
RESEARCH ARTICLE

Underlying mechanisms of oxygen uptake

kinetics in chronic post-stroke individuals: A

correlational, cross-sectional pilot study

Jean Alex Matos RibeiroID
1, Acson Gustavo da Silva Oliveira1, Luciana Di Thommazo-

Luporini1, Clara Italiano MonteiroID
1, Gabriela Nagai Ocamoto1, Aparecida Maria Catai1,

Audrey Borghi-Silva1, Shane A. Phillips2, Thiago Luiz RussoID
1*

1 Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil, 2 Department of

Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois,

United States of America

* russo@ufscar.br

Abstract

Post-stroke individuals presented deleterious changes in skeletal muscle and in the cardio-

vascular system, which are related to reduced oxygen uptake ( _VO2) and take longer to pro-

duce energy from oxygen-dependent sources at the onset of exercise (mean response

time, MTRON) and during post-exercise recovery (MRTOFF). However, to the best of our

knowledge, no previous study has investigated the potential mechanisms related to _VO2

kinetics response (MRTON and MRTOFF) in post-stroke populations. The main objective of

this study was to determine whether the MTRON and MRTOFF are related to: 1) body compo-

sition; 2) arterial compliance; 3) endothelial function; and 4) hematological and inflammatory

profiles in chronic post-stroke individuals. Data on oxygen uptake ( _VO2) were collected

using a portable metabolic system (Oxycon Mobile®) during the six-minute walk test

(6MWT). The time to achieve 63% of _VO2 during a steady state (MTRON) and recovery

(MRTOFF) were analyzed by the monoexponential model and corrected by a work rate

(wMRTON and wMRTOFF) during 6MWT. Correlation analyses were made using Spear-

man’s rank correlation coefficient (rs) and the bias-corrected and accelerated bootstrap

method was used to estimate the 95% confidence intervals. Twenty-four post-stroke partici-

pants who were physically inactive took part in the study. The wMRTOFF was correlated with

the following: skeletal muscle mass (rs = -0.46), skeletal muscle mass index (rs = -0.45),

augmentation index (rs = 0.44), augmentation index normalized to a heart rate of 75 bpm (rs

= 0.64), reflection magnitude (rs = 0.43), erythrocyte (rs = -0.61), hemoglobin (rs = -0.54),

hematocrit (rs = -0.52) and high-sensitivity C-reactive protein (rs = 0.58), all p < 0.05. A

greater amount of oxygen uptake during post-walking recovery is partially related to lower

skeletal muscle mass, greater arterial stiffness, reduced number of erythrocytes and higher

systemic inflammation in post-stroke individuals.
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Introduction

Standing up and walking to the workplace requires proper oxygen uptake ( _VO2), which is reg-

ulated over time by well-controlled mechanisms. Thus, _VO2 kinetics reflects the efficiency of

pulmonary, cardiovascular and skeletal muscle systems’ interaction during physical activity

[1]. Sustained submaximal physical activities, such as walking, require a steady-state _VO2

( _VO2SS). The time interval between oxygen at rest ( _VO2REST) and the _VO2SS is usually expressed

by the mean response time (MRTON) that represents the body’s ability to uptake the oxygen

quickly enough in order to produce energy for movement [1]. On the other hand, whether the

ending of the activity is considered, the time interval between _VO2SS and _VO2 during post-

activity recovery ( _VO2RECOVERY) is expressed by MRTOFF that represents the amount of _VO2

needed to restore the body to its resting level of metabolic function (see Fig 1) [1–3].

A decrease in MRTON is related to the early use of oxygen-dependent energy sources and is

therefore much more energy efficient than oxygen-independent energy sources [1, 4]. Likewise,

MRTOFF is an outcome of _VO2 kinetics to understand the recovery phase when the _VO2 is used

to produce energy related to thermal, hormonal, and metabolic processes, as well as to resynthe-

size stored creatine phosphate in the muscle and refill oxygen stores in blood and muscle, used

during walking [1–3]. Slower MRTON and MRTOFF are involved with a marked exercise intoler-

ance [1–4]. Thus, understanding the mechanisms limiting _VO2 is essential for improving bio-

energetics kinetics (i.e. _VO2 on- and off-kinetics), and therefore aerobic endurance [4].

Previous studies have shown that, in post-stroke individuals, both MRTON and MRTOFF are

slower than their healthy matched peers [5, 6], which implies an inefficiency energy produc-

tion at the onset of exercise and during recovery. In addition, bioenergetic kinetics has been

described as a limiting factor in the ability of post-stroke individuals to walk in a real-world

environment. Previous studies [5–7] suggest that after chronic stroke, individuals have a slug-

gish capacity to transport, extract and/or consume oxygen, at the onset of exercise (slow _VO2

on-kinetics) or during the recovery phase (slow _VO2 off-kinetics), and this is associated with

fewer steps/day and the inability to sustain longer periods of activities in the real world [6, 7].

After a stroke, these individuals have deleterious stroke-related skeletal muscle changes, such as

a shift from type I to type II fibers, muscle atrophy, intramuscular fat, and muscle fibrosis [8–11]. In

addition, they have stroke-related cardiovascular changes, such as endothelial dysfunction, impaired

arterial compliance, and increased proinflammatory markers, which reduce the vasodilators (e.g.

nitric oxide) and decrease vessel diameter, consequently, affecting blood flow [9]. In particular, the

C-reactive protein level, a marker of systemic inflammation, remains elevated during the chronic

phase of stroke [12] and is related to anemia in individuals with chronic inflammatory [13, 14].

