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Abstract: Women with endometriosis are at increased risk of developing ovarian cancer,
specifically ovarian endometrioid, low-grade serous, and clear-cell adenocarcinoma. An important
clinical caveat to the association of endometriosis with ovarian cancer is the improved prognosis for
women with endometriosis at time of ovarian cancer staging. Whether endometriosis-associated
ovarian cancers develop from the molecular transformation of endometriosis or develop because
of the endometriotic tumor microenvironment remain unknown. Additionally, how the presence
of endometriosis improves prognosis is also undefined, but likely relies on the endometriotic
microenvironment. The unique tumor microenvironment of endometriosis is composed of epithelial,
stromal, and immune cells, which adapt to survive in hypoxic conditions with high levels of iron,
estrogen, and inflammatory cytokines and chemokines. Understanding the unique molecular features
of the endometriotic tumor microenvironment may lead to impactful precision therapies and/or
modalities for prevention. A challenge to this important study is the rarity of well-characterized
clinical samples and the limited model systems. In this review, we will describe the unique molecular
features of endometriosis-associated ovarian cancers, the endometriotic tumor microenvironment,
and available model systems for endometriosis-associated ovarian cancers. Continued research on
these unique ovarian cancers may lead to improved prevention and treatment options.

Keywords: ovarian cancer; endometriosis; tumor microenvironment; miRNA molecules; genes;
hypoxia; inflammation; model systems

1. Introduction

Endometriosis is a debilitating disease that is estimated to affect up to 5 million U.S. women and
girls. Endometriosis results in considerable morbidity, including pelvic pain, multiple operations,
infertility, and negative effects on psychosocial quality of life [1–5]. Unfortunately, endometriosis is
also a significant risk factor for development of ovarian cancer [6]. The presence of endometriosis
increases the risk of ovarian endometrioid, low-grade serous, and clear-cell adenocarcinoma by
up to 8.9-fold but not high-grade serous adenocarcinoma [7–12]. Thus, ovarian endometrioid,
low-grade serous, and clear-cell adenocarcinomas are considered endometriosis-associated ovarian
cancers. Ovarian cancer is considered a top-five cancer killer in U.S. women, claiming more than
14,000 lives in 2015 [13]. Therefore, 5 million U.S. women and girls with endometriosis are at risk for
developing deadly ovarian cancer. Fortunately, ovarian endometrioid and clear-cell adenocarcinoma
represent roughly 20% of all ovarian cancers and account for less than 10% of deaths [14–16]. Clinically,
studies suggest that co-occurrence of endometriosis with ovarian cancer is associated with an improved
prognosis [17–20]. Important factors in this improved prognosis include discovery at early age and
early stage disease in women with endometriosis at time of ovarian cancer staging [21–24], but may
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also represent the unique biology from the endometriotic tumor microenvironment. This review will
focus on the contributions of the endometriotic tumor microenvironment to ovarian cancer biology.

2. Unique Molecular Features of Endometriosis-Associated Ovarian Cancer

Each histotype of epithelial ovarian cancer is thought to arise from a distinct precursor lesion.
For example, endometriosis is thought to give rise to both ovarian endometrioid and clear-cell
adenocarcinomas [25]. Recently, sophisticated proteomic tracing studies suggest that ovarian
endometrioid adenocarcinomas arise from secretory cells of endometriosis or the endometrium,
while ovarian clear-cell adenocarcinomas arise from ciliated cells. Importantly, it is hypothesized that
the unique cellular environment dictates the development of ciliated or secretory cells, which then
gain mutations to become malignant [26]. Recently, next-generation sequencing studies showed
mutations in cancer-driver genes (i.e., AT-rich interaction domain 1A (ARID1A), Phosphatidylinositol-4,
5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and Kirsten rat sarcoma viral oncogene
homolog (KRAS)) in deep infiltrating endometriotic lesions, supporting the idea that the endometriotic
microenvironment facilitates mutations [27]. Because deep infiltrating endometriotic lesions do not
pose a risk of malignant transformation, the unique contributions of driver mutations in these particular
endometriotic lesions are still relatively unknown [27]. Interestingly, these mutations in cancer-driver
genes were only present in glandular epithelium and not underlying stroma [27]. These data support
the idea that both epithelium and stromal populations of deep infiltrating endometriosis do not
represent similar clonal populations. Further, this data may represent the idea that unique stromal
populations are recruited to the area [28,29]. Detailed studies of unique genetic contributions of both
epithelial and/or stromal compartments in malignant transformation are needed.

Studies examining endometriotic lesions and ovarian cancer from the same patient have shown
concordant mutations in ARID1A, phosphatase and tensin homolog (PTEN), PIK3CA, and KRAS,
suggesting that mutations in endometriosis cause a predisposition to ovarian cancer [30–33].
Mutations in KRAS and ARID1A have been discovered in endometriosis, including ovarian
endometriosis and deep infiltrating endometriosis [27,34]. Loss of ARID1A is higher in atypical
endometriosis and non-atypical endometriosis adjacent to ovarian cancer than non-atypical
endometriotic distal lesions [30,32,35–39]. In general, both endometrioid and clear cell ovarian
cancer with or without endometriosis have common high frequency mutations in ARID1A, PIK3CA,
catenin betat 1 (CTNNB1), PTEN, and KRAS [33,40–45]. In terms of unique molecular features, 29% of
low-grade ovarian endometrioid adenocarcinomas with concurrent endometriosis contained mutations
in KRAS compared to 3% of low-grade endometrioid adenocarcinomas lacking endometriosis [33].
Importantly, Ishikawa et al. showed high frequency of ARID1A mutations and one patient with both
ARID1A and KRAS mutations in endometriosis-associated ovarian cancers [43]. The contributions of
both ARID1A and KRAS warrant further study in terms of endometriosis, the endometriotic tumor
microenvironment, and endometriosis-associated ovarian cancer.

In terms of low-grade serous tumors, an A to T substitution in BRAF has been identified in
36–68% of low-grade serous ovarian cancers and is associated with improved prognosis [46–48].
Additionally, increased expression of B-raf proto-oncogene, serine/threonine kinase (BRAF) was also
noted in eutopic and ectopic endometrium of women with endometriosis when compared to control
endometrium [49]. The contributions of BRAF to endometriosis and endometriosis-associated ovarian
cancers, specifically, low-grade serous ovarian cancers are understudied.

In addition to mutational changes, epigenetic changes play a role in both endometriosis
and endometriosis-associated ovarian cancers. Methylation changes in both endometriosis and
endometriosis-associated ovarian cancer have recently been reviewed [50,51]. Along those lines,
endometriosis tissues have decrease expression of ten-eleven translocation genes (TET1, TET2,
and TET3), which convert 5-methylcytosine to 5-hydroxymethlcytosine and play a role in changes
in levels of 5-hydroxymethylcytosine marks in endometriosis tissues and blood [52]. Unfortunately,
the authors did not assess 5-hydroxymethlcytosine marks in specific genes. Further studies are needed
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in endometriosis-associated ovarian cancer to examine changes in these and other alternative DNA
marks. MicroRNA (miRNA) molecules, which are also considered epigenetic changes, are dysregulated
in endometriosis (reviewed in [53]). While dysregulated miRNAs in epithelial ovarian cancers have
been recently reviewed [54,55], dysregulated miRNA molecules in endometriosis-associated ovarian
cancers have not been individually reviewed. Given that miRNA molecules can be secreted from cells,
we have included miRNA molecules under endometriotic tumor microenvironment (below).

