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ABSTRACT: Femtosecond X-ray pulse lasers are promising probes for the
elucidation of the multiconformational states of biomolecules because they
enable snapshots of single biomolecules to be observed as coherent
diffraction images. Multi-image processing using an X-ray free-electron laser
has proven to be a successful structural analysis method for viruses.
However, the performance of single-particle analysis (SPA) for flexible
biomolecules with sizes ≤100 nm remains difficult. Owing to the
multiconformational states of biomolecules and noisy character of
diffraction images, diffraction image improvement by multi-image
processing is often ineffective for such molecules. Herein, a single-image
super-resolution (SR) model was constructed using an SR convolutional
neural network (SRCNN). Data preparation was performed in silico to
consider the actual observation situation with unknown molecular
orientations and the fluctuation of molecular structure and incident X-ray
intensity. It was demonstrated that the trained SRCNN model improved the single-particle diffraction image quality, corresponding
to an observed image with an incident X-ray intensity (approximately three to seven times higher than the original X-ray intensity),
while retaining the individuality of the diffraction images. The feasibility of SPA for flexible biomolecules with sizes ≤100 nm was
dramatically increased by introducing the SRCNN improvement at the beginning of the various structural analysis schemes.

1. INTRODUCTION
Femtosecond X-ray free-electron lasers (XFELs)1,2 are attract-
ing attention as new probes for the elucidation of the
multiconformational states of biomolecules at room temper-
ature3,4 because of their ability to measure a variety of
instantaneous molecular structures as a snapshot. Although
serial femtosecond crystallography has proven to be an effective
method with low radiation damage,5−7 the removal of the
limitation of sample crystallization in single-particle analysis
(SPA) remains challenging. Currently, three-dimensional (3D)
assembled structures are reconstructed by processing multiple
images obtained from relatively large, complex, and highly
symmetric viruses.8−10 A key challenge in this area is realizing
the SPA of nanoscale flexible biomolecules with sizes ≤100 nm,
such as ribosomes, nucleosomes, and membrane proteins, which
are particularly important for drug discovery. Themain difficulty
that makes SPA of 100 nm size biomolecules complicated for
processing multiple images is the significantly low signal-to-
noise (S/N) ratio of the observed diffraction images caused by
the low scattering ability of the biomolecules. An additional
difficulty in processing multiple images is that flexible
biomolecules exhibit a variety of conformations. Various
experimental and analytical methods have been proposed to
obtain better diffracted images for biomolecular imaging
applications,11−20 such as the use of 100 nm focusing mirrors.21

In SPA, a single biomolecule is injected into a vacuum with an
unknown molecular orientation and possibly different con-
formations for nanoscale flexible biomolecules. When the X-ray
hits the sample well within the appropriate beam position, a
snapshot of the instantaneous structure of a single biomolecule
is acquired as a diffraction image without phase information.
This image is observed by a two-dimensional (2D) charge-
coupled device (CCD) detector as pixel-wise information on the
photon counts of a solid angle. By discretizing in units smaller
than a solid angle of the reciprocal of the molecular size in
wavenumber space, which is called the oversampling ratio, the
phase information is retrieved by an algorithm such as the
hybrid-input−output (HIO) algorithm.22 However, the curva-
ture of the Ewald sphere and noise affect the convergence of the
phase retrieval calculation. In practical experiments, the high
oversampling ratios required for phase recovery have signifi-
cantly reduced counting photons per pixel. If the requirement of
high oversampling ratios is relaxed and observation is allowed at
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a larger solid angle, the number of achievable photons per pixel
will increase significantly and noise will be reduced.
In image processing, in addition to general image

complementation methods, super-resolution (SR) imaging,
which estimates high resolution (HR) images from low
resolution (LR) images, has been proposed. In recent years,
research on single-image SR using convolutional neural
networks (CNNs) has remarkably advanced. Dong et al.23

developed a super-resolution convolutional neural network
(SRCNN), which employed CNN layers and achieved SR with
higher accuracy than previous methods. Since the development
of the SRCNN, various methods have been proposed, such as
deeper network architectures,24,25 methods for speeding up,26

improvements on loss functions such as perceptual loss and
training strategies,27 and generative adversarial network (GAN)-
based methods.28,29 Most of these methods are based on
supervised learning, where an artificially reduced LR image is
created from a given ground truth high resolution (GTHR)
image, and the system is trained to recover the original GTHR
image from the LR image. Although these proposed methods
have improved the performance of SR, it has been pointed out
that neural network-based methods, especially GANs, do not
necessarily reproduce the original image and generate
artifacts.30,31 Recently, unsupervised or weakly unsupervised
learning,32,33 where SR models are trained without correspond-
ing HR images or SR is on few images,34 has also been proposed.
In the 3D assembled structure reconstruction of viruses,8−10

