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Introduction: Early detection and monitoring of mild cognitive impairment (MCI) and

Alzheimer’s Disease (AD) patients are key to tackling dementia and providing benefits

to patients, caregivers, healthcare providers and society. We developed the Integrated

Cognitive Assessment (ICA); a 5-min, language independent computerised cognitive test

that employs an Artificial Intelligence (AI) model to improve its accuracy in detecting

cognitive impairment. In this study, we aimed to evaluate the generalisability of the ICA

in detecting cognitive impairment in MCI and mild AD patients.

Methods: We studied the ICA in 230 participants. 95 healthy volunteers, 80 MCI, and

55 mild AD participants completed the ICA, Montreal Cognitive Assessment (MoCA) and

Addenbrooke’s Cognitive Examination (ACE) cognitive tests.

Results: The ICA demonstrated convergent validity with MoCA (Pearson r=0.58,

p<0.0001) and ACE (r=0.62, p<0.0001). The ICA AI model was able to detect cognitive

impairment with an AUC of 81% for MCI patients, and 88% for mild AD patients. The

AI model demonstrated improved performance with increased training data and showed

generalisability in performance from one population to another. The ICA correlation of

0.17 (p= 0.01) with education years is considerably smaller than that of MoCA (r = 0.34,

p < 0.0001) and ACE (r = 0.41, p < 0.0001) which displayed significant correlations. In

a separate study the ICA demonstrated no significant practise effect over the duration of

the study.

Discussion: The ICA can support clinicians by aiding accurate diagnosis of MCI and AD

and is appropriate for large-scale screening of cognitive impairment. The ICA is unbiased

by differences in language, culture, and education.

Keywords: computerised cognitive assessment, integrated cognitive assessment, machine learning, artificial

intelligence, mild cognitive impairment, mild Alzheimer disease
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INTRODUCTION

Neurodegenerative disorders, including dementia and
Alzheimer’s Disease (AD), continue to represent a major
social, healthcare and economic burden, worldwide (1). AD
is the most common type of dementia with mild cognitive
impairment (MCI) being a pre-dementia condition with a
prevalence ranging from 16 to 20% of the population in those
between 60 and 89 years old (2). Of patients suffering from
MCI, 5–15% progress to dementia every year (3). These diseases
remain underdiagnosed or are diagnosed too late, potentially
resulting in less favourable health outcomes as well as higher
costs on healthcare and social care systems (4).

In anticipation of disease-modifying treatments for MCI
and AD (5, 6), the importance of early diagnosis has become
increasingly pressing (7). There is accumulating evidence that
early detection provides cost savings for health care systems and
is an achievable goal (8, 9), and accurate patient selection for
disease-modifying treatments is cost-effective and will improve
clinical outcomes (5).

Timely identification and diagnosis is considered to be key to

tackling dementia offering multiple benefits to patients, families
and caregivers, healthcare providers, as well as society as a whole

(10). If achieved, early detection can aid the deceleration of

the progression of the disease (8). Early disease identification
can consolidate preventative efforts through modifiable lifestyle
factors to limit the progression of the disease (11).

The available neuroimaging and fluid biomarkers of
neurodegeneration are not easily accessible or scalable as
health services cannot provide them routinely (5). As a
result, neuropsychological assessments remain the mainstay of
dementia diagnosis. Current routinely used neuropsychological
assessments are invariably paper-based, language and education-
dependent, have ceiling effects and require substantial clinical
time to administer. They lack reliability in preclinical stages
of dementia (12, 13), and are prone to classification errors
(14). Such tests are typically subject to practise effects (15),
which may lead to incorrect estimates of age-related changes.
Invariably, these tests require administration by a clinician
and therefore are not appropriate for remote measurements or
longitudinal monitoring.

Computerised cognitive tests constitute promising tools for
the early detection of clinically relevant changes in MCI and
AD sufferers (7, 16–18). Computer and mobile device-based
tests have been investigated to some extent, with several
showing good diagnostic accuracy entering clinical use (13, 19,
20). Devices such as smartphones and tablets offer a nearly
unlimited number of applications that can be combined for
the comprehensive assessment of cognition and brain health in
community-dwelling users.

Digital biomarkers can help identify and monitor subtle
cognitive changes in individuals at risk of developing dementia
(21). Furthermore, such tests are able to benefit from advanced
analytics for more accurate and personalised results. Artificial
intelligence (AI) and machine learning are being increasingly
used for applications in Dementia research (7). These tools
have also been applied to detection of dementia using electronic

health records and neuroimaging data (22–24). Recent evidence
suggests that three-quarters of older people are open to new
technology to make an accurate and early diagnosis and would
agree to using computer or smartphone tasks that monitor day-
to-day life (25).

Computerised cognitive assessments have primarily been
designed to mirror traditional pen-and-paper tests, ultimately
missing the opportunity to obtain additional diagnostically useful
cognitive information (26). Moreover, current computerised
cognitive assessments have been struggling with facing trade-
offs in terms of sensitivity and specificity, required effort and
adherence, while others have been criticised for testing their
technology with younger adults (27).

