochs.133

Foundation model fine-tuning134

During fine-tuning, the model was initialized with the weights obtained from the pre-training. We retrained the linear output135

layer and froze all preceding layers. For the held-out study, we randomly sampled 80% and 20% of the data for training136

and testing, respectively. 10% of training data was set aside as the validation set. The loss function used was mean squared137

error (MSE), and the batch size for training was set to 16. The Adam optimizer33 was employed to optimize the training loss,138

with an adjusted initial learning rate of 0.0001, β1 = 0.9, β2 = 0.999, and ε = 1e−07. The learning rate was reduced by a139

multiplicative factor of 0.5 when the validation MSE ceased to improve after 50 epochs. Early stopping was implemented to140

prevent overfitting, triggered if the validation MSE did not show improvement for 20 epochs. All other settings were consistent141

with those of the pre-trained foundational model.142

Gene Ontology Analysis143

DAVID34 with default parameters was used to identify the enriched Gene Ontology terms by comparing the genes with > 0.1144

median correlation to all predicted genes as background.145
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Figure 1. T cells with similar TCR sequences have similar gene expression profiles. a, Number of T cells in each study by cell subtypes and
clone sizes. b, The estimated and permuted purity for clones in small, medium, and large size. Permuted purity is the average over 100 times
of permutations. c, Real and permuted GEX dissimilarity within CD4+ and CD8+ T cell clones for each disease. Median GEX dissimilarity
was first calculated within each sample across all clones. Each data point in the plot is the median of sample-level median GEX dissimilarity
across samples with a disease. Permuted GEX dissimilarity is the average over 100 times of permutations. d, Relationship between GEX
dissimilarity and TCR dissimilarity within CD4+ and CD8+ T cell clones for each disease. For each sample, its median GEX dissimilarity
across pairs of clones with a certain Levenshtein distance was divided by the median of median GEX dissimilarity with Levenshtein distance
> 5 to allow for comparisons across samples and studies. Each data point in the plot is the median of such normalized sample-level GEX
dissimilarity for a disease. Wilcoxon test was performed to compare GEX dissimilarity obtained from real and permuted data. “*” means 0.01
< p-value < 0.05. “**” means 0.001 < p-value < 0.01. "***" means p-value < 0.001. “ns” means non-significant. Permuted GEX dissimilarity
is calculated based on only one time of permutation.
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