A challenge to studies on the endometriotic tumor microenvironment is the rarity of clinical
samples of ovarian cancer with concurrent endometriosis and the rigor of details provided for
patient characterization. Given over 22,000 women will be diagnosed with ovarian cancer in
2016 [13], only 10% will be endometrioid and roughly 10% will be clear-cell [14–16]. Additionally,
a majority of women with endometriosis-associated ovarian cancers do not have endometriosis
at time of staging. Roughly 30% of ovarian endometrioid or clear-cell adenocarcinomas will
have concurrent endometriosis, further narrowing the number of tumors to study with concurrent
endometriosis [56–59]. Many studies do not describe the patient population in terms of absence or
presence of endometriosis, leaving readers to believe that the women may not have endometriosis,
which may not be accurate. Efforts for data harmonization for rare tumors may improve
reproducibility. Using well-characterized samples, Banz et al. used transcriptome microarray analysis
to evaluate normal ovary, endometriomas, and endometrioid ovarian cancer with and without
endometriosis [60]. The results showed a small group of cytokines dysregulated in ovarian cancers
with endometriosis, consistent with the inflammatory milieu of endometriosis [60]. Additionally,
Zhang et al. showed a unique gene signature in ovarian endometrioid adenocarcinoma with
concurrent endometriosis compared to ovarian endometrioid adenocarcinoma without concurrent
endometriosis [61]. Highly dysregulated signaling pathways included nuclear factor kappa B
(NFkB), transforming growth factor beta (TGFβ), and KRAS signaling [61]. Most likely there are
contributions from genetics and epigenetics that may be mediated from the endometriotic tumor
microenvironment [62]. However, further studies are needed to examine how endometriosis affects
ovarian cancer.

3. The Unique Endometriotic Tumor Microenvironment

While the pathogenesis of endometriosis is still largely poorly understood, the most
accepted theory is the implantation theory following retrograde menstruation (reviewed in [63]).
Most menstruating women have retrograde menstruation [64], but only 10% have endometriosis [1–3],
suggesting that unique conditions occur in women with endometriosis. The endometriotic
microenvironment contains multiple cell types—endometrial epithelial cells, stromal fibroblasts,
endothelial cells, and immune cells—as well as inflammatory mediators, metabolic waste products
such as iron from the breakdown of red blood cells, steroid hormones, and small RNA molecules. Thus,
it is not surprising that the conditions found in endometriosis are also advantageous to the growth and
development of ovarian cancer. However, very little is known about how these stressful conditions
directly affect ovarian cancer. In this section, we will describe these important factors within the scope
of endometriosis and how these important factors pertain to ovarian cancer. Figure 1 summarizes
graphically key players in the endometriotic tumor microenvironment as it pertains to ovarian cancer.

3.1. Hypoxia and Endothelial Cells

Hypoxia is thought to be critical to the survival and invasion of endometriotic cells through
multiple mechanisms including autophagy [65–68], TGFβ signaling [69], and signal transducer
and activator of transcription 3 (STAT3) signaling [70–72]. In endometriosis, hypoxia stabilizes
hypoxia inducible factor-1α (HIF1A) which downregulates dual-specificity phosphatase-2 (DUSP2)
directly and indirectly through miR-20a [73]. Ultimately, this downregulation leads to increased
angiogenesis and proliferation through activation of extracellular signal-regulated kinase (ERK)
signaling cascades [73,74]. As such, molecular immunohistochemistry shows a high correlation
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between precursor endometriosis lesions and matched clear-cell adenocarcinomas for expression of
HIF1A and phosphorylated mechanistic target of rapamycin kinase (P-mTOR) [75]. Importantly,
vascular endothelial growth factor (VEGF), leptin (LEP), cysteine rich angiongenic inducer 61
(CYR61), and osteopontin (SPP1) work together in response to hypoxia to establish a local vascular
network within the endometriotic lesion [74]. In addition to neoangiogenesis mediated through
HIF1A, as endometriotic lesions undergo hypoxia and inflammation from repeated menstrual cycles,
the expression of tissue factor increases. Tissue factor is a critical protein for extrinsic coagulation
cascade, leading to hypercoagulation. Clinically, women with clear-cell ovarian cancer have more
frequent venous thromboembolism [76]. Hypoxia may also lead to cellular proliferation through
estrogen receptor, leptin, and prostaglandin modulation [77]. These studies suggest that the hypoxic
microenvironment of endometriosis plays a role in not only the potentiation of endometriosis by
promoting cell proliferation and nutrient availability through vascularization but may also play
roles in outcomes for women with clear-cell ovarian cancer. The increased expression of HIF1A in
endometriosis may represent a novel therapeutic target for endometriosis or ovarian cancer [78].

3.2. Fibroblasts and Extracellular Matrix Components

Endometriosis is pathologically complex, containing endometrial epithelial and stromal fibroblasts
outside the uterine cavity, alongside invading hemosiderin-laden macrophages [79]. The endometriotic
extracellular matrix (ECM) plays a significant role in paracrine/autocrine signaling between
epithelial and stromal cells [80–83]. Studies have shown unique functional properties of primary
cultures of human endometrial stromal fibroblasts from women with endometriosis compared to
cultures from women without endometriosis. Specifically, fibroblast cultures from women with
endometriosis have a deficiency in decidualization, the differentiation process by which the uterus
prepares for pregnancy [84]. Additionally, these fibroblasts from women with endometriosis have
increased ERK signaling, high proliferative potential from progesterone resistance, and acquire an
inflammatory phenotype [85–89]. While the importance of stromal-epithelial crosstalk is noted in
embryo implantation in the uterus [80], the role of similar crosstalk in endometriosis or epithelial
ovarian cancers is still understudied but may represent a key component of the endometriotic
tumor microenvironment.

To examine the tumor microenvironment in ovarian cancer, Zhang et al. used computer-aided
image analysis and showed that the number of cancer-associated fibroblasts, as indicated by cells
positive for smooth muscle antigen, was higher in epithelial ovarian cancers compared to benign
adnexal masses. Unfortunately, the specific histology of ovarian cancers and the pathology of the
benign adnexal masses were not described in these studies. Large numbers of similarly staining
cancer-associated fibroblasts were also found in omental metastatic lesions [90]. Co-culture of
cancer-associated fibroblast with ovarian cancer cell lines (SKOV3, CAOV3) led to increased invasion
and migration when compared to ovarian cancer cell lines grown in co-culture with normal
fibroblasts [90]. One of the main questions regarding cancer-associated fibroblasts is how and why
they are becoming activated to benefit tumor cells. Mitra et al. proposed that ovarian cancer cells
reprogram fibroblasts into cancer-associated fibroblasts through miRNA expression changes [91].
Specifically, cancer-associated fibroblasts have a significant downregulation of miR-31 and miR-214
and upregulation of miR-155. C-C motif ligand 5 (CCL5), a chemokine known to be highly upregulated
in ovarian cancers, is a direct target of miR-214. Similarly, endometriomas have high expression of
chemokines and dysregulated miRNA expression [92]. Advancements in the understanding of the
role of non-epithelial ovarian cancer cells in ovarian cancer may lead to better treatments which block
tumor promotion brought on by tumor adjacent cells.