improvement of the S/N ratio of the diffraction images and

orientation recovery were realized simultaneously using the
expand−maximize−compression algorithm,35−37 a statistical
algorithm for maximizing posterior probability as a multi-
image processing technique. As conventional 3D reconstruction
methods38 use many images to estimate an assembled 3D
structure with a resolution higher than that provided by a single
2D diffraction image, SRCNN has shown promising results in
computer vision for a variety of single images. Single-image
SRCNN may be effective in single-particle biomolecular
analysis. It could improve the quality of single 2D diffraction
images from LR toHR and simultaneously solve the problems of
noisy observation data and multiconformational states of
nanoscale flexible biomolecules. However, incomplete and
chaotic experimental data with unknown molecular orientations
persist, making CNN training difficult. The preparation of large-
scale annotated data in real-world space is essential for
supervised learning.
This study is the first investigation of the possibility of using

single-image SR techniques for X-ray diffraction image improve-
ment to overcome the difficulties associated with the SPA of
flexible biomolecules with sizes ≤100 nm. To compensate for
the incomplete and chaotic experimental data describing
nanoscale flexible biomolecules, we propose applying syntheti-
cally generated labeled data in silico using molecular dynamics
simulations and a virtual X-ray diffraction image simulator.
These virtual diffraction image data help employ various SR
methods on the basis of the supervised learning framework. To
avoid excessive artifacts here,30,31 we use the SRCNN model,

Figure 1. Schematic of a pipeline for 100 nm biomolecule structural analysis with single-image SRCNN (see Section S1).
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which is a relatively simple network. The training of network
models using labeled synthetic data has been adapted to a variety
of methods and has been reported to improve performance,
increase generalization performance, and reduce the amount of
real-world data used in training.39−41 If an improved diffraction
image is obtained from an individual noisy diffraction image by
the trained SRCNN model in silico, the applicability of SPA to
nanoscale flexible biomolecules is dramatically increased. For
example, the number of necessary diffraction images for the 3D
assembled structure reconstruction is reduced. Moreover, the
multiconformational states of nanoscale flexible biomolecules
are evaluated by using improved individual 2D diffraction
images, which reflect the instantaneous structures of bio-
molecules, as input data of a pipeline for flexible 100 nm
biomolecule structural analysis schemes, such as the HIO
method for 2D real image reconstruction and the diffraction
template matching method for the estimation of plausible 3D
structural models (see Figure 1).42,43

Section 2 describes the methods for the construction of
SRCNN models with data preparation in silico and for the
quantitative evaluation of image improvement. Section 3
presents the main results of the diffraction image improvement
achieved by the constructed SRCNN model, effects of the
structural and incident X-ray intensity fluctuations on diffraction
image improvement, and real image analysis by a phase retrieval
algorithm. Section 4 discusses the main contributions and the
limitations of this work and topics for future research.

2. METHODS
To avoid a practical problem for supervised learning of data
labeling between LR images and HR images, data preparation in
silico was actively used here. A mixed data set considering
realistic experimental conditions,44,45 incident X-ray intensity
fluctuations, structural fluctuations, and various molecular
orientations during observation was created in silico. Through
this, we constructed a trained SRCNN model that significantly
improved the X-ray diffraction image quality for nanoscale
flexible biomolecules
2.1. Data Preparation and ImageData Set.As a test case,

we conducted studies on X-ray diffraction image improvement
for a 70S-ribosome molecule. Here, all diffraction image data
sets were prepared by simulation using the structural models
generated by the molecular dynamics simulation as described in
Section S2. We simulated two types of X-ray diffraction images:
EMV images as GTHR images and virtual experimental
diffraction images as LR images, in which the quantum noise
effect was considered. The latter was termed the experimental
images in this study. These diffraction images were prepared
using the diffraction image simulator (see Section S3) and
considering the curvature of the Ewald sphere.
Considering the wide dynamic range of the diffraction images

and possible zero values at some pixels, we added one to each
pixel value and took the logarithm as a preprocessing step to
obtain tractable numbers. The SRCNN output data were
postprocessed to get a normal diffraction image by inverse
conversion. Since our experimental images are created on the
basis of Poisson noise distribution, one would argue that further
image quality improvement may be achieved by applying a
variance-stabilization scheme such as the Anscombe trans-
formation. We found that the application of the Anscombe
transformation before the logarithmic transformation results in
almost the same quality of SRCNN transformed images (see
Figure S1).