These alterations are related to a reduction in _VO2 [9, 15–17] and are potential targets to under-

stand why bioenergetics kinetics is altered in post-stroke individuals. However, to the best of our

knowledge, no study investigated which mechanisms are related to _VO2 kinetics response in

chronic post-stroke population. Thus, the main objective of this study was to determine whether

the MRT (on and off) is correlated with: 1) body composition; 2) arterial compliance; 3) endothelial

function; and 4) hematological and inflammatory profiles in post-stroke individuals. We hypothe-

size that the underlying mechanisms mentioned above might be involved with _VO2 kinetics.

Methods

Study design and ethical aspects

This is a correlational, cross-sectional pilot study with a convenience sample (there was no ran-

dom selection). We followed the STrengthening the Reporting of OBservational studies in
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Epidemiology (STROBE) guidelines to report our study methods and results. The study proto-

col was approved by the Ethics and Research Committee at the Federal University of São Car-

los, Brazil [number: 62417216.9.0000.5504]. The funders played no role in the design, conduct,

or reporting of this study. All participants gave written informed consent before participating

in the study.

Setting and participants

The participants were recruited between January 2017 and July 2019 from the local commu-

nity and nearby cities in the state of São Paulo, Brazil. Individuals included were: 1) 40–80

years of age; 2) stroke diagnosis (ischemic or hemorrhagic) confirmed by computer tomogra-

phy or magnetic resonance imaging; 3) chronic stroke (time since stroke� 6 months); 4) able

to walk independently, including those with a need for aids or orthoses (Functional Ambula-

tion Classification� 3) [18]; 5) physically inactive or insufficiently active [International Physi-

cal Activity Questionnaire (IPAQ); < 150 min of moderate-to-vigorous-intensity physical

activity per week or < 75 minutes of vigorous-intensity physical activity per week or an equiv-

alent combination of moderate- and vigorous-intensity activity] [19, 20]; and 6) absence of

cognitive impairment [Mini-Mental State Examination (MMSE); illiterate (� 13 points), ele-

mentary and middle (� 18 points), and high (� 26 points) level literacy] [21]. Individuals

excluded were: 1) cardiac surgery and or myocardial infarction; 2) uncontrolled chronic dis-

ease; and 3) active/passive smoker and/or regular consumer of alcoholic beverages.

Fig 1. Oxygen uptake response to the 6-minute walk test. Oxygen uptake raw data measured breath-by-breath from a sixty-two-year-old woman with stroke and

severe motor function impairment. The vertical three dashed lines indicate the sit-to-stand, stand-to-test, and test-to-sit phases, in sequence. Each data point indicates

breath-by-breath values averaged every 3 seconds. 6MWT, six-minute walk test; mL/kg/min, milliliter per kilogram per minute; MRTOFF, mean response time of oxygen

uptake off-kinetics; MRTON, mean response time of oxygen uptake on-kinetics; s, second; _V_O2, oxygen uptake; _V_O2RECOVERY , oxygen uptake during the recovery period;
_V_O2REST, oxygen uptake at rest; _V_O2SS, oxygen uptake during effort at steady-state level.

https://doi.org/10.1371/journal.pone.0241872.g001
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All procedures were carried out over three non-consecutive days with a minimum of 72h

interval. On the first day of the assessment, participants were interviewed in order to obtain

data on personal characteristics, then height and motor function were measured, and the six-

minute walk test was performed between 2 and 6 pm at the Department of Physical Therapy at

the Federal University of São Carlos, Brazil. A wearable activity monitor was then placed on

the participants’ nonparetic ankle. On the second day of the assessment, participants returned

to the department, the activity monitor was removed, and the body composition, arterial com-

pliance and endothelial function were assessed between 8 and 10 am. On the third day of the

assessment, a blood sample was collected from participants between 8 and 10 am at the Clinical

Analysis Laboratory at UNIMED (a cooperative medical system) in São Carlos, Brazil.

Day 1 assessment

Clinical assessment. The anthropometric data of height was measured with a standard

stadiometer (Welmy R-110, Santa Barbara do Oeste, SP, Brazil). The motor impairment char-

acteristics were measured by the Fugl-Meyer Assessment of Motor Recovery after Stroke

(FMA). The motor function domains of the FMA score range from 0 to a maximum of 100

points, and according to their points, participants’ motor function was classified as severe

(<50), marked (50–84), moderate (85–94) or slight (95–99) [22]. A single physiotherapist with

a background in FMA conducted all the clinical assessments.

The Six-Minute Walk Test (6MWT). The 6MWT was performed according to the Amer-

ican Thoracic Society standards [23], except that individuals were instructed to “walk as fast as

possible”, which is a better predictor of peak metabolic capacity [24]. The protocol of the

6MWT consisted of 2 minutes of sitting rest, 2 minutes of standing rest, 6 minutes of walking,

and 6 minutes of sitting rest in recovery, totaling 16 minutes (see Fig 1). A single physiothera-

pist with a background in functional tests conducted all the 6MWT.

Oxygen uptake on- and off-kinetics. Breath-by-breath ventilatory and metabolic vari-

ables [e.g. absolute _VO2 (mL/min), relative _VO2 (mL/kg/min), and respiratory exchange ratio

(RER)] were measured through Oxycon Mobile1 (Mijnhardt/Jäger, Würzburg, Germany), a

valid and reliable portable metabolic analyzer [25] during the protocol of the 6MWT. The

6MWT was chosen instead of treadmill or cycle ergometer tests since this functional test accu-

rately reflects real-world walking performance in post-stroke individuals [26] and also the met-

abolic response of walking on the treadmill is significantly higher both with and without

support than that of walking the ground in post-stroke individuals, even at matched speeds

[27, 28]. Before each test, the device was calibrated according to the manufacturer’s specifica-

tions. Participants were instructed to: 1) not drink alcohol and caffeinated beverages from 24

hours prior to the test; 2) not perform any kind of physical exercise from 72 hours prior to the

test; and 3) not consume a large meal from 2 hours prior to the test. Before starting the proto-

col of the 6MWT, participants rested sitting for 10 minutes in order to stabilize ventilatory and

metabolic values.