3.3. Immune Cells and Inflammatory Mediators

Dysregulated inflammation plays a key role in endometriosis-associated pathology [93].
For example, Capobianco and Rovere-Querini provide an in-depth review of the role of macrophages
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in endometriosis, showing a relationship between components of the endometriotic microenvironment
such as high iron, hypoxia, and angiogenesis with macrophage recruitment and activation [94].
Additionally, a syngeneic mouse model of endometriosis showed that endometriotic lesions failed to
grow without macrophages, and if macrophages were removed after implantation, angiogenesis was
halted, blocking the progression of the endometriotic lesion [95]. Further, Canet et al. suggest
that retainment of a specific macrophage population in endometriomas, the cell division cycle 42
(CDC42)-positive population, protects endometriomas from malignant transformation [96]. Similarly,
platelet factor 4 (PF4) also known as chemokine (C-X-C Motif) ligand 4 (CXCL4) is highly expressed
on macrophages in endometriomas, but not on tumor-associated macrophages of clear cell ovarian
cancers [97]. Thus, specific details of the macrophage population in endometriosis and ovarian cancer
are important and require further study.

Transcriptomic work on endometriomas showed that the inflammatory cytokine transforming
growth factor beta 1 (TGFβ1), regulates other inflammatory mediators relevant to endometriosis,
including tumor necrosis factor alpha (TNFα) and interleukin-6 (IL6) [92]. These inflammatory
mediators are highly elevated in peritoneal fluid from women with endometriosis [98–101]. The acute
and chronic inflammation of endometriosis is a response to the invading tissue, leading to the release
of regulated on activation normal T cell expressed and secreted (RANTES), monocyte chemotactic
protein-1 (MCP1), and interleukin-8 (IL8), which act as chemoattractants recruiting more macrophages
to the area [102]. In terms of the endometriotic tumor microenvironment, the promotion
of tumor invasion via macrophages may be dependent on TNFα [103], which is elevated in
women with endometriosis [98,99]. Along the same lines, work using an estrogen receptor
beta (ERβ)-overexpressing syngeneic mouse model of endometriosis suggests that non-genomic
effects of ERβ play a role in the TNFα-mediated dysregulation of endometriosis progression [104].
Encouragingly, treatment of a syngeneic mouse model of endometriosis with a long-acting
TNFα-blocking agent decreased endometriotic implant size [105]. However, treatment of women with
rectovaginal nodules with infliximab, a TNFα monoclonal antibody, had no improved clinical effect
over placebo [106]. Understanding the immune response to misplaced endometrial tissue will be a large
factor in understanding the onset and progression of endometriosis and lead to a better understanding
of how endometriosis creates a unique and potentially tumor-promoting microenvironment.

3.4. Altered Metabolism

Endometriotic cysts contain blood. When blood is metabolized, heme and iron are released
into the microenvironment [107]. Because of this, endometriotic cysts contain higher iron levels than
other benign ovarian cysts [108]. Consequently, an iron-rich microenvironment can lead to increased
proliferation, DNA synthesis, and adhesion, and promote chronic inflammation, allowing for the
spread of endometriosis [107]. High iron also leads to excessive oxidative stress, which creates a
microenvironment conducive to the induction of mutations and has been linked to cancer development
in the liver and lung [107,109]. Shigetomi et al. outlines how endometriotic cells under oxidative
stress from excess iron are able to bypass cell cycle checkpoints after DNA damage by overexpressing
hepatocyte nuclear factor-1 beta (HNF1B), which activates forkhead box transcription factors and alters
miRNA expression promoting cell survival [110]. Due to the excess iron exposure, endometriotic cysts
have higher expression of lactose dehydogenase, lipid peroxidase, and 8-hydroxy-2′-deoxyguanosine.
High expression of these markers of oxidative stress link endometriosis, high iron, and higher
frequencies of gene mutations [108]. These data corroborate the hypothesis that endometriosis
produces a high iron microenvironment that may lead to increased DNA damage through oxidative
stress, but also promotes cell survival, leading to a highly mutated subpopulation of cells that continue
to grow [111].

Alongside high iron levels, endometriotic peritoneal fluid has elevated lactate. Further,
endometriotic lesions express high levels of glycolysis genes compared to eutopic endometrium [112].
Increased expression of HNF1α in the endometriotic peritoneum leads to the conversion of glucose to
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lactate in a process known as the “Warburg Effect,” known for its promotion of cell survival in stressful
microenvironments [113]. Lipidomics has also been pursued for understanding the metabolomic
profile of the endometriotic microenvironment. Lipid profiling studies on endometrial aspirates
have shown a reduction of saturated diacylglycerols and triacylglycerols in endometriosis patients
compared to healthy controls [114]. In fact, this study generated a panel of 123 metabolites which
were differentially expressed in endometriosis women and correctly identified 86% of samples to
either the endometriosis or control group [114]. A similar study on endometrial biopsies used five
lipid metabolites as biomarkers and were able to predict endometriosis with 75% specificity and
90.5% sensitivity [115]. A true model of the endometriotic tumor microenvironment should include
increased iron levels, higher levels of glycolysis-associated proteins, and endometriosis-associated
lipidomic profiles.
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Figure 1. Composition of the endometriotic tumor microenvironment. Endometriosis represents a
pathologically benign disease. Endometriosis may be classified into endometriomas, superficial peritoneal
disease, or deep infiltrating endometriosis (invasion > 5 mm). Although deep infiltrating endometriosis
is invading, typically into the muscularis layer of the bowel, it is clinically not associated with
ovarian cancer. Endometriomas are epithelial lined cysts of the ovary, which can be filled with a
brown cyst fluid, and thus the name “chocolate cysts.” Endometriomas can be associated with
ovarian cancer, with atypical endometriomas having a higher risk of malignant transformation.
Atypical endometriomas are characterized by epithelial cells with enlarged hyperchromatic and
pleomorphic nuclei, with cellular crowding and high nuclear-to-cytoplasmic ratio. The altered
endometriotic tumor microenvironment may lead to malignant transformation or propagation of
proliferative potential [107]. RANTES: regulated on activation normal T cell expressed and secreted;
MCP1: monocyte chemotactic protein-1; IL: interleukin; TGFβ1: transforming growth factor beta 1;
TNFα: tumor necrosis factor alpha; CDC42: cell division cycle 42; CXCL4: chemokine (C-X-C motif)
ligand 4.

3.5. Steroid Hormones

Endometriosis is an estrogen-responsive disorder with lesion-level hyperestrogenism. Specifically,
endometriotic tissue differs from eutopic endometrial tissue by the high expression of aromatase
(CYP19A1) and 17β-hydroxysteroid-dehydrogenase (17β-HSD) type 1 and the absence of 17β-HSD
type 2 [107,116]. Aromatase converts androstenedione or testosterone to estrone and estradiol at
the level of the endometriotic microenvironment. High levels of estradiol have been linked to IL8
and RANTES production, which facilitate proliferation, inflammation, and feedback to increased
expression of aromatase [107,117]. Aromatase activity is also stimulated through prostaglandin E2,
an inflammatory product of cyclooxygenase 1 and 2 (COX1/2), found in endometriotic lesions in
high levels [118]. Inhibitors of prostaglandin E2 receptor show promising effects in a xenograft model
of endometriosis [119]. At the endometriotic lesion level, there is significant feed forward production
and maintenance of estrogen, associated with pro-tumorigenic qualities. Medical management
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of endometriosis with oral contraceptives lowers overall steroid hormone levels. This may explain
why the protection from combined oral contraceptive therapy on ovarian cancer risk is more robust
for women with endometriosis (odds ratio 0.21 (0.08–0.58), p = 0.003) compared to non-endometriosis
population (odds ratio 0.47 (0.37–0.61, p < 0.001)) [120]. Thus, the role of steroid hormones on
endometriosis-associated ovarian cancers needs further study.