Significantly, not much attention has been paid to
personalised care in order to adapt to the individual’s
cognitive and functional characteristics, such as offering
tailored information to the needs of the patients (28).

We developed the Integrated Cognitive Assessment (ICA)
which is a 5-min, self-administered, computerised cognitive
assessment tool based on a rapid categorisation task which
is independent of language (29, 30). The ICA primarily
tests information processing speed (IPS) and engages higher-
level visual areas in the brain for semantic processing, i.e.,
distinguishing animal vs. non-animal images (29), which is the
strongest categorical division represented in the human higher-
level visual cortex (31). IPS underlies many areas of cognitive
dysfunction (32, 33) and is one of the key subtle, early changes
that is slowed down in pre-symptomatic Alzheimer’s disease (34).
This is because the speed with which an individual performs a
cognitive task is not an isolated function of the processes required
in that task, but also a reflection of their ability to rapidly carry
out many different types of processing operations.

In the case of the ICA, these operations include transferring
visual information through the retina to higher level visual areas
i.e., sensory speed, processing the image representation in the
visual system to categorise it into animal or non-animal (i.e.,
cognitive speed), and then translating this into a motor response
i.e., motor speed.

The ICA employs AI to detect cognitive impairment. We
aimed to evaluate the generalisability of the ICA in detecting
cognitive impairment in MCI and mild AD patients. We
recruited participants from two cohorts in different continents.
We hypothesise that the AI-model employed for ICA can be
generalised across demographically different patient populations.

To measure the convergent validity of the ICA with standard
of care cognitive tests we compared the ICA with the Montreal
Cognitive Assessment (MoCA) and Addenbrooke’s Cognitive
Examination (ACE). We investigated the level of education bias
between the cognitive assessments.

We also report the effects of repeated exposure to the test in
healthy participants (learning bias).

MATERIALS AND METHODS

The ICA Test Description
The ICA test is a rapid visual categorisation task with
backward masking, and has been described in detail in previous
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TABLE 1 | Summary of demographic information, and cognitive test scores of recruited participants.

Age Education years MoCA ACE ICA Index

Cohort Diagnosis Count Female (%) Mean SD Mean SD Mean SD Mean SD Mean SD

Cohort 1 Healthy 33 57.6 63.6 6.7 14.2 4.7 25.9 3.0 92.1 6.7 66.1 7.7

MCI 27 55.6 66.0 7.0 14.2 5.7 23.7 2.9 87.3 7.3 57.8 8.1

mild AD 13 46.2 69.8 9.4 11.2 4.0 16.6a 5.8 68.5 14.3 41.6 14.4

Cohort 2 Healthy 62 54.8 68.5 7.6 14.3 4.2 28.3 1.8 95.7 3.1 63.7 8.7

MCI 53 43.4 71.5 7.9 12.5 2.7 23.5 2.9 84.1 6.9 54.7 11.9

mild AD 42 50.0 71.6 7.4 13.3 3.2 20.2 3.0 76.1 8.1 46.9 15.5

Combined Healthy 95 55.8 66.8 7.6 14.3 4.4 27.5 2.6 94.4 4.9 64.5 8.4

MCI 80 47.5 69.6 8.0 13.1 4.0 23.6 2.9 85.2 7.2 55.7 10.8

mild AD 55 49.1 71.2 7.9 12.8 3.5 19.3 4.1 74.3 10.3 45.6 15.3

aThe minimum MoCA score was 8; this participant had a low number of education years (3 years), ACE score of 49 and mini mental state examination score of 17.

publications (29, 30). The test takes advantage of the human
brain’s strong reaction to animal stimuli (35–37). One hundred
natural images (50 of animals and 50 of not containing an
animal) of various levels of difficulty are selected and are
presented to the participant in rapid succession as shown in the
Supplementary Figure 1.

Images are presented at the centre of the screen at 7◦ visual
angle to the participant. In some images the head or body of
the animal is clearly visible to the participants, which makes it
easier to detect. In other images the animals are further away
or otherwise presented in cluttered environments, making them
more difficult to detect.

The strongest categorical division represented in the human
higher level visual cortex appears to be that between animals and
inanimate objects (38, 39). Studies also show that on average it
takes about 100 to 120ms for the human brain to differentiate
animate from inanimate stimuli (36, 40, 41). Following this
rationale, each image is presented for 100ms followed by a 20ms
inter-stimulus interval (ISI), followed by a dynamic noise mask
(for 250ms), followed by subject’s categorisation into animal vs.
non-animal. Shorter periods of ISI canmake the animal detection
task more difficult and longer periods reduce the potential use
for testing purposes as it may not allow for the detection of
less severe cognitive impairments. The dynamic mask is used
to remove (or at least reduce) the effect of recurrent processes
in the brain (42, 43). This makes the task more challenging
by reducing the ongoing recurrent neural activity that could
artificially boost the subject’s performance; it further reduces the
chances of learning the stimuli. For more information about
rapid visual categorisation tasks refer to Mirzaei et al., (44).