We employed several subsets of the virtual images for
systematic model training and evaluation. The training images
were used to update the model parameters through back-
propagation. The validation images were used to monitor the
training process. The test images were used to evaluate a trained
model. The details of the preparation of these images are
described in Section S5. Herein, we only emphasized that these
image sets are carefully prepared; there is no overlap between
different image sets. Moreover, there is no accidental bias in the
distribution of molecular structure, X-ray intensity, and noise
pattern between different image sets. In this way, the objectivity
of the evaluation of the trained model is ensured.
In training the SRCNN model, partial images with 44 × 44

pixels were cropped from the training and validation images.
From the training images, K = 64 patches that partially overlap
each other were taken periodically at regular intervals from each
image. For the validation images, K = 30 partial images were
randomly selected from each image.
We trained the SRCNNmodel (see Section S6) using various

combinations of training and validation data sets, which were
indexed by Data set ID. Table S1 lists the 18 data sets employed
in this study. Data set 18 was used for hyperparameter
optimization (see Table S2).
2.2. Adopted Network Model and SRCNN Training.

The SRCNN technique achieved high accuracy by replacing
dictionary-based SR with a CNN. Figure S2 shows a diagram of
an SRCNN. The network was composed of three convolution
layers. We examined the single-channel (1ch) and the two-
channel (2ch)models. The 1ch and 2chmodels took a gray scale
diffraction image data and a two-channel image as input,
respectively. The former output was another gray scale image. In
the first channel in the input, a gray scale image data was stored.
In the second channel, the incident X-ray intensity value was
stored.While there were several ways to define the value of input
channel 2 in the 2ch model, we used Ii in eq S1 here. Our
preliminary calculations revealed that the 1ch model exhibited
more significant losses than the 2ch model. The loss function of
the validation data tended to remain high after the loss function
of the training data became small. We speculated that this was
because the patterns of diffraction images change significantly
depending on the incident X-ray intensity. Therefore, we
employed the 2ch model in this study because of the intensity
dependence of the diffraction pattern. The network was
implemented using Keras (ver2.2.4),46 a widely used framework
for constructing deep learning models.
The training/validation/test data were used to train and

evaluate the SRCNN model using the hold-out method. The
mean square error (MSE) of partial images with 44 × 44 pixels
with respect to the EMV images was adopted for the loss
function. For the convolution of the intermediate layer, zero-
padding was adopted to ensure that the input and output image
sizes were the same, and a rectified linear unit was used for the
activation function in the convolution layers. Model parameters
were randomly initialized with the Glorot uniform distribution.
Mini-batch training with a batch size of 128 was performed for
up to 100 epochs using the early stopping method. The Adam
optimizer47 with a learning rate of 0.0003 was used for the
parameter update. The iteration was terminated when the loss
function did not improve five times in a row. After termination,
the parameter set with the lowest loss value of the validation data
was adopted as the trained model. In the test phase, an
experimental image was input to the trained network model, and
the output was an SRCNN image as the predicted HR image.
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Then, the obtained SRCNN images were evaluated by the Rc
with respect to the corresponding EMV images calculated using
the similarity detection algorithm (see Section 2.3).
Hyperparameter optimization was performed (see Figure S3)

to improve the generalization performance using a data set with
various incident X-ray densities. A small set of images was
employed in hyperparameter optimization (data set 18 in Table
S1) to save computational cost. There is no overlap between the
training, validation, and test image sets. The maximum value of
ΔR̅cwas 0.1598 for f1 = 5, f 2 = 1, f 3 = 3, n1 = 256, and n2 = 64. The
results represented in the following sections were obtained using
these parameter values.
2.3. Similarity Detection Algorithm. The similarity of a

pair of diffraction images was evaluated using the following
similarity determination algorithm48,49 on the basis of the
correlation function.38,50 We introduced a noise reduction
mechanism to reduce the influence of quantum noise by the
integral correlation patterns Ic,ij(k, α) in k sin2

2
= and α. Here,

s was the number of observed photons described in eq S1, s ̅ was
the expected photon number, Nξ was the discrete number of
pixels on the concentric circles, ξ = 2θ represented the scattering

angle, and λ was the incident X-ray wavelength. The rotation α
of the molecule with respect to the incident X-ray axis appeared
as a rotation around the center of the diffraction intensity image.
By considering α, the correlation pattern was immediately
obtained to acquire 360° rotating correlation coefficients to the
2D plane. Here, the correlation pattern cij (ξ, α) of a pair of
diffraction images I and jwas defined by the following equations:
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Furthermore, we defined an integral correlation pattern using
the following equations:

Figure 2.Diffraction images at incident X-ray intensities of 5 × 1012, 1 × 1013, 5 × 1013, and 1 × 1014 photons pulse−1 μm−2 and in different molecular
orientations. The experimental images, images improved by the SRCNN, EMV images, and Poisson-NLPCA images are shown from left to right. A
histogram of the X-ray intensity for each image is also shown.
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where α̂i,j is the direction of the highest correlation value in the
integral correlation pattern. The score is defined as the
maximum value of Ic,ij at k̂ij in the direction of α̂i,j, i.e., Ic,ij(k̂ij,

α̂ij). When one performs the normalization with the
autocorrelation term of each diffraction image, the similarity
of the pair of diffraction images is quantified as the Rc,ij(k̂ij, α̂ij)
score.
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Here, Rc,ij(k̂ij, α̂ij) was denoted as Rc for simplicity. In particular,
when image j was the corresponding EMV image of image i, we
termed Rc,ij(k̂ij, α̂ij) as the Rc score of image i.