The steady-state conditions were calculated by the standard deviation of relative _VO2 over

the last one minute in sitting and standing positions, and over the last three minutes of the

6MWT and recovery phase (see Fig 1). The steady-state condition was defined as the standard

deviation of relative _VO2 � 2.0 mL/kg/min and RER values< 1.1 [29]. Participants who did

not reach the steady-state condition according to this definition were excluded from the analy-

sis. The relative _VO2 raw data were pre-processed by removing each 8-point window value

above 3 standard deviations of the local mean (removing the outliers) and averaging the

breath-by-breath measurements over consecutive periods of 8 breaths (moving average filter),

in this order (see Fig 2) [30].
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Afterwards, the on- (60 seconds of rest condition + 360 seconds of 6MWT) and off-kinetics

(60 seconds of 6MWT + 360 seconds of recovery) of _VO2 were analyzed by the monoexponen-

tial model following the previous literature [31]. The equations are described below. Please

also see Fig 2 for details.

V
_

O2 on� kinetics : V
_

O2ðtÞ ¼ V
_

O2REST þ DV
_

O2ON x ð1 � e� ðt� TDÞ=tÞ

V
_

O2 off � kinetics : V
_

O2ðtÞ ¼ ðDV
_

O2OFF x e
� ðt� TDÞ=tÞ þ V

_

O2RECOVERY

Where _VO2ðtÞ represents the _VO2 at any time (t); _VO2REST is the resting value of _VO2 in the

standing position; _VO2RECOVERY is the recovery value of _VO2 in the sitting position; D _VO2ON is

the _VO2 magnitude of response at the onset of walking ( _VO2SS - _VO2REST); D _VO2OFF is the _VO2

magnitude of response during post-walking recovery ( _VO2SS - _VO2RECOVERY); TD is the time

delay; and τ is the time constant of the exponential response of interest. For the _VO2 on-kinet-

ics analysis, we removed the data relative to the first 25-35s after onset (i.e. the cardiodynamic

phase) [32]. Each individual curve was assessed visually by two evaluators, and therefore the

time between 25 to 35 seconds with less residue was deleted. The mean response time

(MRT = TD + τ), i.e. the time required for _VO2 to achieve 63% of the D _VO2ON or D _VO2OFF,

was corrected by the work rate (wMRTON and wMRTOFF, respectively) during the 6MWT in

order to take into account the participants’ individual effort and used for analysis [33]. The

equations are described below:

wMRTON ¼
MRTON

V_O2SS � V_O2REST
wMRTOFF ¼

MRTOFF

VO_

2SS � VO_

2REST

Physical activity level. The physical activity level was measured by the StepWatch1

Activity Monitor (SAM, Modus Health, Washington, D.C., USA), a wearable activity monitor

[34, 35]. The SAM was calibrated and attached to the participants’ nonparetic ankle. The par-

ticipants were instructed to wear the SAM for 9 days, removing it for sleeping, swimming, and

showering. The first and last days of measurements were excluded from the analyses because

the device was placed and removed on these days. Participants were given an instruction sheet

with detailed information about the care and use of the SAM. The mean steps/day was used to

characterize the sample as a sedentary lifestyle (< 5000 steps/day), low active lifestyle (5000–

7499 steps/day) and physically active lifestyle (� 7500 steps/day) [36].

Day 2 assessment

Body composition, arterial compliance and endothelial function were measured in sequence

in the morning at visit 2, in a quiet, dimly lit and humidity and temperature-controlled room

(50–60% and 22–24˚C, respectively). Participants were instructed to fast overnight (� 8h),

refrain from caffeinated products (� 12h), from vitamin supplements (� 72h) and from mod-

erate and vigorous physical activity (� 48h) prior to the assessments [37–39]. All female partic-

ipants were in the menopause period without hormone replacement therapy. The same

physiotherapist who was experienced in day 2 assessments carried out all the exams.

Body composition. Weight, skeletal muscle mass (SMM) and body fat mass (BFM) were

measured by a bioelectrical impedance analyzer (InBody1 720, InBody Co., Ltd., Seoul,

Korea). Body mass index (BMI, kg/m2) was calculated using the following formula: BMI =

[(weight in kg)/(height in m)2]. According to BMI, participants were classified as underweight
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(15.0–19.9 kg/m2), normal weight (20.0–24.9 kg/m2), overweight (25.0–29.9 kg/m2), class I

obesity (30.0–34.9 kg/m2), class II obesity (35.0–39.9 kg/m2) and class III obesity (� 40 kg/m2)

[40]. Skeletal muscle mass index (SMMI, kg/m2) was calculated using the following formula:

SMMI = [(skeletal muscle mass in kg)/(height in m)2]. Low SMMI was defined as< 8.87 kg/

m2 for men and< 6.42 kg/m2 for women, which are used for the diagnosis of sarcopenia [41].

Body fat mass index (BFMI, kg/m2) was calculated using the following formula: BFMI =

[(body fat mass in kg)/(height in m)2] [42].