Grayscale images are used to remove the possibility of colour
blindness affecting participants’ results. Furthermore, colour
images can facilitate animal detection solely based on colour
(45, 46), without fully processing the shape of the stimulus. This
could have made the task easier and less suitable for detecting
mild cognitive deficits.

The ICA test begins with a different set of 10 trial images (5
animal, 5 non-animal) to familiarise participants with the task. If
participants perform above chance (>50%) on these 10 images,
they will continue to the main task. If they perform at chance

level (or below), the test instructions are presented again, and a
new set of 10 introductory images will follow. If they perform
above chance in this second attempt, they will progress to the
main task. If they perform below chance for the second time the
test is restarted.

Backwardmasking: To construct the dynamicmask, following
the procedure in (47), a white noise image was filtered at four
different spatial scales, and the resulting images were thresholded
to generate high contrast binary patterns. For each spatial scale,
four new images were generated by rotating and mirroring the
original image. This leaves us with a pool of 16 images. The noise
mask used in the ICA test was a sequence of eight images, chosen
randomly from the pool, with each of the spatial scales to appear
twice in the dynamic mask.

Reference Pen-and-Paper Cognitive Tests
Montreal Cognitive Assessment
MoCA is a widely used screening tool for detecting cognitive
impairment, typically in older adults (48). The MoCA test is a
one-page 30-point test administered in approximately 10 min.

Addenbrooke’s Cognitive Examination (ACE)
The ACE was originally developed at Cambridge Memory Clinic
(49, 50). ACE assesses five cognitive domains: attention, memory,
verbal fluency, language and visuospatial abilities. On average, the
test takes about 20min to administer and score.

ACE-R is a revised version of ACE that includes MMSE score
as one of its sub-scores (51). ACE-III replaces elements shared
with MMSE and has similar levels of sensitivity and specificity to
ACE-R (52).

Study Design
We aimed at studying the ICA across a broader spectrum of
geographical locations with differences in language and culture
to test the generalisability of the ICA. For analytical purposes we
combined participants from two cohorts in order to study the
ICA in one demographically diverse population.

See Table 1 for a summary of the demographic characteristics
of recruited participants.
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Cohort 1
73 (33 Healthy, 27 MCI, 13 mild AD) participants completed
the ICA test, MoCA and ACE-R in the first assessment. The
participants were non-English speakers, with instructions for
the cognitive assessments provided in Farsi. MCI and mild AD
patients and were recruited from neurology outpatients at the
Royan Research Institute, Iran during a single visit. Healthy
participants were recruited by a number of means including from
patient companions, local advertisements at the royan research
institute and family friends. All assessment scales were carried
out by a trained psychologist or a study doctor.

All diagnoses were made by a consultant neurologist (Z.V)
according to diagnostic criteria described by the working
group formed by the National Institute of Neurological
and Communicative Disorders and Stroke (NINCDS) and
the Alzheimer’s Disease and Related Disorders Association
(ADRDA) and the National Institute on Ageing and Alzheimer’s
Association (NIA-AA) diagnostic guidelines (53). All study
participants had previously had an MRI-head scan, blood tests,
and physical examination as part of the diagnostic procedure.

The study was conducted at Royan institute. The study was
conducted according to the Declaration of Helsinki and approved
by the local ethics committee at Royan Institute. The inclusion
exclusion criteria are listed in the Supplementary Material.
Informed written consent was obtained from all participants.

Cohort 2
157 (62 Healthy, 53 MCI, 42 mild AD) participants with a
clinical diagnosis completed the ICA test, MoCA and ACE-III.
The ICA test was taken on an iPad. Participants of age-range
55–90 were included in this study. The study was conducted
at 6 NHS sites in the UK and participants were recruited from
NHS memory clinics. Healthy participants were recruited from
spouses and carers of patients presenting to the memory clinics
and through service user advocate groups following researcher
presentations in the respective NHS trusts. All assessment scales
were administered by trained Psychologists or Nurses. Ethics
approval was received from the London Dulwich Research
Ethics Committee. Informed written consent was obtained from
all participants.

All diagnoses were made by a memory clinic consultant
psychiatrist according to the same diagnostic criteria as in
Cohort 1. The diagnostic procedure included an MRI-head scan,
blood tests and physical examination for all participants. The
eligibility criteria are listed in the Supplementary Material. One
additional inclusion criterion for Cohort 2 required an ACE-III
score of >=90 for healthy participants. Cognitive assessments
were performed either in the clinic, or via at home visits.
Approximately 51% of assessments were conducted via home
visits and 49% in the clinic in a single visit.