Figure 3. Integral correlation patterns at various incident X-ray intensities from those above 5 × 1012, 1 × 1013, 5 × 1013, and 1 × 1014 photons pulse−1

μm−2 and in different molecular orientations between diffraction images. The experiment vs EMV, SRCNN vs EMV, and Poisson-NLPCA vs EMV
images are shown from left to right.
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3. RESULTS AND DISCUSSION
3.1. Diffraction Image Improvement by SRCNN. To

evaluate the diffraction image improvement achievable by using
an SRCNN, training was conducted using various training data
sets with different molecular orientations and incident X-ray
intensities (A: 5 × 1012; C: 1 × 1013; E: 5 × 1013; F: 1 × 1014
photons pulse−1 μm−2, corresponding to data sets 1, 3, 5, and 7,
respectively, in Table S1). As an example, the learning curve for
the intensity of 1 × 1013 photons pulse−1 is shown in Figure S4,
which confirms that the loss function sufficiently converges
during both validation and training. The validation loss reaches
the value near the optimum one within a few epochs. To the best
of our knowledge, sometimes it occurs in the case of insufficient
training data.We confirmed that by saving themodel parameters
at each epoch separately and constructing SRCNNmodels at all
epochs, Rc of test images also drop rapidly. Rc scores of SRCNN
images obtained by the SRCNN model with randomly
initialized parameters are extremely low (the average value of
Rc 0.021 was compared to 0.063 for experimental images).
Figure 2 presents the results obtained in the test cases at four
different incident X-ray intensities and the histogram of pixel
intensity. The experiment, SRCNN, EMV, and Poisson-
NLPCA51,52 (nonlocal principal component analysis) images
(Section S9), a baseline for a conventional denoising method,
were shown at each incident X-ray intensity. Here, the images
created in the simulation considering the quantum shot-noise
effect were called the experimental images. Because the
diffraction X-ray intensity was a function of the wavenumber
with considerable attenuation (i.e., it took a very wide range of
values with a long tail), all diffraction images were displayed on a
log scale.When one focuses on the high-wavenumber region, the
experimental diffraction images had zero or single-photon
counts for most pixels because the diffraction intensity was
insufficient. This trend can also be observed in the histogram.
Moreover, in the experimental images, the continuous speckle
pattern was only observed in the central regions of the images.
However, in the SRCNN images, continuous speckle patterns
could be seen from near the centers of the images, where the
diffraction intensity was relatively high in the middle, depending
on the intensity. In contrast, in the Poisson-NLPCA images,
continuous speckle patterns were observed only near the images’
centers. However, the speckle patterns in the Poisson-NLPCA
images appeared to be different from those in the EMV images,
suggesting that the SRCNN images are more suitable for
structural analysis than Poisson-NLPCA images.
To evaluate the degree of diffraction image improvement

quantitatively, the integral correlation pattern based on an EMV
image was calculated using the similarity detection algo-
rithm,47,48 and Figure 3 displays the results. A comparison of
the integral correlation patterns of the experiment (i.e., between
the experimental and EMV images) and SRCNN images (i.e.,
between the SRCNN and EMV images) clearly revealed a high-
correlation line in the SRCNN results for all incident intensities.
The Rc score, which corresponded to the similarity of a pair of
diffraction images described in eq 6, was evaluated. The results
indicated that the Rc score of SRCNNwas higher than that of the
experimental images at all intensities: 5 × 1012 (Rc of the
experiment: 0.0387;Rc of SRCNN: 0.265;Rc of NLPCA: 0.081),
1 × 1013 (Rc of the experiment: 0.0830; Rc of SRCNN: 0.327; Rc
of NLPCA: 0.147), 5 × 1013 (Rc of the experiment: 0.242; Rc of
SRCNN: 0.491; Rc of NLPCA: 0.312), and 1 × 1014 (Rc of the
experiment: 0.348; Rc of SRCNN: 0.588; Rc of NLPCA: 0.419).