Arterial compliance. SphygmoCor1 XCEL (AtCor Medical Pty. Ltd., Sydney, Australia)

was used to calculate carotid-femoral pulse wave velocity (cfPWV), augmentation index (AIx),

augmentation index normalized to a heart rate of 75 bpm (AIx75) and reflection magnitude

(RM), measures of arterial compliance. For the measurement of cfPWV, a cuff was placed on

the participant’s nonparetic upper thigh. The distances from the anterior superior iliac spine

to the top of the cuff, from the sternal notch to top of the cuff, and from the sternal notch to

Fig 2. Oxygen uptake on- (A and C) and off-kinetics (B and D) response to the 6-minute walk test. Oxygen uptake raw data (A and B) measured breath-by-breath from

a sixty-two-year-old woman with stroke and severe motor function impairment. The outliers (values above 3 standard deviations) were removed and a moving average

filter was used by averaging the values over consecutive periods of 8 breaths (C and D). The vertical two dashed lines in each panel indicate the beginning and the end of

the posture transition, in sequence. mL/kg/min, milliliter per kilogram per minute; s, second; _V_O2, oxygen uptake; _V_O2REST, oxygen uptake at rest; _V_O2RECOVERY, oxygen

uptake during the recovery period; _V_O2OSS, oxygen uptake during effort at steady-state level; D _V_O2ON, oxygen uptake on-kinetics magnitude of response ( _V_O2SS -
_V_O2REST); D _V_O2OFF, oxygen uptake off-kinetics magnitude of response ( _V_O2SS - _V_O2RECOVERY).

https://doi.org/10.1371/journal.pone.0241872.g002
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the carotid were measured and the values were entered into the SphygmoCor software data-

base. For the measurements of AIx, AIx75 and RM, a cuff was placed on the participant’s non-

paretic arm. Five successive sequences of each measurement were performed by the same

evaluator in each individual in the supine position after at least 10 minutes of rest. The mean

of three similar measurements with a standard deviation of less than 10% was used for analysis

[37, 38]. Arterial stiffness was defined as cfPWV� 10 m/s [37].

Endothelial function. Endothelial function was measured using brachial artery flow-medi-

ated dilation (baFMD) technique, a non-invasive measure based on endothelium-dependent

vasodilation [39]. The participants rested supine for 10 minutes prior to the baFMD procedure.

For the measurement of baFMD, a cuff was placed on the participants’ nonparetic forearm, and

the arm was abducted to 90 degrees and forearm positioned in supine. An ultrasonography of

the brachial artery (M-Turbo, Sonosite, Seattle, WA, USA) was used in a longitudinal plane

proximal to the antecubital fossa 1–3 cm. The ultrasound probe (11 MHz) was positioned to

view the anterior and posterior lumen-intimate interfaces when measuring the diameter or

velocity of the central flow (pulsed Doppler). After the initial images are recorded, an anterior

pressure cuff on the forearm was inflated at 220 mmHg for 5 min. To evaluate baFMD, 10

images were captured at a rate of 10 images per second for 1 min, 2 and 3 min after cuff release.

Resting brachial flow velocity and peak velocity after cuff release were also recorded. The images

were digitally recorded using software Brachial Analyzer (Medical Imaging Applications LLC,

Coralville, Iowa, USA) and then further analyzed. The baFMD was calculated using the mean

brachial artery diameter as the baseline, compared with the highest mean values obtained after

forearm occlusion release using the following formula: FMD (%) = [(peak diameter–baseline

diameter)/baseline diameter] x 100. Arterial dysfunction was defined as baFMD< 10% [43].

Day 3 assessment

Hematological and inflammatory profile. Red blood cell (also called erythrocyte, RBC)

count, and hemoglobin (Hgb) and hematocrit (Hct) concentrations were measured by an

automated hematology analyzer (CELL-DYN Ruby, Abbott Laboratories, Chicago, Illinois,

USA), and high-sensitivity C-reactive protein (hs-CRP) analysis was performed by using a

chemistry analyzer (Abbot Architect CI 8.200, Abbott Laboratories, Chicago, Illinois, USA). A

blood sample was collected from the nonparetic forearm vein in the morning after 10-12h of

fasting overnight. Participants were instructed not to perform moderate and vigorous physical

activity (� 48h), not to attend the exam if any inflammatory process was present, and to main-

tain their usual diet prior to the exam. Individuals were also asked to report any recent symp-

tom or event during the blood sampling week, such as ongoing or recent upper respiratory

infection, recent vaccination, musculoskeletal symptoms and significant headache, and, in

case of the presence of any of them, the blood collection was rescheduled. Anemia was defined

as Hgb concentrations < 130 g/L for men and< 120 g/L for women [44]. The hs-CRP level

was also used to characterize the sample as low- (< 1.0 mg/L), medium- (1.0–3.0 mg/L) and

high-grade systemic inflammation (> 3.0 mg/L) [45].

Data analysis

Characteristics of the sample were expressed as absolute numbers (percentage, %), means (stan-

dard deviation, SD) or medians (interquartile range, IQR). According to the Shapiro-Wilk test,

the wMRTON (W[24] = 0.91, p = 0.03) and wMRTOFF (W[24] = 0.90, p = 0.02) data showed no

normality, thus nonparametric tests were used for all analyses. The Wilcoxon signed-rank test

was used to determine whether there is a significant difference between baseline and recovery

_VO2 values and between MRTON and MRTOFF, and between wMRTON and wMRTOFF [46].
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Spearman’s rank correlation coefficient (rs) was used to determine whether there is a signif-

icant correlation between the wMRTON and wMRTOFF with the following: 1) body composi-

tion (weight, BMI, BFM, BFMI, SMM and SMMI); 2) arterial compliance (cfPWV, AIx, AIx75

and RM); 3) endothelial function (baFMD); and 4) hematological (RBC, Hgb and Hct) and

inflammatory (hs-CRP) profiles. The magnitude of the correlation was based on Munro’s clas-

sification (low [0.26 to 0.49], moderate [0.50 to 0.69], high [0.70 to 0.89] and very high [0.90 to

1.00]) [47]. We used bias-corrected and accelerated (BCa) bootstrap resampling with 10,000

replications to estimate 95% confidence interval (CI95). CI95 estimates which did not include

zero were considered statistically significant at the level of 5% [46].