Inclusion criteria were common for both cohorts and refer to
individuals with normal or corrected-to-normal vision, without
severe upper limb arthropathy or motor problems that could
prevent them from completing the tests independently (see
Supplementary Material). For each participant, information
about age, education and gender was also collected. Informed
written consent was obtained from all participants.

Spectrum bias, whereby the subjects included in the study do
not include the complete spectrum of patient characteristics in
the intended use population (54) has been avoided in Cohort 1
and Cohort 2 by recruiting participants according to a sampling
matrix and at the mild stage of Alzheimer’s Dementia. Therefore,
the ICA performance metrics reported in this study are relative
to detecting cognitive impairment in a population with less
severe impairment.

Analysis Methods
Accuracy, Speed and Summary ICA Index Calculation
The raw data from the ICA is composed of reaction time and
categorisation accuracy on the images. This data was used to
calculate summary features such as overall accuracy, and speed
using the same methodology as described previously (29, 30).

Accuracy is defined as follows:

Accuracy =
Number of correct categoristions

Total number of images
× 100

Speed is defined based on participant’s response reaction times in
trials they responded correctly:

Speed = min
[

100, 100e−
mean correct RT

1025 +0.341
]

A summary ICA Index, is calculated as follows:

ICA Index =

(

Speed

100
×

Accuracy

100

)

× 100

The ICA Index describes the raw test result, incorporating speed
and accuracy, the two main elements of the ICA test.

ICA AI Model
The AI model utilises inputs from accuracy and speed of
responses to the ICA rapid categorisation task (with the ICA
Index as an input feature), as well as age, and outputs an
indication of likelihood of impairment (AI probability) by
comparing the test performance and age of a patient to those
previously taken by healthy and cognitively impaired individuals.
The AI model is able to achieve an improved classification
accuracy relative to using any single feature from the ICA test.

A probability threshold value of 0.5 was used to convert the
AI probability to the AI prediction of healthy or cognitively
impaired (MCI/mild AD). The AI probability was also converted
to a score between 0 and 100 using the following equation:

ICA score = (1− AI probability)× 100

The ICA AI model used in this study was a binary logistic
regression machine learning model which is a supervised linear
classifier implemented on Python scikit-learn with stochastic
gradient descent learning (55). The algorithm’s task is to learn a
set of weights from a regression model that maps the participant’s
ICA test results and demographics to the classification label of
healthy or cognitively impaired (Figure 1). An example results-
page from the ICA, showing the ICA Score obtained from

Frontiers in Psychiatry | www.frontiersin.org 4 July 2021 | Volume 12 | Article 706695

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Kalafatis et al. AI-Based Computerised Cognitive Assessment

FIGURE 1 | Data features from the ICA test, as well as age are used as features to train the AI model. The trained model is able to give predictions on new unseen

data. The AI model outputs a probability score between 0 and 1, which is converted to an ICA Score.

the AI model, as well as the informative features of the ICA
test such as the accuracy, speed and ICA Index are shown in
Supplementary Figure 2.

The ICA’s prediction on each participant was obtained using
leave-one-out-cross validation on the data from Cohort 1 and
Cohort 2. In this method the dataset was repeatedly split into two
non-overlapping training and testing sets. The training set was
used to train the model and the test set to test the performance
of the classifier. In the leave-one-out method only one instance
was placed in the test set, with the remaining data points used for
training. This was done iteratively for all data points, providing
an AI probability score for each participant.

The combined results were used to calculate overall metrics
(receiver operating curve area under the curve (ROC AUC),
sensitivity, specificity) for the classifier by comparing the ICA AI
prediction to clinical diagnosis. The sensitivity or true positive
rate is the proportion of actual positives–i.e., impaired- that are
identified as such, whilst the specificity, or true negative rate is
the proportion of actual negatives–i.e., healthy–that are identified
as such.

The ICA AI prediction was also compared to MoCA, ACE to
obtain percentage agreement values between these cognitive tests.
Single cut-off values were used to obtain predictions for MoCA
(score of ≥26 for healthy) and ACE (score of ≥90 for healthy).

Generalisability of the ICA, and Impact of
Training Data Size on Classification
Performance
In order to test the generalisability of the ICA, data from Cohort
1 was used to train the AI model and was tested on data from
Cohort 2, and vice versa. The number of data points used to
train the AI model can significantly impact the performance of
the model on the testing dataset. To investigate this, subsets of
the data from one cohort were used for training through random
sampling. For each training size a model was trained and tested
on all the data from the other cohort. We varied the size of the

training data from 3 data points to training with all the data from
each cohort.

Assessment of ICA Practise Effect
To investigate the practise effect related to the ICA, 12 healthy
participants (range of 26–73, mean 48.2 standard deviation 17.1
years) took 78 tests on a regular basis (936 tests in total).
Participants were trained remotely, with assistance provided as
needed to initiate the test platform. Thereafter all tests were taken
independently at a time and place of the participant’s choosing.
Reminders via electronic correspondence were sent periodically
to users to encourage adherence.