3.6. Small RNA Molecules

Small RNA molecules are non-coding RNA molecules that can play an important role in the
post-transcriptional regulation of gene expression. Multiple groups of small RNAs have been
identified, such as microRNAs (miRNAs), small nucleolar RNA (snoRNAs), small interfering
RNAs (siRNAs), and Piwi-interacting RNA (piRNAs) [121]. The most studied type of small RNA
molecules in endometriosis-associated ovarian cancers are miRNAs. In general, miRNAs regulate
gene expression by mRNA cleavage and translational repression [122,123]. Studies have shown
that miRNAs are frequently dysregulated in endometriosis and endometriosis-associated ovarian
cancers (reviewed in [53–55]). Compilation of dysregulated miRNAs in ovarian endometrioid and
clear-cell adenocarcinomas, as well as endometriosis (Supplemental Table S1) shows dysregulated
miRNA molecules for each tissue type [53,55,124–133]. Figure 2 shows the number of miRNAs
dysregulated in ovarian clear-cell and endometrioid adenocarcinomas, and endometriosis tissues.
Supplemental Table S1 details the specific miRNA molecules in the each unique and overlapping
group. MiR-126 was found downregulated in all three groups. While the function of miR-126 is
still unknown, miR-126 was significantly downregulated in endometriosis compared with eutopic
endometrium [134]. Additionally, downregulation of miR-126 induced non-ovarian cancer cell
proliferation, migration, and invasion, mediated through numerous validated targets, such as PI3K,
KRAS, and VEGF. Reduced levels of miR-126 were a significant predictor of poor survival of cancer
patients, although women with ovarian cancer were not included in the study [135]. Thus, miR-126 may
play a role in endometriosis and ovarian cancer, even though these functional studies did not have
ovarian cancer samples with concurrent endometriosis.
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Figure 2. Venn diagram of overlap of number of miRNAs differentially expressed in endometriosis and
ovarian clear-cell and endometrioid adenocarcinoma. The miRNAs differentially expressed are depicted
in three overlapping circles. The numbers indicate the miRNA counts that are unique or in common
between the groups. (A) Upregulated miRNAs; (B) downregulated miRNAs. Supplemental Table S1
details the miRNAs in each group above.

MiR-30a, miR-30c, miR-31, miR-532-5p, and miR-885-5p were upregulated in clear cell ovarian
cancer by multiple studies [124–127,131,132]. MiR-30 was found to be 5-fold overexpressed in
ovarian clear-cell adenocarcinoma [132]. Sestito et al. showed that overexpression of miR-30a
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delayed tumor formation in xenograft tumors, and overexpression of miR-30a sensitized ovarian
cancer cells to chemotherapy [136]. Downregulation of miR-532 was associated with poor survival
in women with ovarian cancer, and overexpression of miR-532 suppressed the proliferative and
invasive capacity of the ovarian cancer cell lines, ES2 and SKOV-3, and inhibited tumor growth
in vivo [137]. Endometrioid ovarian cancer had the shortest list of dysregulated miRNAs (Figure 2
and Supplemental Table S1). MiR-200 family miRNAs (miR-200a, -200b, -200c, -141, and -429) were
upregulated in ovarian cancer and may play crucial roles in ovarian cancer metastasis, diagnosis,
and treatment [126,129,130,138].

4. Model Systems for Studying Rare Ovarian Cancers

Multiple model systems have been employed to study endometriosis and endometriosis-
associated ovarian cancers (reviewed in [139,140]). This review will highlight the tumor microenvironment
of the genetically engineered mouse models of endometriosis-associated ovarian cancers. We have
chosen to focus on spontaneous models instead of transplant models (reviewed in [140]). Because there
has yet to be a comprehensive mouse model that replicates ovarian cancer with endometriosis,
this review will also focus on the role of immortalized cell lines, xenograft models, co-culture systems,
and three-dimensional (3D) models.

4.1. Genetically Engineered Mouse Models

4.1.1. Candidate Genes in Genetically Engineered Mouse Models

High-grade serous ovarian cancer is a genomically complex disease [141] and although neither
endometrioid nor clear-cell ovarian cancer have been as extensively profiled, they are likely complex
as well. For the study of genetically engineered mouse models, fortunately, both endometrioid and
clear cell ovarian cancer have high frequency mutations in only a handful of genes: ARID1A, PIK3CA,
CTNNB1, PTEN, and KRAS [33,40–42,44,45]. Use of traditional Cre recombinase technology with
candidate-gene floxed alleles has had mixed results in terms of single gene knockout developing
endometriosis-associated ovarian cancers. Table 1 lists the promoters driving Cre recombinase,
and Table 2 details the brief rationale behind the use of specific genes in these mouse models. Table 3
lists these genes with combinations of tissue-specific promoters driving Cre recombinase. Despite the
promising allele targets and the tissue-specific promoters driving Cre recombinase, there are no genetic
mouse models of endometriosis and concurrent ovarian cancer. Investigators have created genetically
engineered mouse models, which developed ovarian low-grade serous, clear-cell, or endometrioid
adenocarcinoma (Table 3). However, none of these models have concurrent endometriosis.
This suggests that different genetic combinations are required to model concurrent endometriosis
and ovarian cancer. The discussion below highlights the role of the microenvironment of each model,
and how this microenvironment may be playing a role in ovarian cancer development. Even though
the presented models do not completely represent the endometriotic tumor microenvironment, they are
still useful for understanding development of endometrioid or clear-cell ovarian cancer.

Table 1. Cre recombinase promoters and site of effects.

Cre Gene Promoter Location of Expression Ref.

Adenovirus (Ad) Cytomegalovirus Injection site [142]

Amhr2 Anti-Mullërian hormone
receptor type 2

Oviduct: stroma
Uterus: stroma and smooth muscle cells

Ovary: granulosa cells and ovarian surface epithelium
[143,144]

Cyp19 Cytochrome P450 family 19 Granulosa cells of antral follicles and luteal cells [145]

Ovgp1 Oviductal glycoprotein 1 Non-ciliated oviductal epithelial cells [146]

Pax8 Paired box gene 8 Fallopian tube, cervix, uterus, and endometrium [147]

Pgr Progesterone receptor
Oviduct: epithelium

Uterus: epithelium, stroma, myometrium
Ovary: time-limited granulosa cells

[148]
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Table 2. Genes important in mouse models of endometriosis-associated ovarian cancer.

Mouse Allele Gene Name and Mouse Ref Effect of Cre Recombination Endometriosis-Associated Ovarian Cancer Implications and Ref.