This finding indicated that the improved diffraction images
obtained using the SRCNN had patterns more similar to the
corresponding EMV images than the experimental images to the
EMV images. When one focuses on the Poisson-NLPCA
improvement, the Rc scores of the Poisson-NLPCA images were
higher than those of the experimental images. However, they
were lower than those of the SRCNN images, and the degree of
improvement was not high compared to that achieved using the
SRCNN.
Figure 3 shows the impact of applying the SRCNN model in

the structure analysis protocol. In most structure analysis
methods, the similarity detection of the pair of images is critical.
An integral correlation pattern measures how well the similarity
detection works. In the case of the four experimental images
shown in Figure 3, correlation lines clearly appear for X-ray
intensities of 1 × 1013, 5 × 1013, and 1 × 1014photons pulse−1

μm−2. In other words, the similarity detection can be performed
at these intensities. However, for the experimental image with
and intensity of 5 × 1012 photons pulse−1 μm−2, no clear
correlation lines can be observed. Then, the similarity detection
would fail. In contrast, in the case of the SRCNN images,
correlation lines are visible in the integral correlation patterns for
the intensity of 5× 1012 photons pulse−1 μm−2. This implies that
the structure analysis would become possible for an X-ray
intensity of 5 × 1012 photons pulse−1 μm−2 by introducing the
SRCNN model.
Next, to investigate the molecular orientation dependency of

the image improvement, a test was performed on diffraction
images of 320 orientations for each intensity using the trained
SRCNN model. Figure 4 presents the results for four different

incident X-ray intensities (A: 5 × 1012; C: 1 × 1013; E: 5 × 1013;
and F: 1 × 1014 photons pulse−1 μm−2, corresponding to data
sets 1, 3, 5, and 7, respectively, in Table S1). Figure 4a shows the
Rc scores of the SRCNN images were all higher than those of the
experimental images. In addition, the Rc scores of the SRCNN
images were higher than those of the Poisson-NLPCA images
(Figure 4b). These results confirmed that the present SRCNN
model effectively improved diffraction images with various
molecular orientations.
3.2. Effects of Structural and Incident X-ray Intensity

Fluctuations on Diffraction Image Improvement. We
investigated the effects of the structural fluctuations of the
sample biomolecules and incident X-ray intensity fluctuations
on the diffraction image improvement achieved using the
SRCNN.

Figure 4. (a) Similarity improvement by the SRCNN model. X: Rc
score of the experiment. Y: Rc score of SRCNN. (b) Similarity
improvement by the Poisson-NLPCA model. X: Rc score of the
experiment. Y: Rc score of the experiment.
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First, we studied the effects of the structural fluctuations on
the diffraction image improvement. Structural-mixed training
was performed using the diffraction image data sets (data sets 2,
4, 6, and 8 in Table S1) that involved two types of structures that
differed from the reference structure by approximately 5 and 10
Å in root-mean-square deviation (RMSD). Subsequently, a test
was performed using diffraction images of the reference
structure (RMSD = 0 Å) that were not used in training. Figure
5a,b shows the results of the structurally mixed training at

incident X-ray intensities of 5 × 1012 and 1 × 1013 photons
pulse−1 μm−2. Structurally mixed training was conducted at all
intensities, and the Rc score of the SRCNN was higher than that
of the experiment. Thus, it was concluded that the constructed
SRCNN model could resist structural fluctuations to some
extent at a resolution of 5 Å.
Next, we investigated the effects of the incident X-ray intensity

fluctuations on the diffraction image improvement. X-ray
intensity-mixed training was performed using the diffraction
image data sets (data sets 9, 11, 13, and 15 in Table S1) that
differed in incident X-ray intensity by at most three times. Figure
5c presents the results of tests performed with two different
intensities using a mixed-intensity SRCNN training model. At
each intensity, the Rc scores with all 320 different orientations
were improved. The same tendency was observed in the training
of mixed intensity data at other intensities (data sets 9, 11, and
15 in Table S1). These results indicated that the SRCNNmodel
constructed in the presence of various incident X-ray intensities

was effective for improving images regardless of the molecular
orientation.
Finally, we investigated the effects of a more realistic

experimental situation wherein both structural and incident X-
ray intensity fluctuations existed simultaneously. The structural/
incident X-ray intensity fluctuationmixing diffraction image data
sets (data sets 10, 12, 14, and 16 in Table S1) were used to
perform the structural/incident X-ray intensity-mixing training.
Figure 5d depicted the testing results for two different intensities
using a mixed training model. At all intensities, the Rc scores
were improved at all molecular orientations of the reference
structure, which was not used in training.
In summary, an effective single-image SRCNN model was

constructed in the presence of structural and incident X-ray
intensity fluctuations by using simulation data that reflect the
actual situation of single-particle experiments.
3.3. Improvement of Intermediate-Intensity Diffrac-