The time taken for users to complete the 78 tests was 96.8
days on average (standard deviation of 31.7 days). Participants
self-administered the ICA remotely, on Apple iPhone devices.

Baseline Characteristics of Participants
In total 230 participants (Healthy: 95,MCI: 80, mild AD: 55) were
recruited into Cohort 1 and Cohort 2. Participant demographics
and cognitive test results are shown in Table 1. Participants were
recruited based on a sampling matrix in order to minimise age,
gender, and education year differences across the three arms.

Healthy participants did have a lower age compared to mild
AD participants. This is reflective of the lower prevalence of
young mild AD patients in the general population. There was no
significant statistical difference in education years between any of
the groups after Bonferroni correction for multiple comparisons.
For complete table of t-test p-values for age and education years
see in the Supplementary Table 1.

Due to the balanced recruitment, there was no significant
difference across genders in any of the cognitive tests (See
in Supplementary Figure 3). The ICA also did not show a
significant difference in score between those with 0–11 years
education, compared to those with 12 years of education or more
(Supplementary Figure 3b). In contrast there was a statistically
significant increase in MoCA score for mild AD participants
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TABLE 2 | Mean and standard deviation of ICA, MoCA, and ACE scores broken down by education years.

Healthy MCI Mild AD

≤11 education

years

(mean ± SD)

12+ education

years

(mean ± SD)

Paired t-test

p-value

≤11 education

years

(mean ± SD)

12+ education

years

(mean ± SD)

Paired t-test

p-value

≤11 education

years

(mean ± SD)

12+ education

years

(mean ± SD)

Paired t-test

p-value

ICA Index 62.7 ± 9.2 65.5 ± 7.8 0.129 55.5 ± 12.3 55.8 ± 9.7 0.908 43.5 ± 15.2 47.1 ± 15.4 0.385

MoCA 27.3 ± 3.1 27.6 ± 2.3 0.625 22.7 ± 3.3 24.2 ± 2.3 0.021 17.4 ± 4.2 20.7 ± 3.5 0.003*

ACE 92.1 ± 7.1 95.6 ± 2.8 0.001* 81.7 ± 7.2 87.8 ± 6 <0.001* 70.5 ± 10.3 77 ± 9.5 0.019

P-value of t-test between those with 0–11 years education, and those with 12+ years of education, for each cognitive test across the three arms.

*indicates significant difference after Bonferroni correction for multiple comparisons.

FIGURE 2 | ICA Index correlation with MoCA and ACE (A) Pearson correlation: 0.58, p < 0.0001, ICA Score Pearson correlation with MoCA is 0.58, p < 0.0001 (B)

Pearson correlation 0.62, p < 0.0001; ICA Score Pearson correlation with ACE is 0.56, p < 0.0001. For breakdown of correlation with ACE subdomains see Table 3.

of higher education, while ACE scores were higher for those
with higher education years in Healthy and MCI participants
(Table 2).

This trend was also illustrated in correlation analysis. The ICA
displayed a Pearson r correlation of 0.17 with education years
(p = 0.01), which is considerably smaller than that of MoCA
(r = 0.34, p < 0.0001) and ACE (r = 0.41, p < 0.0001) which
displayed significant correlations.

ICA Convergent Validity With MoCA and
ACE
The statistically significant Pearson correlation of 0.62 with ACE
and 0.58 with MoCA demonstrates convergent validity of ICA
with these cognitive tests. The scatterplot of ICA with MoCA
and ACE is shown in Figure 2. A ceiling effect was observed
for MoCA and ACE as a high proportion of healthy participants
have maximum test scores, something not observed for the ICA.
However, none of the tests were observed to have floor effects,
including in the mild AD group.

The breakdown of the ICA Index correlation with the
individual cognitive domains as measured by ACE is shown in

TABLE 3 | Correlation of the ICA with cognitive domains of ACE.

ACE domain Pearson correlation Pearson p-value

Memory 0.53 p < 0.0001

Attention 0.41 p < 0.0001

Fluency 0.53 p < 0.0001

Language 0.31 p < 0.0001

Visuospatial 0.48 p < 0.0001

Table 3. In all domains, the Pearson correlation is >0.3, with
the strongest correlation obtained with the Memory and Fluency
component and a weakest correlation with language.

Speed and Accuracy of Processing Visual
Information
The breakdown of speed and accuracy by age and diagnosis
is shown in Table 4. Within Healthy participants, there is a
strong negative correlation between age and accuracy (Pearson
r = −0.4, p < 0.0001); similarly, for MCI participants (Pearson
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r =−0.4, p < 0.001). However, for mild AD participants there is
no correlation between their accuracy and age (Pearson r = 0.07,
p= 0.58). Analysis did not reveal a significant difference in speed
with age within the three groups.