All analyses were two-tailed and performed with a significance level of 5% using the Statisti-

cal Package for the Social Sciences, version 26.0 (SPSS Inc., Chicago, IL, USA). In addition, we

used a syntax file (S1 File) to perform a non-parametric partial correlation in SPSS [48] using

the variables with a significant correlation coefficient to control by confounding variables in

each variables groups: 1) body composition; 2) arterial compliance; and 3) hematological and

inflammatory (hs-CRP) profiles.

Results

Four hundred and forty-three individuals were contacted to participate in the study. Out of

443 subjects, 223 were not assessed for eligibility. Thus, 220 participants were assessed for eligi-

bility, but 176 were not included. In total, 44 participants were recruited, however twenty were

excluded from the final analysis due to missing data, inability to reach the steady state during

the 6MWT, and refusal to participate after initial consent. Hence, the data for 24 of these indi-

viduals were ultimately included for analysis (see Fig 3). All participants completed the 6MWT

without stopping and reached the steady-state condition (please see S1-S3 Tables in S1 File),

which means that they walked at a constant workload29. Furthermore, there were no complica-

tions during the test.

Data from twenty-four participants after chronic stroke were used for analysis. Participants

were, on average, elderly (63%;� 60 years of age), sedentary (83%; < 5000 steps/day) and

overweight (54%; BMI 25.0–29.9 kg/m2). Most of them had an ischemic stroke (88%) on the

left side (75%) with a severe motor impairment (37%). Additionally, most of the participants

did not have arterial stiffness (89%; cfPWV < 10 m/s) but had arterial dysfunction (82%;

baFMD < 10%) and medium-grade systemic inflammation (59%; hs-CRP 1.0–3.0 mg/L), and

none of them had anemia (100%; Hgb level� 130 g/L for men and� 120 g/L for women) or

sarcopenia (100%; SMMI> 8.87 kg/m2 for men and> 6.42 kg/m2 for women) (see Table 1).

Metabolic and _VO2 kinetics response to the six-minute walk test

Most of the participants walked at a light (25%, 30–39% predicted _VO2 reserve) and a moder-

ate (50%, 40–59% predicted _VO2 reserve) intensity [49, 50] during the 6MWT. Participants

took almost twice as long to recover from the 6MWT (wMRTOFF = 0.16 min2/mL/kg) than to

adjust _VO2 toward a steady state (wMRTON = 0.10 min2/mL/kg) and this difference was signif-

icant (T = 292, p< 0.001) (see Table 2).

Relationship between the body composition and the _VO2 kinetics

The relationships between the body composition and the _VO2 kinetics during 6MWT are pre-

sented in Table 3. The wMRTON was not correlated with any body composition variable. The

wMRTOFF presented a low negative correlation with SMM and SMMI but did not present a

correlation with any other body composition variable (please see S1 and S2 Figs in S1 File).
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Fig 3. Flow chart for selecting the participants for this correlational, cross-sectional pilot study. 6MWT, six-minute walk test; FAC, functional ambulation category;

MMSE, Mini-Mental State Examination.

https://doi.org/10.1371/journal.pone.0241872.g003
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Table 1. Participant demographic and clinical characteristics (n = 24).

Characteristics Interval (min–max)

Men (n = 15) age (years), mean (SD) 60 (11) 44–76

Women (n = 9) age (years), mean (SD) 62 (4) 55–68

Stroke Characteristics

Time since stroke (months), median (IQR) 41 (24 to 60) 6–259

Stroke type, n ischemic (%) 21 (88)

Lesion side, n left (%) 18 (75)

Lower Extremity Fugl Meyer Score, median (IQR) 29 (19 to 32) 11–34

Fugl Meyer Score (Motor function), median (IQR) 76 (33 to 97) 11–99

Slight (96–99), n (%) 7 (29)

Moderate (85–95), n (%) 4 (17)

Marked (50–84), n (%) 4 (17)

Severe (< 50), n (%) 9 (37)

6-Minute Walk Test

Distance achieved (meters), mean (SD) 302.63 (129.01) 120–661.65

Speed achieved (m/s), mean (SD) 0.84 (0.36) 0.33–1.84

StepWatchTM Activity Monitor

Number of Steps (steps/day), median (IQR) 3697 (2733 to 4324) 1547–8568

Body Composition

Weight (kg), mean (SD) 75 (13) 56–106

Body Mass Index (kg/m2), mean (SD) 28.5 (4.6) 20.9–41.4

Body fat massa (kg), mean (SD) 27 (8) 14–43

Body fat mass indexa (kg/m2), mean (SD) 10.2 (3.0) 5.2–15.8

Skeletal muscle massa (kg), mean (SD) 26 (4) 17–35

Skeletal muscle mass indexa (kg/m2), mean (SD) 9.7 (1.0) 7.7–11.9

Arterial compliance

cfPWVb (m/s), median (IQR) 7.9 (7.5 to 9.0) 5.4–15.9

AIxa (%), mean (SD) 24 (11) 2–47

AIx75a (%), mean (SD) 19 (11) -4–41

Reflection magnitudea (%), mean (SD) 62 (10) 43–80

Endothelial function

baFMDc (%), mean (SD) 5.85 (4) -3.55–13.31

Hematological and inflammatory profilesc

Erythrocyte (million/mm3), mean (SD) 4.95 (0.61) 3.91–6.24

Hemoglobin (g/dL), mean (SD) 14.5 (1.4) 11.6–16.7

Hematocrit (%), mean (SD) 43.1 (4.9) 33.6–52.5

High-sensitivity C-reactive protein (mg/L), mean (SD) 2.24 (1.36) 0.28–5.80

Note: Continuous variables with normal distribution are presented as means [standard deviations (SDs)]; nonnormal

variables are reported as medians [interquartile ranges (IQRs)].