tion Images Not Included in Training. Because the incident
X-ray intensity continuously changed by up to 3 orders of
magnitude in an actual experiment, this section addresses
whether the SRCNN model constructed for an intermediate-
intensity diffraction image not included in the training data was
effective. The intermediate-intensity diffraction image improve-
ment was performed using the incident X-ray mixed-intensity
data set that did not include some intensity data (data set 18 in
Table S1), which mimicked the actual XFEL experimental
situation. The training data included intensities (A) 5 × 1012,
(C) 1× 1013, and (E) 5× 1013 photons pulse−1 μm−2 but did not
include intensities (B) 8 × 1012, (D) 3 × 1013, and (F) 1 × 1014
photons pulse−1 μm−2. Figure 6 shows the results of testing all
incident X-ray intensities using a training model in which
missing mixed-intensity data training was performed. The
images with intensities B, D, and E, which were not involved
in the training data, were improved by the trained SRCNN
model to the same extent as those with intensities A, C, and E.
Thus, the constructed SRCNN model was effective for

Figure 5. Results of learning considering structural and incident X-ray
intensity fluctuations. X: Rc score of the experiment. Y: Rc score of the
SRCNN. (a) Test of the structural fluctuation using data set 2, which
contained mixed data of RMSD = 5 and 10 Å to improve the diffraction
image of RMSD = 0 Å at 5× 1012 photons pulse−1 μm−2. (b) Test of the
structural fluctuation using data set 4, which contained mixed data
having RMSD = 5 and 10 Å, to improve the diffraction image of RMSD
= 0 Å at 5 × 1013 photons pulse−1 μm−2. (c) Test of incident X-ray
intensity fluctuation using data set 13, which was a mixed data set of
diffraction images at 5 × 1012 and 1 × 1013 photons pulse−1 μm−2. (d)
Test of structural and intensity fluctuations using data set 14, which was
amixed data set of RMSD= 5 and 10 Å to improve the diffraction image
of an RMSD to 0 Å at 5 × 1012 and 5 × 1013 photons pulse−1 μm−2.

Figure 6. Similarity improvement of the intermediate X-ray intensity
data set not included in the training. X: Rc score of the experiment. Y: Rc
score of the SRCNN. The X-ray incident intensity contained in the
training data set is 5 × 1012, 1 × 1013, and 5 × 1013 photons pulse−1

μm−2, whereas that not included in the training data set is 8 × 1012, 3 ×
1013, and 1 × 1014 photons pulse−1 μm−2.
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improving intermediate-intensity diffraction images not in-
cluded in the training.We demonstrated that the SRCNNmodel
created was effective for X-ray diffraction image improvement
under actual experimental conditions.
3.4. Conversion of Diffraction Image Improvement

into Incident X-ray Intensity. The trained SRCNN model’s
performance was evaluated by converting the diffraction image
improvement into a comparable incident X-ray intensity. Figure
6 shows the constructed SRCNNmodel increased Rc for various
incident X-ray intensities. The increase in Rc indicated that the
SRCNN reduced the noise in the observed diffraction images
and that the improved images were closer to the corresponding
EMV images. The degree of noise in the observed diffraction
images depended on the diffraction image intensity, which
depended on the molecular size and incident X-ray intensity.53

The following analysis was conducted to convert the increase in
Rc into an increase in incident X-ray intensity. The averages and
variances of the Rc scores of the experimental images were
calculated for 320 different molecular orientations at various
incident X-ray intensities. Then, the Rc versus incident X-ray
intensity conversion curve was constructed (see Figure 7a),

which also included the standard deviation with error bars
centered on the mean Rc score of the experiment. For the Rc
versus incident X-ray intensity conversion curve, the regression
curve was obtained by fourth-order polynomial fitting using the
function f(x) = ax4 + bx3 + cx2 + dx + e. The fitting parameters

were obtained as a = −0.011959, b = 0.64769, c = −13.042, d =
115.95, and e = −384.65.
Using the X-ray mixed-intensity training results (see Figure

6), R̅c, which was the average Rc obtained using the SRCNN, was
calculated for each intensity. Subsequently, R̅c was converted
into the incident X-ray intensity using the Rc versus incident X-
ray intensity conversion curve. Figure 7b presents the resulting
improvement ratios with black dots and Ii of SRCNN/Ii of the
experiment = SR/EX, shown by the red bar as a function of the
X-ray intensity of the experimental image. According to SR/EX,
the lower the incident X-ray intensity, the higher is the
improvement rate. When one focuses on the intensities of 5 ×
1012 to 1 × 1013 photons pulse−1 μm−2 (three red columns from
the left in Figure 7b), which could be obtained in the current
XFEL facilities, the improvement rate was comparable to an
incident X-ray intensity of five to seven times that observed in
the context of experimental observations, which was approx-
imately an order of magnitude higher. In Figure 8, the