Healthy participants have a significantly higher accuracy
compared to MCI and mild AD participants in the under 70
age category (t-test p < 0.001 after Bonferroni correction for
multiple comparisons). MCI participants also had a significantly
higher accuracy compared to mild AD in the under 70 age
category (t-test p < 0.001). In the over 70 age category, healthy
participants had significantly higher accuracy compared to mild
AD (t-test p < 0.001). The other pairwise comparisons by age
category and diagnosis were not found to be significant after
Bonferroni correction.

Overall, across all ages the Cohen’s D between healthy and
MCI participants for accuracy is 0.72 (p < 0.0001), and between
healthy and mild AD participants it is 1.46 (p < 0.0001). Cohen’s
D value is 0.41 (p = 0.006) for speed (Healthy vs. MCI across

TABLE 4 | Mean speed and accuracy on the ICA test, by age category and

diagnosis.

Speed Accuracy

Age Mean STD Mean STD

Healthy <70 76.3 8.4 85.9 7.6

MCI 73.7 11.1 78.9 9.6

mild AD 70.7 18.0 64.8 17.6

Healthy ≥70 78.3 8.6 80.6 7.6

MCI 71.3 14.0 74.5 11.8

mild AD 69.6 16.6 65.6 15.3

all ages), compared to 0.52 (p = 0.001) for healthy vs. mild AD
participants. The Cohen’s D for MoCA is 1.43 for Healthy vs.
MCI (p < 0.0001), and 2.37 (p < 0.0001) for Healthy vs. mild
AD. While Cohen’s D measures the effect size, in the next section
we present results on comparing the diagnostic accuracy of ICA
and MoCA in relation to clinical diagnosis.

Prior to the commencement of the 100 image ICA test,
participants are shown a set of trial images for training purposes.
If users perform adequately well on the trial images, they proceed
to the main test, however if they perform below chance then
the trial images are re-shown to participants. We observed
that the number of attempts required by participants before
proceeding on to the main test is itself a strong predictor
of cognitive impairment. Among Healthy participants 88%
completed the trial images on their first attempt compared to 61%
of MCI participants, and 44% of mild AD participants (See in
Supplementary Figure 4).

Furthermore, within each group, those who required more
than one attempt to progress onto themain test scored lower than
those who did not, and they tended to be older participants (see
in Supplementary Table 2), indicating within-group cognitive
performance variation.

ICA Accuracy in Detecting Cognitive
Impairment
The raw data from the ICA test consist of categorisation accuracy
and reaction time for each of the 100 images on the test. In
Figure 3, the average accuracy and reaction time per image has
been visualised as a heat map for each group to show how healthy
and impaired participants (MCI and Mild-AD) perform on the
ICA test. The sequence of images shown to users during the test

FIGURE 3 | The mean (A) categorisation accuracy (B) reaction time for participants of each diagnosis group for each image on the ICA test. The first 50 blocks

represent performance on the animal images, and the second 50 blocks represent performance on the non-animal images. In the actual ICA test the order of the

images is randomised.

Frontiers in Psychiatry | www.frontiersin.org 7 July 2021 | Volume 12 | Article 706695

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Kalafatis et al. AI-Based Computerised Cognitive Assessment

FIGURE 4 | (A) Healthy vs. Impaired ROC: AI classification performance by LOOCV (B) The confusion matrix for the ICA and MoCA, comparing the prediction of the

cognitive tests with clinical diagnosis. (C) Bar plot with 95% confidence interval of ICA Score for healthy, MCI, and mild AD, with all data points overlaid on the graph. t

test p-value comparing Healthy-MCI, and healthy–mild AD ICA score is also shown (D) ROC AUC vs. training data size. The shaded area represents 95% CI as each

training subset was selected randomly 20 times from the whole study data.

is randomised, therefore for ease of comparison the images have
been ordered by their category of animal, non-animal.

Healthy participants display significantly higher
categorisation accuracy (Figure 3A) and significantly lower
mean reaction time (Figure 3B). However, the varying difficulty
of individual images results in a spread of categorisation accuracy
for all three groups.

The participants’ age, ICA Index, and features based on
the speed and accuracy of responses to the categorisation task
extracted from the ICA test were used to train a binomial logistic
regression model for classification of healthy vs. MCI/mild
AD participants.

Leave one out cross-validation (LOOCV–see methods for full
description) was used to obtain a probability of impairment
and predictions for each participant. This method ensures the
maximum amount of data is used for training the model, while
ensuring a separation between the training and test data points.
A threshold value of 0.5 was used as the cut-off between healthy
and impaired participants.

Figures 4A,B shows the ROC and confusion matrix
for distinguishing healthy from impaired (MCI/mild AD)
participants. The AUC is 0.84 for distinguishing healthy from
impaired with a sensitivity of 79% and specificity of 75%.

For the AI score a higher value is indicative of being
cognitively healthy, and a lower score is indicative of potential
cognitive impairment. Healthy participants have significantly
higher ICA score compared to MCI and mild AD participants
(Figure 4C).