Arid1af/f AT-rich interactive domain 1A ARID1A loss 46–95% of clear-cell and 30% of endometrioid tumors have loss of
ARID1A [30,43–45]

Apcf/f Adenomatous polyposis coli Overexpression of β-catenin Mutations in APC lead to activation of β-catenin which is frequently
activated in endometrioisis-associated ovarian cancers [149]

Ctnnb1f/f Catenin beta-1 Overexpression of β-catenin
16–54% of endometriod ovarian cancers have mutations in β-catenin,
leading to nuclear localization, and activation of wingless integration
site (WNT) signaling [150–153]

Kraslsl-G12D Kirsten rat sarcoma Expression of oncogenic Kras 29% of low-grade endometrioid ovarian tumors with concurrent
endometriosis [33]

MUC1+/− Mucin 1 Expression human MUC1 in mouse Expressed in endometrium and endometriosis; potential biomarker for
endometriosis or ovarian cancer [154]

Pik3caH1047R Phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit alpha Mutation in Pik3ca kinase domain 20% of clear-cell and 20% of endometrioid ovarian cancers with

mutations [155]

Ptenf/f Phosphatase and tensin homolog PTEN loss and activation of AKT 20% of clear-cell and 20% of endometrioid cancers [156]

Table 3. Mouse models with implications in endometriosis and endometriosis-associated ovarian cancers.

Genotype Phenotype Penetrance Details Ref.

Arid1af/f;AdCre

(Ovarian bursa)
No cancer 0/29 with adnexal masses

0/42 with adnexal masses No endometriosis [157,158]

Arid1af/f;Amhr2Cre No cancer 0/20 with adnexal masses No endometriosis [159]

Arid1af/f;PgrCre No cancer 0/20 with adnexal masses No endometriosis [160]

Ptenf/f;AdCre

(Ovarian bursa)
No cancer 0/5 with adnexal masses

0/63 with adnexal masses No endometriosis [158,161]

Ptenf/f;AdCre

(Infundibulum to ovarian bursa)
Low penetrance endometrioid ovarian cancer at 26 weeks 8/13 with ovarian endometriosis like lesions

1/13 with ovarian cancer by 26 weeks
Endometriosis-like lesions of ovary (lacked
stromal component) [162]

Ptenf/f;Cyp19Cre No cancer 0/4 with adnexal masses No endometriosis [163]

Ptenf/f;Amhr2Cre Granulosa cell tumor 5/70 with ovarian cancers by 7 months No endometriosis [164]

Ptenf/f;Apcf/f;Ovgp1Cre Endometrioid ovarian carcinoma 10/15 with ovarian cancers Metastatic lesions [146]

Ptenf/f;Pax8Cre Endometrioid oviductal adenocarcinoma 3/4 with oviductal cancers by 7 months Oviductal tumors metastasized to ovary [147]
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Table 3. Cont.

Genotype Phenotype Penetrance Details Ref.

Pik3caH1047R;AdCre

(Ovarian bursa)
No cancer 0/6 with adnexal masses 4/5 ovarian surface epithelium hyperplasia

(microscopic) [157]

KrasG12D;AdCre

(Infundibulum to ovarian bursa)
15/15 endometriosis-like lesions of ovary 15/15 with endometriosis-like lesions of ovary Endometriosis-like lesions of ovary (lacked

stromal component) [162]

KrasG12D;AdCre

(Uterotubal injection to ovarian bursa)
7/15 with peritoneal endometriosis 7/15 with peritoneal endometriosis Peritoneal endometriosis [162]

KrasG12D;AdCre

(IP injection)
No cancer 0/13 with adnexal masses No endometriosis [162]

KrasG12D;Amhr2Cre No cancer 0/4 with adnexal masses No endometriosis
Abnormal follicles [145,163]

KrasG12D;Cyp19Cre No cancer 0/4 with adnexal masses No endometriosis
Abnormal follicles [145,163]

KrasG12D;PgrCre No cancer 0/3 with adnexal masses No endometriosis [163]

Ctnnb1f/+;Amhr2Cre Endometrioid ovarian carcinoma 5/6 with ovarian cancer by 6 months No endometriosis [165]

Arid1af/f;Pik3caH1047R;AdCre

(Ovarian bursa)
Poorly differentiated clear-cell ovarian carcinoma 23/30 with ovarian cancer by 7 weeks

77% penetrance
No endometriosis
Aggressive metastatic tumors

[157]

Arid1af/f;Ptenf/f;AdCre

(Ovarian bursa)
5/13 endometrioid ovarian carcinoma
8/13 undifferentiated adenocarcinoma 13/22 with ovarian cancer by 9 months

59% penetrance
No endometriosis
Aggressive undifferentiated tumors

[158]

Apcf/f;PgrCre Endometrioid ovarian carcinoma 12/43 with ovarian cancer No endometriosis
16% endometrioid ovarian cysts [166]

Ptenf/f;Apcf/f;AdCre

(Ovarian bursa)
Endometrioid ovarian carcinoma 29/29 with ovarian cancer

100% penetrance
No endometriosis
Aggressive metastatic tumors

[161]

Ptenf/f;Apcf/f;Pik3caH1047R;AdCre

(Ovarian bursa)
Endometrioid ovarian carcinoma 11/11 with ovarian cancer No endometriosis

Aggressive metastatic tumors [167]

KrasG12D;Ptenf/f;AdCre

(Infundibulum to ovarian bursa)
Endometrioid ovarian carcinoma 9/9 with ovarian cancer by 12 weeks

100% penetrance
Aggressive metastatic disease
No endometriosis

[162]

MUC1+/-;KrasG12D;AdCre

(Ovarian bursa)
Endometriosis-like lesions of ovary No ovarian cancer endometriosis-like lesions of ovary [168]

Ctnnb1f/+;Ptenf/f;Amhr2Cre Endometrioid ovarian carcinoma 5/5 with ovarian cancer by 6 weeks No endometriosis [165]

KrasG12D;Ptenf/f;Amhr2Cre Low grade ovarian serous papillary adenocarcinomas 100% with ovarian tumors by 10 weeks No endometriosis [143,163]

KrasG12D;Ptenf/f;PgrCre No cancer 0/3 with adnexal masses No endometriosis [163]

KrasG12D;Ptenf/f;Cyp19Cre No cancer 0/3 with adnexal masses No endometriosis [163]
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4.1.2. Endometriosis

The only genetically engineered mouse model to spontaneously develop endometriosis with a
single gene change is a highly innovative mouse model developed by Dinulescu et al. [162]. Using an
oncogenic KRAS knock-in allele mouse (KrasG12D), peritoneal endometriosis developed after injection
of adenovirus-driven Cre (AdCre) through the uterotubal junction to infect the ovarian bursa. This true
peritoneal endometriosis model contained glandular epithelium and stromal components validated
by molecular immunohistochemistry to cytokeratin 7, 8, and 20, estrogen receptor, progesterone
receptor, smooth muscle actin, and CD10 [162]. Conversely, when AdCre was injected through the
infundibulum to the ovarian bursa, the model develops ovarian endometriosis-like lesions without
the stromal component [162]. A transplantation experiment hints that the peritoneal endometriosis is
uterine or tubal in origin while the ovarian endometriosis-like lesions are ovarian surface epithelium
derived [162]. While long-term follow up showed no development of ovarian cancer, future studies
into the molecular lineage using secretory or ciliary markers may allow better definition of cell of
origin [26,62]. A similar mouse model adds human mucin 1 (MUC1) to oncogenic KrasG12D with
AdCre intrabursal injection [168]. This mouse model similarly exhibits endometriosis-like lesions of
the ovary. Importantly, these mice developed an immune response to MUC1 with high numbers of
CD4+ Foxp3+ regulatory T cells in para-aortic lymph nodes compared to uninjected mice without
lesions [168]. Models which recapitulate the immune response are needed to study the endometriotic
tumor microenvironment.