Abbreviations: %, percentage; AIx, augmentation index; AIx75, augmentation index normalized to a heart rate of 75

bpm; baFMD, brachial artery flow-mediated dilation; cfPWV, carotid-femoral pulse wave velocity; g/dL, grams per

deciliter; IQR, interquartile range; kg, kilogram; kg/m2, kilogram per meter2; million/mm3, million per cubic

millimeter; SD, standard deviation; steps/min, steps per minute.
an = 23.
bn = 19.
cn = 22.

https://doi.org/10.1371/journal.pone.0241872.t001
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There was a low negative correlation between wMRTOFF and SMM, when controlled by

BMI (r[20] = -0.48, p = 0.03), BFM (r[20] = -0.48, p = 0.03) and BMFI (r[20] = -0.47, p = 0.03)

and a correlation that approached the significance when controlled by the weight (r[20] =

-0.40, p = 0.06). There was a low negative correlation between wMRTOFF and SMMI, when

controlled by BFM (r[20] = -0.49, p = 0.02) and a correlation that approached the significance

when controlled by the weight (r[20] = -0.38, p = 0.08). Moreover, there was a moderate nega-

tive correlation between wMRTOFF and SMMI, when controlled by BMI (r[20] = -0.53,

p = 0.01) and BFMI (r[20] = -0.51, p = 0.02).

Relationship between the arterial compliance and the _VO2 kinetics

The relationships between the arterial compliance variables and the _VO2 kinetics during

6MWT are presented in Table 3. The wMRTON was not correlated with any of the arterial

compliance variables. The wMRTOFF presented the following findings: 1) a low positive corre-

lation with the percentage of AIx and the percentage of RM; and 2) a moderate positive corre-

lation with the percentage of AIx75. There was no correlation between the wMRTOFF and

cfPWV (please see S3 Fig in S1 File).

When controlled by cfPWV, the wMRTOFF presented a high positive correlation with the

AIx75 (r[16] = 0.76, p< 0.01) and a correlation that approached the significance with AIx (r

[16] = 0.47, p = 0.05), but there was no correlation with RM (r[16] = 0.29, p = 0.25).

Relationship between the endothelial function and the _VO2 kinetics

The relationship between the endothelial function assessed through baFMD and the _VO2

kinetics during 6MWT is presented in Table 3. Neither wMRTON nor wMRTOFF was corre-

lated with baFMD (please see S4 Fig in S1 File).

Table 2. Metabolic and _VO2 kinetics response to the six-minute walk test (n = 24).

Variables Sitting Standing Test Recovery

_VO2 (mL/kg/min) 3.22 (3.00 to 3.70) 3.52 (2.95 to 4.12) 10.59 (8.62 to 12.15) 3.37 (3.02 to 3.90)

D _VO2 (mL/kg/min) 7.21 (5.69 to 8.82) 6.84 (5.57 to 8.47) NA 7.03 (5.51 to 8.47)

Predicted _VO2MAX (%) 11 (9 to 15) 12 (9 to 17) 38 (33 to 44) 11 (9 to 16)

Predicted _VO2R (%) NA 14 (10 to 20) 42 (37 to 50) 13 (10 to 18)

_VCO2 (mL/min) 208.08 (196.20 to 243.41) 247.16 (212.31 to

291.44)

731.85 (579.18 to 841.58) 244.46 (227.58 to 267.19)

RER 0.90 (0.86 to 0.96) 0.92 (0.85 to 1.00) 0.95 (0.86 to 0.99) 0.99 (0.89 to 1.05)

_VO2 on-kinetics _VO2 off-kinetics p

MRT (s) 46 (41 to 54) 71 (64 to 78) 0.01�

wMRT (min2/mL/kg) 0.10 (0.09 to 0.15) 0.16 (0.14 to 0.21) 0.01�

Note: Variables are reported as medians (interquartile ranges). We used the Wilcoxon signed-rank test to determine whether there is a significant difference between

_V_O2 on- and off-kinetics variables. Predicted maximal oxygen uptake [79.9 –(0.39 x age)–(13.7 x sex [0 = male; 1 = female])–(0.127 x weight [lbs])] [50]. Predicted

oxygen uptake reserve [ _V_O2R = _V_O2MAX− _V_O2 at rest sitting].

Abbreviations: %, percentage; min2/mL/kg, minute square per milliliter per kilogram; mL/kg/min, milliliter per kilogram per minute; mL/min, milliliter per minute;

MRT, mean response time; NA, not applicable; RER, respiratory exchange ratio; s, second; _V_CO2, carbon dioxide output; _V_O2, oxygen uptake; _V_O2MAX, maximal

oxygen uptake; _V_O2R, oxygen uptake reserve; wMRT, mean response time corrected for work rate; D _V_O2, oxygen uptake magnitude of response.

�p � 0.05.

https://doi.org/10.1371/journal.pone.0241872.t002
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Relationship between the hematological and inflammatory profiles and the
_VO2 kinetics

The relationships between the hematological and inflammatory profiles and the _VO2 kinetics

during 6MWT are presented in Table 3. The wMRTON was neither correlated with any of the

hematological variables nor with hs-CRP. However, the wMRTOFF presented the following

findings: 1) a moderate negative correlation with the number of RBC, the Hgb level, and the

percentage of Hct; and 2) a moderate positive correlation with the hs-CRP level (please see S5

Fig in S1 File).

We also found a moderate negative correlation between hs-CRP and: 1) the number of

RBC (rs = -0.52, BCa CI95 [-0.82, -0.05], p = 0.01); 2) the Hgb level (rs = -0.54, BCa CI95 [-0.78,

-0.17], p = 0.01); and 3) the percentage of Hct (rs = -0.59, BCa CI95 [-0.84, -0.20], p< 0.01)

Table 3. Relationship between the oxygen uptake kinetics and the underlying mechanisms (n = 24).