A comparison of the classification performance between the
ICA andMoCA is shown in Table 5. A score of≥26 is the MoCA
cut-off for healthy participants, and lower than 26 MoCA cut-
off for cognitive impairment, as outlined by Nasreddine et al.,
(48). Optimal cut-offs for MoCA have been found to vary by
ethnicity and language (56), however for consistency across the
two cohorts 26 was used as the cut-off score. Likewise, the ICAAI
model cut-off was consistent in both cohorts for fair comparison.

A recent systematic review of pen and paper tests showed that
across 20 studies, for healthy vs. MCI, MoCA displayed AUC of
85.1%, specificity of 74.6%, and sensitivity of 83.9% (57). A direct
comparison of this type is not provided for ACE, as this cognitive
test was used as an inclusion criterion for healthy participants in
Cohort 2, and hence by default it would have a specificity of 100%
for healthy participants from that study.

Table 6 demonstrates the percent agreement between the ICA
and MoCA/ACE prediction. In both cases the overall percent
agreement is >73%, with the positive percent agreement (where
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TABLE 5 | Classification performance metrics for ICA and MoCA, with 95% confidence intervals (CI). The AUC for ICA is calculated based on the continuous probability

output score.

Cognitive test Classification AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

ICA Healthy vs. Impaired 0.842 (0.791, 0.893) 79.3 (72.4, 86.1) 74.7 (66.0, 83.5)

ICA Healthy vs. MCI 0.814 (0.749, 0.878) 76.2 (66.9, 85.6) 74.7 (66.0, 83.5)

ICA Healthy vs. mild AD 0.883 (0.823, 0.944) 83.6 (73.9, 93.4) 74.7 (66.0, 83.5)

MoCA Healthy vs. Impaired 0.816 (0.765, 0.868) 82.2 (75.8, 88.7) 81.1 (73.2, 88.9)

MoCA Healthy vs. MCI 0.768 (0.705, 0.831) 72.5 (62.7, 82.3) 81.1 (73.2, 88.9)

MoCA Healthy vs. mild AD 0.887 (0.84, 0.934) 96.4 (91.4, 100.0) 81.1 (73.2, 88.9)

TABLE 6 | Percent agreement between ICA and MoCA, ACE, with 95%

confidence intervals.

Positive percent

agreement

(95% CI)

Negative percent

agreement

(95% CI)

Overall percent

agreement

(95% CI)

ICA and MoCA

prediction

77.5 (70.3, 84.7) 69.3 (60.3, 78.3) 73.9 (68.2, 79.6)

ICA and ACE

prediction

81.4 (74.2, 88.6) 66.7 (58.1, 75.2) 73.9 (68.2, 79.6)

both tests predicted impaired) higher than the negative percent
agreement (where both tests predicted healthy). It should be
noted that agreement here does not imply correct prediction, as
the cognitive tests themselves can misclassify participants.

The ICA AI model has been made explainable by utilising
representative, and clinically relevant data from clinical and
research studies for training and testing of the model. An
inherently more understandable learning algorithm (logistic
regression) has been used in favour of more complex “black box”
models such as deep learning. An example results page from
the ICA is shown in the Supplementary Figure 2. In addition
to the AI output (ICA Score), the overall accuracy, speed, ICA
Index and performance during the test is displayed. As shown
in the results presented here, these additional metrics are highly
correlated with diagnosis, clinically informative, and help explain
the AI output (ICA score), providing supporting evidence to aid
the clinician in diagnosis.

ICA AI Model Generalisability
Figure 4D demonstrates how changing the training sample size
impacts the ICA AI model classification accuracy as measured
by ROC AUC. Randomly selected subsets of data from Cohort
1 were used as training data, and tested on all of Cohort 2
data, and vice-versa. With small training data sets there is
significant fluctuation in performance with wide confidence
intervals. Increasing the number of training data points increases
the ROC AUC. Furthermore, this analysis demonstrates the
generalisability of the ICA AI-model and therefore the ICA test
score across two demographically similar populations.

Assessment of ICA Practise Effect on
Remote Monitoring of Cognition
To assess practise effect, we recruited healthy participants to
control for the risk of fluctuating or progressively lower test

scores in cognitively impaired individuals. The mean ICA Index
of the 12 healthy participants, with the 95% confidence interval
is shown in Supplementary Figure 5. The one-way ANOVA p-
value obtained was 0.99, showing no significant practise effect
for the participants who completed the ICA test 78 times over
a period of 96.8 days on average.

DISCUSSION

In this study we show that the ICA establishes convergent validity
with standard-of-care cognitive assessments such as MoCA and
ACE. In contrast to these tests the ICA is not confounded
by varying levels of education. Similarly, in previous studies
conducted in MS patients and healthy controls (174 participants
in total) and another study with 436 participants on individuals
aged 19–98, ICA was shown to have no significant correlation
with education years (29, 30).