Because mice do not normally menstruate, modeling retrograde menstruation requires significant
manipulation. In homologous mouse models of endometriosis, endometrium from an estrogen-
primed donor mouse is injected into a syngeneic estrogen-treated recipient mouse. However,
homologous mouse models such as these grow poorly without exogenous estrogen [162]. A variation
is the menstrual mouse model. In this model, the donor mouse undergoes significant hormonal
manipulation followed by a stimulation of the uterus leading to decidualization. Hormone withdrawal
leads to degeneration of the endometrium with leukocyte invasion, similar to menstruation in
women [169–171]. Donor sloughed endometrium is then placed into recipient syngeneic mouse.
Using this approach, Cheng et al. placed oncogenic KrasG12V endometrial tissue into the subcuticular
ventral abdomen of syngeneic mice without exogenous hormonal stimulation or matrix [172].
These lesions contained glandular epithelium, stroma, immune cells, extracellular matrix, and blood
vessels with both estrogen receptor alpha and beta expression [172]. Similarly, Greaves et al. used a
similar approach with endometrial tissue from a menstrual model of wild type mice. Using hormonally
stimulated receptor mice, injection of tissue intraperitoneal with this non-genetically modified
endometrial tissue leads to peritoneal endometriosis [173]. Again, these tissues were histologically
and molecularly similar to human endometriosis [173]. Hormonal levels (i.e., endogenous versus
exogenous high levels), tissue placement (i.e., subcuticular versus intraperitoneal), and genetic changes
important to endometriosis-associated ovarian cancers (i.e., oncogenic KRAS, loss of function ARID1A)
must be considered when using these menstrual endometriosis models. Additionally, genetically
engineered mouse models that are unable to undergo decidualization such as PgrCre;Arid1af/f mice [160]
do not allow such studies.

4.1.3. Clear Cell Ovarian Cancer

Poorly differentiated clear-cell ovarian carcinoma develops at 7.5 weeks post-injection in
AdCre;Arid1af/f;Pik3ca*H1047R female mice with 77% penetrance and with 57% of injected mice having
peritoneal metastasis [157]. Similar deletion of ARID1A alone or with knock-in of Pik3ca mutations
showed ovarian surface epithelium hyperplasia but no endometriosis [157,158]. Although clear cell
features are present two weeks post-injection, endometriotic-like lesions are not described [157].
Microarray analysis, comparing primary ovarian tumors to contralateral un-injected ovary,
found almost 600 genes dysregulated with significant enrichment in immune system function [157].
Consistent with an endometriotic tumor microenvironment, IL6 signaling was found to be increased
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in the primary tumors, peritoneal metastases, body fluids, and ascites [157]. IL6 signaling and
tumor cell growth was blocked with IL6 neutralizing antibodies. While IL6 expression was also
implicated in normal ovarian surface epithelium hyperplasia with ARID1A deletion or Pik3ca mutation
alone, the combination further enhanced IL6 production [157]. Cross-species, global gene expression
profiling showed similar dysregulated genes in this mouse model compared to ovarian clear-cell
adenocarcinoma from women [174]. Together these data suggest that the deletion of ARID1A
and mutation in Pik3ca*H1057R results in increased IL6 expression leading to the ovarian surface
epithelial hyperplasia and eventually clear cell ovarian cancer. These tumor cells perpetuate IL6
production, creating a positive feedback loop of increased IL6 and increased cell (normal and cancerous)
proliferation [157,174]. This interaction highlights how the tumor and its microenvironment can interact
with one another to generate a more tumor-promoting environment.

4.1.4. Endometrioid

ARID1A, PIK3CA, CTNNB1, PTEN, and KRAS [33,40–42,44,45] are commonly mutated in
both endometrioid and clear cell ovarian cancers from women. However, manipulation of
these genes in mice typically results in endometrioid but not clear cell ovarian cancer.
On injection of adenovirus-driven Cre (AdCre) into the ovarian bursa through the infundibulum
of Ptenf/f;KrasG12D female mice generated female mice with 100% penetrance of highly aggressive
and metastatic endometrioid ovarian cancer at 12 weeks. Interestingly, this mouse model has ovarian
endometriosis-like lesions with either addition of oncogenic KrasG12D or deletion of Pten alone, but only
results in endometrioid ovarian cancer when both Pten and KrasG12D are simultaneously mutated [162].

A mouse model targeting both Pten and Apc resulted in endometrioid ovarian cancer with high
penetrance and metastatic disease [161]. Unfortunately, this conditional knockout (AdCre) did not result
in endometriosis, which may be due to the early (6-week post-injection) tumor development [161].
Another model of endometrioid carcinoma in mice utilized a double conditional knockout of Pten and
Arid1a and intrabursal AdCre injection to show a progression of ovarian surface epithelium hyperplasia,
endometrioid carcinoma, and finally poorly differentiated carcinoma [158]. The well-differentiated
endometrioid carcinoma was confined to the ovaries, suggesting the place of origin, while the
undifferentiated tumors had metastasized into the peritoneal cavity [158]. Guan et al. hypothesizes
that ARID1A plays a role in both tumor initiation and progression but requires the collaborative second
hit of Pten to produce tumors [158]. Although the hyperplasia was not linked to endometriosis in these
mice, it does speak to an environment of uncontrolled cellular proliferation giving rise to endometrioid
ovarian cancer when left untreated.

High nuclear β-catenin levels have uniquely been found in endometrioid ovarian cancer
from women, where this nuclear accumulation leads to activation of the WNT pathway [149].
Gain-of-function deletion of exon 3 of Ctnnb1 leads to stable β-catenin expression in mice [175].
Amhr2CreCtnnb1f/f female mice have aggressive endometrioid ovarian cancers with 100% penetrance
by 6 months. Addition of Pten deletion to this model allows for tumors that are even more aggressive
by 6 weeks [165]. Similar to deletion of exon 3 of Ctnnb1, deletion of Apc leads to stable β-catenin and
WNT signaling activation [149]. Only with deletion of Pten did mice develop ovarian tumors [161].
To model the progression of type I tumors to the more aggressive type II tumors, Wu et al. (2013)
added Pik3caE545K/+ to Apcf/f Ptenf/f mice with AdCre and showed peritoneal and lung metastasis [167].

While these models used Amhr2Cre or AdCre to focus genetic changes in the ovarian surface
epithelium, other studies have created conditional genetic changes in the oviduct. When Apc and
Pten were concurrently deleted in the fallopian tube using Ovgp1Cre, endometrioid tumors of the
ovaries developed in 10 of 15 mice, with 50% of those resulting in metastasis to the lungs or
omentum [146]. Deletion of Pten in the fallopian tube by Pax8Cre also resulted in endometrioid tumors.
Specifically, 75% of female mice developed primary tumors in the fallopian tube by 7 months, and 75%
of tumor-burdened mice had metastasis to the ovaries [147]. Deletion of Apc with PgrCre female
mice revealed tumors in both the oviduct and ovaries. Specifically, 25 of 40 female mice developed



Cancers 2018, 10, 261 13 of 29

endometrioid oviductal tumors, one of 43 developed granulosa cell tumors, and 12 of 43 developed
endometrioid ovarian tumors. While these female mice had simple ovarian cysts, the authors did not
specifically denominate them as endometriosis [166]. Taken together, these mouse models suggest that
the oviduct and/or the ovary may be involved in endometrioid cancer development in the mouse.