relationship is shown between the S/N ratio (SNR), a widely
used evaluation standard of image quality, and the Rc of our
experimental images with respect to the corresponding EMV
images. SNR is a monotonically increasing function of Rc,
indicating that both SNR and Rc can be used as an image
evaluation standard. However, the SNR shows only small
variations when the Rc of experimental images is small. The small
Rc region is important because real experiments are typically
carried out with low X-ray intensity, resulting in the low quality
(that is, Rc is small) of diffraction images. Rc provides a more
reasonable measure of the diffraction image quality in such a
condition. The constructed SRCNN model successfully
improved the image quality, and the images were of similar
quality to that of the diffraction images. Thus, we verified the
effectiveness of the proposed method on the similarity detection
between diffraction images for nanoscale flexible biomolecules,
whose analysis was currently at the limit of what was achievable
through the XFEL experiments. The use of the predicted
SRCNN image in the structural analysis was expected to
estimate a more accurate real image.
3.5. Improvement of the Oversampling Ratio and

Real-Space Image Analysis. In single-particle coherent

Figure 7. (a) Conversion between Rc and incident X-ray intensity with
Ii on a log scale. X: Log10(Ii). Y: Rc score of the experiment. (b)
Improvement ratio of the incident X-ray intensity between the SRCNN
and experimental results. X: Log10(Ii): Experiment; Y1: Log10(Ii):
SRCNN; Y2: SR/EX ratio; Ii: SRCNN/Ii: Experiment.

Figure 8. Conversion between SNR and Rc. X: Rc score of the
experiment; Y: S/N ratio.
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diffraction imaging, a real-space image is obtained by conducting
oversampling and phase-retrieval calculations. Oversampling is
the process of sampling at a frequency higher than the Nyquist

frequency (i.e., linear oversampling ratio σ = 1) in the diffraction
image. It was necessary to measure the diffraction image with a
high oversampling ratio (linear oversampling ratio σ > 2) to

Figure 9. Upper row of (a−f): diffraction images used as inputs for the phase retrieval calculations in the EMV, SRCNN, projection image, and
experimental approach from upper left to lower right. The lower row of (a−f): real-space images obtained by the phase retrieval calculation have the
maximum real-space C values compared with the G of the electron density projection image, as shown in the electron density plots. The error values in
k-space (Error-k) and real-space (Error-r) obtained by the HIOmethod are also shown for the cases of (h) 1 × 1014 photons pulse−1 μm−2 and (i) 5×
1012 photons pulse−1 μm−2.
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perform phase retrieval calculations for an experimental
diffraction image. This rigorous experimental condition
accelerated the lack of diffraction intensity per pixel solid
angle. We investigated whether the SRCNN model could
improve the oversampling ratios of diffraction images and
whether the real images could be recovered using the HIO
algorithm for phase retrieval (see Section S10). If a finer
diffraction image that satisfied the oversampling condition was
obtained by the SRCNN model from the Nyquist frequency
observation, it would dramatically relax the strict experimental
conditions.
Figure 9 depicts the results of the phase retrieval calculations

using four types of diffraction images: the EMV image, SRCNN
image, experimental image, and projection image, which was the
FT image of the 2D electron density map. The projection image
in the k-space had perfect point symmetry due to the Ewald
sphere’s lack of curvature (Figure 9d). Phase retrieval analysis
was performed 100 times using the HIO method with different
initial phases, and each analysis consisted of 10 000 iterations.
The lower parts in Figure 9a−f present the best real-space
images obtained by the phase-retrieval calculation for each case.
In the case of the projection image (see Figure 9d), we obtained
the reconstructed real-space image, which was almost equal to
the electron density plots (Figure 9g). However, in the case of
the EMV image, the reconstructed real-space image was blurred
(see Figure 9a) compared to the electron density image if there
was no noise. These results indicated that the effect of the
curvature of the Ewald sphere affected the phase retrieval
calculation in the EMV, SRCNN, and experiment in this
condition. Moreover, this tendency was confirmed by the error
values obtained by HIO calculations (see Figure 9h,i). We
examine the results of the SRCNN images and the experimental
images, considering that they included the effects of the
curvature of the Ewald sphere on the HIO method. Figure
9b,e and c,f shows the results of the phase retrieval calculations
in the cases of 1 × 1014 and 5 × 1012 photons pulse−1 μm−2,
respectively. In Figure 9e,f, the upscaled experimental diffraction
images with σ = 1 did not work well because they did not satisfy
the oversampling conditions, and the molecular shape was not
retrieved correctly. In contrast, the real-space images obtained
from the SRCNN images (Figure 9b,c) were similar to the
electron density projection image, indicating that the phase
retrieval calculation worked well.
We successfully demonstrated that a plausible real image