The ICA can generalise across populations without the
need for collection of population-specific normative data.
This was demonstrated by the ability of the ICA to detect
patterns of cognitive impairment that are common across
cohorts of different cultural and demographic characteristics.
Conventional pen and paper and computerised tests require
renorming and validation in different languages in order to
be validated, requiring collection of culture-specific normative
data before a test can be used in populations with different
demographic characteristics. Both are prerequisites for
large population deployment and risk-based screening in
primary care.

We show that the ICA demonstrates no practise effect in
healthy participants. As patients with MCI can improve, remain
stable, or decline cognitively over time, it is vital that they
are monitored regularly for changes in their cognitive status,
which could alter diagnosis and management of their care (3).
MCI monitoring can enable a timely diagnosis and treatment.
Available interventions can improve the trajectory of symptoms
and the family’s ability to cope with them, and thus change the
experience of the course of dementia (58).

The diagnostic accuracy of the ICA, while not perfect, is
comparable to results reported for MoCA, and make the ICA
suitable as a screening test given its significantly shorter duration
and other advantages over existing tests. In light of the recent
FDA approval of the disease modifying drug aducanumab, the
need for a device capable of screening a wide population of at-risk
individuals is heightened.

Frontiers in Psychiatry | www.frontiersin.org 9 July 2021 | Volume 12 | Article 706695

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Kalafatis et al. AI-Based Computerised Cognitive Assessment

In this study we have demonstrated the sensitivity of the
ICA in detecting cognitive impairment at the early stages
of cognitive impairment. Within the impaired category we
have only recruited those with MCI or mild AD, with the
majority being MCI across the two cohorts. Therefore, the
ICA performance metrics are relative to detecting cognitive
impairment in such a population. The expectation is that a higher
accuracy would be obtained on those with more progressed levels
of cognitive impairment.

The conventional method for classification in cognitive
assessments is defining a single cut-off value from the test
score. This may lead to diagnostic misclassification as single,
static cut-offs cannot sufficiently account for factors such as the
patient’s age, education level, cognitive reserve and premorbid
IQ. The high-dimensional dataset generated by the ICA, as well
as the ability to incorporate demographic features, provide more
parameters that can be optimised, enabling a classifier to find the
optimum classification boundary in higher dimensional space.
The ICA’s classification accuracy can be further improved over
time by training on additional data to update the AI model.

The ICA AI model can also be expanded to include and
analyse additional patient data such as medication, sleep, and
other lifestyle factors along with other biomarker data to improve
its accuracy and support the development of predictive models
of neurodegeneration.

IPS data captured by the ICA show different signature patterns
between healthy, MCI, and mild AD patients and generate a rich
enough dataset to train the ICA AI model to distinguish healthy
from cognitively impaired individuals. Subtle changes in IPS can
remain undetected, unless rigorously assessed. We are not aware
of another cognitive test that quantifies IPS changes to the degree
of ms.

The use of AI in decision making, particularly for diagnostic
decisions in healthcare, requires a level of explainability from the
model which can be used to understand the important factors
which led to its output (59). This level of explainability can give
clinicians confidence in the model, protect against bias and can
be used to improve the performance of the system over time.
This is in contrast to high accuracy ‘black box’ models that offer
limited interpretability of results and therefore prohibit their use
in clinical practise.

The ICA results are automatically calculated, eliminating the
clinical time required for test interpretation while minimising
transcription errors. Test results can be integrated in electronic
health records or research databases, an important capability at
the intersection between primary and secondary care. The ICA’s
ease of use and short duration can improve pre-screening and
accelerate participant selection in clinical trials.

Study limitations include a relatively lower recruitment of
young participants with mild AD, and mild AD participants
with higher education years. However, this is reflective of the
lower prevalence of young mild AD patients in the general
public. Test-retest data have not been captured in this study. We
have previously reported that high test-retest reliability (Pearson
r > 0.91) was obtained for the ICA (29, 30).

Fluid or molecular biomarker sub-typing to determine
amyloid positivity for MCI participants has not been carried

in this study, due to lack of data availability. The MCI group,
however, reflects the heterogeneity MCI diagnoses in memory
clinics. We plan to correlate fluid biomarker positivity with the
ICA in future studies.

Remote cognitive assessment is becoming increasingly
important, particularly as health services cannot accommodate
regular patient attendance to memory services for progression
monitoring or response to treatments. The COVID-19 pandemic
has accelerated this pressing need and guidelines for the
implementation of partly or fully remote memory clinics
have recently been published (16). Digital cognitive and
functional biomarkers are essential in order to enable this.
We report a proof-of-concept capability of the ICA for the
remote measurement of cognitive performance. Our findings
suggest that this 5-min test can identify broad cognitive
impairments across different stages of impairment. Further
validation is required for remote administration inMCI andmild
AD patients.

In summary the ICA can be used as a digital cognitive
biomarker for the detection of MCI and AD. Furthermore, the
ICA can be used as a high frequency monitoring tool both in the
clinic and potentially remotely. The employment of AI modelling
has the potential to further enhance its performance but also
to personalise its results at an individual patient level across
geographic boundaries.
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