Variables wMRTON (min2/mL/kg) wMRTOFF (min2/mL/kg)

rs [BCa CI95] p rs [BCa CI95] p

Age (years) 0.12 [-0.31, 0.50] 0.57 0.20 [-0.22, 0.51] 0.36

Body Composition

Weight (kg) 0.05 [-0.34, 0.42] 0.82 -0.23 [-0.53, 0.16] 0.28

Body mass index (kg/m2) 0.24 [-0.12, 0.55] 0.27 -0.01 [-0.36, 0.36] 0.96

Body fat massa (kg) 0.21 [-0.18, 0.55] 0.33 0.00 [-0.37, 0.38] 1.00

Body fat mass indexa (kg/m2) 0.25 [-0.14, 0.58] 0.26 0.12 [-0.26, 0.47] 0.59

Skeletal muscle massa (kg) -0.31 [-0.59, 0.08] 0.15 -0.46 [-0.70, -0.10] 0.03�

Skeletal muscle mass indexa (kg/m2) -0.19 [-0.53, 0.20] 0.37 -0.45 [-0.71, -0.08] 0.03�

Arterial compliance

cfPWVb (m/s) 0.21 [-0.26, 0.59] 0.38 0.18 [-0.33, 0.59] 0.47

AIxa (%) 0.18 [-0.23, 0.55] 0.40 0.44 [0.05, 0.74] 0.04�

AIx75a (%) 0.36 [-0.04, 0.69] 0.09 0.64 [0.28, 0.87] < 0.01�

Reflection magnitudeb (%) 0.18 [-0.27, 0.61] 0.42 0.43 [0.08, 0.69] 0.04�

Endothelial Function

baFMDc (%) -0.23 [-0.59, 0.19] 0.31 -0.18 [-0.52, 0.22] 0.43

Hematological and inflammatory profilesc

Erythrocyte (million/mm3) -0.38 [-0.63, 0.00] 0.08 -0.61 [-0.76, -0.36] < 0.01�

Hemoglobin (g/dL) -0.36 [-0.65, 0.03] 0.10 -0.54 [-0.70, -0.23] 0.01�

Hematocrit (%) -0.27 [-0.58, 0.15] 0.23 -0.52 [-0.72, -0.17] 0.01�

High-sensitivity C-reactive protein (mg/L) 0.26 [-0.18, 0.60] 0.24 0.58 [0.14, 0.79] < 0.01�

Motor impairment (FMA)

Upper and lower extremities 0.04 [-0.38, 0.43] 0.86 -0.29 [-0.65, 0.15] 0.18

Lower extremity 0.04 [-0.39, 0.46] 0.85 -0.30 [-0.70, 0.15] 0.16

Note: 95% bias corrected and accelerated confidence intervals reported in square brackets. Confidence intervals based on 10,000 bootstrap samples.

Abbreviations: %, percentage; AIx, augmentation index; AIx75, augmentation index normalized to a heart rate of 75 bpm; baFMD, brachial artery flow-mediated

dilation; BCa, bias corrected accelerated; cfPWV, carotid-femoral pulse wave velocity; CI95, 95% confidence interval; FMA, Fugl-Meyer Assessment of Motor Recovery

after Stroke; g/dL, grams per deciliter; kg, kilogram; kg/m2, kilogram per meter2; m/s, meter per second; mg/L, milligram per liter; million/mm3, million per cubic

millimeter; min2/mL/kg, minute square per milliliter per kilogram; rs, Spearman’s rank correlation coefficient; wMRTOFF, oxygen uptake off-kinetics mean response

time corrected for work rate; wMRTON, oxygen uptake on-kinetics mean response time corrected for work rate.

�p � 0.05.
an = 23.
bn = 19.
cn = 22.

https://doi.org/10.1371/journal.pone.0241872.t003
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(please see S6 Fig in S1 File). Furthermore, the wMRTOFF showed correlations approaching

the significance with hs-CRP when controlled by: 1) the number of RBC (r[19] = 0.39,

p = 0.08); 2) the Hgb level (r[19] = 0.41, p = 0.07); and 3) the percentage of Hct (r[19] = 0.40,

p = 0.07). However, the wMRTOFF presented a low negative correlation with the number of

RBC (r[19] = -0.45, p = 0.04) when controlled by hs-CRP.

Relationship between the _VO2 kinetics and the underlying mechanisms

according to age

Considering a large age range, we divided the sample into two groups (adults [19–59 years]

and the elderly [� 60 years]) and carried out the aforementioned analyses in each group. Nei-

ther wMRTON nor wMRTOFF was correlated with any variable in the adult group (please see

S4 Table in S1 File). In the elderly group, the wMRTOFF presented a high negative correlation

with SMMI and showed correlations that approached the significance with SMM, AIx75 and

hs-CRP (please see S5 Table in S1 File).

Discussion

This study investigated whether the delay in _VO2 response at the onset of a short bout of walk-

ing (wMRTON) and during post-walking recovery (wMRTOFF) correlated with: 1) body com-

position; 2) arterial compliance; 3) endothelial function; and 4) hematological and

inflammatory profiles in post-stroke individuals. This study unprecedently showed that

wMRTOFF presented correlation with SMM, SMMI, AIx, AIx75, RM, RBC, Hgb, Hct, and hs-

CRP. However, the wMRTON presented no correlation with the evaluated variables.

Among the mechanisms related to the VO2 response kinetics, we assessed some related to

the muscular and cardiovascular systems. Regarding the muscular system, our findings sug-

gested that the skeletal muscle mass seems to play a more significant limiting role in the regula-

tion of _VO2 during the recovery phase than at the onset of walking. The highest quantity of

mitochondria in our body is found in the skeletal muscle mass in order to provide substantial

amounts of adenosine triphosphate (ATP), our energy currency [51]. After a stroke, the loss of

skeletal muscle mass is characterized by a decrease in mitochondria-rich slow-twitch muscle

fibers [52]. As the recovery process is also energy-dependent, such as the resynthesis of the

intramuscular store of phosphocreatine [53], a lower number of mitochondria available means

less ATP production and energy, and therefore slows down recovery.