4.1.5. Low-Grade Serous Ovarian Cancer

Addition of oncogenic Kras (KrasG12D) with either Amhr2Cre or Cyp19Cre resulted in ovaries
with abnormal follicles, which were non-tumorigenic but also non-mitotic and non-apoptotic [145].
Deletion of Pten using Amhr2Cre did result in increased proliferation and increased cell survival
of ovarian surface epithelium [163]. However, the loss of the tumor suppressor Pten alone is
not tumorigenic in somatic cells of the ovary. When Pten is deleted in the context of oncogenic
Kras with Amhr2Cre, there is development of low-grade serous papillary cystadenocarcinoma [163].
Although no endometriosis was noted, these mice were shown to have ovarian surface epithelium
hyperplasia and abnormal follicle-derived ovarian lesions. Mullany et al. continued work on the
KrasG12D;Ptenf/f;Amhr2Cre mice and showed that ovarian surface epithelium cells, removed from mutant
mice prior to tumor formation, developed into tumors when grown in soft agar [143]. This key result
suggests that Kras and Pte// play a significant role in the development of tumors in the ovarian surface
epithelium, and the genetic mutations are the primary driver, since tumor formation occurred even
outside of the ovarian microenvironment [143].

4.2. Other Models

4.2.1. Immortalized Cell Lines

Immortalized human ovarian cancer cell lines have been widely used for studying molecular
mechanisms of ovarian cancer. Ovarian cancer cell lines are used to study cancer biology,
connecting genetic and epigenetic alterations to cancer development, progression, and drug response.
Importantly, ovarian cancer cell lines have been developed from different histological and molecular
subtypes of ovarian cancer. Unfortunately, molecular characterization has revealed that common
ovarian cancer cell lines (i.e., SKOV3, HEYA8) do not molecularly represent the histology of tumor
of origin. The number of cell lines derived from either endometrioid or clear cell ovarian cancers is
more limited than high-grade serous cell lines. However, molecular profiling, including attention to
gene mutations common in these endometriosis-associated ovarian cancers (i.e., ARID1A, PIK3CA,
CTNNB1, PTEN, and KRAS) and mutations common in high-grade serous (i.e., TP53), have allowed
better molecular and biological distinction [176–182]. Table 4 shows the common endometrioid and
clear-cell ovarian cancer cell lines, including lines that were not derived from endometriosis-associated
ovarian cancers, but which may molecularly represent non-high grade serous cell lines. Even fewer cell
endometriotic cell lines exist, with 12Z cells being the only widely shared epithelial-like endometriosis
immortalized cell line [183]. For rigor and reproducibility, additional well-characterized endometriotic
cell lines and possibly ovarian cancer cell lines derived from women with endometriosis need to
be created.
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Table 4. Endometriosis and endometriosis-associated ovarian cancer cell lines.

Cell Line Original Derivation Putative Histotype by
Molecular Studies Genetic Mutations Genetic Gains Ref.

11Z Red peritoneal endometriotic lesion Benign Unknown Unknown [183]

12Z Red peritoneal endometriotic lesion Benign (epithelial-like) Unknown Unknown [183]

EEC16 Benign endometriotic lesion
(epithelial-like) Benign Unknown Unknown [184]

EMosis-CC/TERT Benign endometriotic lesion
(epithelial-like) Benign Unknown Unknown [185]

22B Red peritoneal endometriotic lesion
(Stromal/fibroblast-like) Benign Unknown Unknown [183]

Hs 832(C).T
(CRL-7566) Benign endometriotic ovarian cyst Benign Unknown Unknown ATCC

OVTOKO Clear-cell (spleen metastasis) Clear-cell None
ERRB2, HNF1B, MET,

PPM1D, STAT3, TP53, YAP1,
ZNF217, CDKN2A, CDKN2B

[177–179,182]

OVMANA Clear-cell (primary tumor) Clear-cell BRCA2, PIK3CA, ARID1A ARID1A, MET, PPM1D,
TP53, ZNF217 [178,179,182,186]

TOV21G Clear-cell (primary tumor) Clear-cell KRAS, PTEN, PIK3CA,
CTNNB1, ARID1A, TPX2 [178–182,187]

RMG-1 Clear-cell (ascites) Clear-cell TP53 * ERBB2 [178,179,182,188]

RMG-2 Clear-cell Clear-cell PPP2R1A, ARID1A
ERBB2, HNF1B, MET,

PIK3CA, PPM1D, STAT3,
ZNF217, CDKN2A, CDKN2B

[179]

OCC1 Clear-cell Clear-cell [189]

JHOC-5 Clear-cell (pelvic metastasis) Clear-cell

ARID1A, ERBB2, HNF1B,
MET, PIK3CA, PPM1D,

STAT2, ZNF217,
CDKN2A, CDKN2B

[178,179,182,190]

JHOC-7 Clear-cell Clear-cell PIK3CA ARID1A, HNF1B, PIK3CA,
PPM1D, STAT3, ZNF217 [179]
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Table 4. Cont.

Cell Line Original Derivation Putative Histotype by
Molecular Studies Genetic Mutations Genetic Gains Ref.

JHOC-9 Clear-cell Clear-cell PTEN, ARID1A HNF1B, ZNF217 [179]

ES2 Poorly differentiated clear-cell
(primary tumor) Endometrioid/Clear-cell BRAF, TP53, APC, MYC [178–182,191]

OVISE Clear-cell (pelvic metastasis) Endometrioid/Clear-cell ARID1A [177–179,182]

OVSAYO Clear-cell Serous TP53 [179]

TOV112D Endometrioid (primary tumor) Endometrioid CTNNB1, TP53 [179–182,187]

OVK18 Endometrioid (ascites) Endometrioid TP53, PTEN, KRAS,
ARID1A [178,182,192]

SNU-251 Endometrioid Endometrioid BRCA1 [193]

2008 Endometrioid Atypical non-serous TP53 [179]

IGROV1 Endometrioid with serous/clear cell
(primary tumor) Endometrioid/Clear-cell

PTEN, TP53, ARID1A,
BRCA1, BRCA2, PIK3CA,

TPX2
[178–180,182,194]

59M Endometrioid with clear cell (ascites) Endometrioid/Clear-cell TP53 MYC [178,180,182,193,195]

COV362 Endometrioid (pleural effusion) Serous TP53, BRCA1, RB1 *, EGFR,
APC MYC [178,180,182,196]

A2780 Unknown adenocarcinoma Endometrioid PTEN, ARID1A, PIK3CA,
BRAF [178–182,197]

HEYA8 Moderately differentiated papillary
serous (peritoneal metastasis) Unlikely serous KRAS, BRAF [178,179,182,198]

SKOV3 Well differentiated, adenocarcinoma
(ascites) Endometrioid/Clear-cell PIK3CA, ARID1A ERBB2 [178–182,199]

* Homozygous deletion.
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4.2.2. Xenograft Models

Implantation of immortalized human cell lines typically requires immunocompromised mice.
A Japanese group created telomerase transformed endometriosis epithelial cell lines and confirmed
cellular growth, steroid hormone response, and lack of malignant transformation in nude mice [185].
Further, these cells have been used in xenograft models to study treatment effects of small molecular
inhibitors in endometriosis [104,200]. However, limited distribution outside Japan has restricted the
use of these cells for studies of endometriosis-associated ovarian cancers. A similarly developed
endometriotic epithelial cell line (EEC16) does not grow in SCID mice [184].