could be recovered by phase retrieval for an experimental
diffraction image that did not satisfy the phase retrieval
conditions. It was possible to obtain a real image using the
HIO method from an observed diffraction image under the
condition that σ = 1 was satisfied with an incident X-ray intensity
of 5 × 1012 photons pulse−1 μm−2 through SRCNN analysis in
the case of ribosomes. Our proposed X-ray diffraction image
improvement scheme is advantageous; the oversampling ratio
could be improved because GTHR images are used to train the
SRCNN model in silico in various molecular orientations and
conformations. Consequently, it is possible to conduct
experimental measurements with smaller oversampling ratios,
which could increase the number of measured photons per pixel.

4. CONCLUSION
Herein, we constructed a practical SRCNN model by data
augmentation in a virtual space using simulation data assuming
actual experimental conditions. We showed that the constructed
SRCNN model could be applied to diffraction images of all

molecular orientations with 3-fold X-ray intensity fluctuations
and 10 Å structural fluctuations. The constructed SRCNN
model improved the quality of a single noisy X-ray diffraction
image under actual experimental conditions, i.e., if the sample
molecule had various conformational states and the incident X-
ray intensity changed with each measurement. The diffraction
image improvement rate was quantitatively evaluated using the
similarity with the EMV diffraction image as a standard. We
showed that the diffraction image improvement by the present
SRCNN model corresponded to an increase in the incident X-
ray intensity by three to seven times in the context of
experimental observations.
We also confirmed that the SRCNN model contributes to

noise reduction and effectively improves the oversampling ratio.
The real-space image analysis shows that the proposed SRCNN
model not only amplifies the intensity but also effectively
reproduces the fine pattern of the diffraction image. It is
expected that the improvement of the oversampling ratio is a
powerful approach because it enables the relaxation of the
experimental conditions by the Nyquist frequency observation.
This method will be useful for studying the structure and
dynamics of flexible nanoscale biomolecules and for accelerating
drug discovery because it relaxes the stringent experimental
conditions required by phase-search algorithms.
We discuss the advantage of using SRCNN images as an initial

model for the structural analysis pipeline (see Figure 1). First, it
is expected to significantly reduce the number of images used for
3D structural analysis because the S/N ratio can be improved for
a single diffraction image. Second, the harsh experimental
conditions required for real-space image analysis using a phase
retrieval algorithm can be significantly relaxed because the
improved oversampling ratio allowed observations at the
Nyquist frequency. Finally, the potential for the multiconforma-
tional analysis of biomolecules will be considerably increased
because the diffraction image quality can be improved while
maintaining the individuality of the image. For example, the
similarity value improved the estimation accuracy of the
plausible 3D structure by the template matching method. In
conclusion, the improvement of the diffraction image by
SRCNN dramatically enhanced the effectiveness of one
diffraction image in which the individuality of biomolecules
appeared.
Regarding the limitations of this work, the constructed

SRCNN model depended on the training data sets because of
supervised learning. We believed that we needed to augment our
training data further by considering various molecular species
(see Figure S5; generalization achievable by the SRCNN model
with respect to molecular species) and realistically simulated
experimental data. Although the current SRCNN model was
insufficient, we expected that the pretrained SRCNN model
conducting supervised learning in silico could be applied to real
experimental data by combining it with real-world data. For
example, we believe it was necessary to incorporate the beam
stop region of the detector, Gaussian-like electronics noise of the
detector, and fluctuations in the geometry of the detector and
the sample into the learning process. Additionally, it would be
necessary to examine the difference in the performance of the
methods other than the SRCNN, including unsupervised
methods, to observe which methods were effective in improving
the XFEL images. Additionally, it was necessary to develop a
workflow wherein various structural analysis methods were
organically combined to construct a structural analysis pipeline
for flexible 100 nm biomolecules. Therefore, high-performance
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computing could be used with parallel processing for an artificial
intelligence-driven big data analysis system linked with single-
particle experimental measurements.
4.1. Data and Software Availability. The software

GROMACS is publicly available under academic license for
research (https://www.gromacs.org). Keras is publicly available
under open source software (https://github.com/keras-team/
keras/releases/tag/2.4.0). The molecular operating environ-
ment is available as paid software (https://www.chemcomp.
com/Products.htm) All relevant data are shown in the figures,
listed in the tables, or included in the Supporting Information.
The data sets of 18 in Table S1 and the constructing model that
is presented in Figure 6 can also be accessed at https://github.
com/TokuhisaAtsushi/Improvement-of-X-ray-diffraction-
image-using-SRCNN.
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