In terms of the endometriotic tumor microenvironment, Komiyama et al. placed normal
endometrium of women without endometriosis into SCID mice. RMG-1 cells, a clear-cell ovarian
cancer cell line, were grown in mice then transplanted into mice with or without endometrial implants.
Although the tumors weighed less when grown with endometrium, proliferation was significantly
higher in mice with transplanted endometrium. Additionally, these tumors expressed high levels
of TGFβ and IL6. Addition of normal human endometrium changed the xenograft model to a more
endometriotic microenvironment [201].

4.2.3. Three Dimensional (3D) and Co-Culture Models

Immortalized cell lines in monolayer two-dimensional (2D) culture fail to recapitulate the
complexity of tumor tissue. Tumors are three-dimensional (3D) structures, surrounded by other
cell types and a unique extracellular matrix (ECM) that is biologically optimized for growth of each
cell type [202]. To recapitulate this for in vitro model systems, immortalized cell lines can be grown
in Matrigel, ultra-low-adhesive plates, or a hanging drop. Using these methods, many immortalized
cell lines will form 3D spheroids. Three-dimensional spheroid models can be highly instructive
towards the understanding of current drug resistance and new therapeutics because they better
mimic the way 3D tumors or de novo spheroids interact with the surrounding microenvironment.
Specifically, the architecture of spheroids results in non-heterogeneity of nutrient and drug penetration,
which can cause differential responses to varying layers of the spheroid. For example, Lee et al.
compared 31 ovarian cancer cell lines in both 2D monolayer and 3D spheroids to primary tumors.
Three-dimensional spheroids showed slower rates of proliferation and decreased drug sensitivity
than the same cells grown in 2D [202]. Additionally, these 3D spheroids mimicked histological
characteristics of primary tumors. Although the authors did not perform genome-wide transcriptomic
analysis, candidate biomarkers such as mucin 16, cell surface associated (CA125), Wilms Tumor 1
(WT1), estrogen receptor, Paired box gene 8 (PAX8), and β-catenin were examined by IHC on a
tissue microarray composed of 2D and 3D samples. The expression of these biomarkers correlated
well with expression in primary tumors [202]. These data suggest that 3D spheroid models alter
the microenvironment in a potentially more biological way compared to other in vitro systems.
Additionally, Lal-Nag et al. used high-throughput screening to test multiple oncological drugs
against the HEYA8 cell line. The cells responded differently to various drugs if they were grown
in monolayer, in the process of forming spheroids, or already in pre-formed spheroids. This work
establishes that the dimensionality of ovarian cancer cells plays a role in how they respond to their
environment [203]. Similarly, Chowwanadisai et al. created cisplatin-resistant ovarian cancer spheroids
by treating cells with sub-threshold doses of cisplatin, which resulted in a mesenchymal-enriched
gene expression signature [204]. While molecular changes within spheroids may play a role in
chemotherapy resistance, size of spheroids, similar to remaining disease after debulking surgery,
plays a role in response. Tanenbaum et al. [205] showed that small spheroids treated with either
short-term high-dose or prolonged low-dose cisplatin underwent significant shrinkage. Importantly,
large spheroids preferentially responded to short-term high doses of cisplatin [205]. The investigators
did not explore if the remaining cells became chemotherapy-resistant [205]. Although immortalized
cell lines from endometrioid or clear cell ovarian cancers have not been extensively tested in 3D culture,
we anticipate that they would behave similarly.
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In addition to single cell types within 3D spheroids, co-culture systems can be useful. For example,
endometrial epithelial cells are inhibited at a rate of 65–80% when grown in co-culture with
endometrial stromal cells, highlighting the need for complex co-culture models [206]. Additionally,
co-culture models of epithelial and stromal endometriosis cells show that stromal cells are responsible
for metabolism of iron. The authors hypothesize that storage of iron by stromal cells is protective
against malignant transformation of epithelial cells. Specifically, a lack of stromal cells and an
abundance of epithelial cells, which cannot metabolize iron, leads to oxidative damage and oncogenic
change [207]. This hypothesis fits with data from Anglesio et al. showing tumorigenic mutations in
KRAS in epithelial cells of endometriosis but not stromal cells [27]. Similarly, co-culture of macrophages
with endometriotic epithelial or endometriotic stromal cells leads to an increase in invasion that is more
robust in epithelial than stromal cells [208]. Three-dimensional organoids made from endometrium
and decidua have been developed simultaneously by two independent laboratories and represent
promising models for in vitro study [209,210]. Development of additional endometriotic tumor
microenvironment models are needed to study ovarian cancer cells within spheroids, 3D organoids,
or co-culture systems.

5. Future of Precision Therapy for/or Prevention of Ovarian Cancer

Endometriosis is a known risk factor for ovarian cancer [41]. However, early treatment of
endometriosis represents a known prevention strategy for ovarian cancer. For example, a woman
on oral contraceptive therapy has a more robust protection against ovarian cancer if she has
endometriosis than if she does not [120]. While treatment of endometriosis with contraceptives
is effective, women desiring fertility do not enjoy the side of effects of contraception, and when medical
management is stopped, 73% of women have return of symptoms. Additionally, surgical treatment of
endometriosis with removal of one or both ovaries results in significant decrease in ovarian cancer
risk. However, 55% of women undergoing local resection of endometriosis will have at least one more
surgery over the course of seven years [211,212]. Morbidity associated with multiple operations makes
selection of timing for endometriosis surgery important in pre-menopausal women. New treatments
for endometriosis are needed. Importantly, discovery of new treatments for endometriosis should be a
priority for ovarian cancer funding agencies as these therapies may lead to prevention of ovarian cancer.

In terms of therapy highlighting the importance of the molecular signaling between cells within
tumors, Mok et al. used a systems biology approach to study individual cell types. Machine learning
with large databases of drugs and molecular effects highlighted an FDA-approved drug for potential
targeted treatment. While this study used high-grade serous ovarian tumors, it brings forward the
importance of non-epithelial ovarian cancer cells in cancer treatment [213]. Importantly, the study
focused on TGFβ signaling pathways [213]. Endometriosis also has dysregulated TGFβ signaling
pathways [92]. Similar treatment of endometriosis may prevent ovarian cancer.

6. Conclusions

The Gynecologic Cancers Steering Committee of the National Institutes of Health (NIH)
proposed strategic priorities for ovarian cancer. These research priorities focus on discovery of
biomarkers, identification of cancer subsets to drive treatment recommendations, immunotherapy,
combination therapies, and manipulation of the host-tumor microenvironment. While these priorities
are not specific for a particular histotype, they are highly applicable to both the more common
high-grade serous and less common endometriosis-associated ovarian cancers and warrant further
study in endometriosis-associated ovarian cancer models.
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