Considering the cardiovascular system, our findings suggested that most evaluated variables

(i.e. compliance and function arterial variable, and hematological and inflammatory variables)

seem to play a limiting role in _VO2 kinetics of poststroke individuals when walking. Neverthe-

less, greater distensibility of the arterial blood vessels was also related to shorter recovery time.

Indeed, according to the Hagen-Poiseuille law, the blood flow rate is directly proportional to

the radius to the fourth power of the vessel lumen [54], so any change in blood vessel diameter

results in considerable variation in blood flow rate and, consequently, in the amount of oxygen

transported. During moderate-intensity, as observed during 6MWT, _VO2 kinetics may be lim-

ited by intramyocyte derangements perturbations in some chronic diseases [55]. However, for

some more deconditioned patients, 6MWT could be a high-intensity exercise. In this context,

other systemic disturbances, such as the reduced arterial compliance (as observed by AIx and

AIx75, both in %), were related to wMRTOFF, which could explain that the sluggish _VO2

kinetic is associated to arterial stiffness present in these patients.

Furthermore, the levels of hemoglobin, hematocrit, and the erythrocytes seem to play a sup-

porting role in the time it may take for them to recovery after walking, but a contrasting result
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was found regarding the hs-CRP levels, an inflammatory biomarker. Since almost all oxygen

transported from the lungs to body tissues is bound to hemoglobin [54], a higher number of

red blood cells may shorten recovery time. It is noteworthy that even in non-anemic individu-

als, hs-CRP levels had a moderate negative correlation with the erythrocyte count. Previous

studies showed that systemic inflammation may directly impair the production of erythropoie-

tin [13, 14], a glycoprotein cytokine that stimulates erythrocyte production in the bone

marrow.

In addition, the inflammatory state has been associated with insufficient production of

vasodilators [56], such as nitric oxide, which impairs the endothelium-dependent vasodilation

and explains the non-correlation between endothelial function (baFMD) and _VO2 on- and

off-kinetics response. In addition, despite the fact that previous studies showed a positive asso-

ciation between baFMD and peak _VO2 ( _VO2PEAK) [15], it seems that once impairment of endo-

thelial function is installed, it does not play a significant response in submaximal physical

activities.

It is also worth highlighting that the age and motor function do not seem to be factors limit-

ing the speed of the _VO2 to achieve a steady state during walking or for the recovery after walk-

ing (please see Table 3 and S7 Fig in S1 File). Recently, George et al. [57] observed that aging

per se does not determine the _VO2 response. According to the study, even with an age-related

reduction in the _VO2PEAK, inactive elderly individuals took as long as their much younger and

inactive matched counterparts to adjust to exercise. Similar to age, factors that alter the biome-

chanics of the body inferred from the Fugl-Meyer Assessment scale, such as spasticity and

muscle co-contractions, do not relate to response _VO2 kinetics. On the other hand, Ribeiro

et al. [29] and Billinger et al. [58] showed correlations between the Fugl-Meyer Assessment

scale and energy cost and _VO2PEAK, respectively, other measurements of aerobic endurance [4].

These findings together reinforce the importance of a multicomponent rehabilitation program

for improving physical activity tolerance in this population.

Clinical implications of this study

Although this study has a potential mechanistic nature, our results may point to strategies that

aim to accelerate these responses of _VO2 kinetics, and thus reduce the deleterious effects on the

bioenergetic machinery of the muscles and on the cardiovascular function of these patients.

Endurance exercise training seems to be the most effective therapeutic modality for the speeding

up of the _VO2 kinetics response [1]. Both young people and the elderly showed a faster response

to VO2 kinetics after brief sessions (� 3 sessions) of aerobic training protocols [59, 60], which

earlier could decrease effort and increase tolerance during the performance of activities of daily

living among the stroke individuals who meet the exercise recommendations for stroke survivors

[61]. However, there is little evidence of improvement in VO2 kinetics related to any type of exer-

cise in post-stroke individuals. We found only one study [62] that observed improvement in _VO2

kinetics following a low-intensity endurance training protocol. These individuals have stroke-

related cardiovascular and skeletal muscle change (e.g. skeletal muscle fiber shift, and smaller

peripheral artery blood flow and diameter in the stroke-affected side) [9, 15, 58] determining the

_VO2 kinetics response [1, 2], therefore the underlying mechanisms bearing on response _VO2

kinetics during physical activity and exercise might differ from other populations.

Study limitations

Our results must be interpreted with caution because of some limiting factors: (1) participants

were chosen from a convenience sample (non-probability sampling), and therefore there is a
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possibility of sample selection bias; (2) correlational study; (3) small sample size; (4) the lack of

cardiac and pulmonary function assessments; and (5) the on-kinetics _VO2 was measured in

the standing position, and off-kinetics _VO2 in the sitting position in order to ensure partici-

pant´s safety. However, this is a first exploratory study on the limiting mechanisms in bioener-

getics kinetics response to walking, and we believe future research with larger and more

heterogeneous samples (e.g. levels of physical activity and sedentary behavior, and types and

chronicity of strokes) with different measurements [heart function (e.g. cardiac output, ejec-

tion fraction and diastolic function) and lung function (e.g. airway resistance and functional

residual capacity)] is required to better understand how to improve bioenergetic kinetics

response to activities of daily living. Furthermore, taking into account that the _VO2 is related

to gait patterns in post-stroke individuals [27, 28], it is reasonable to assess whether the gait

pattern during overground walking using three-dimensional kinematics or inertial sensors is

related to _VO2 kinetics. It is also reasonable to consider sophisticated analyses, such as multi-

ple regression and covariance analysis, and variables that have a direct bearing on the _VO2

kinetics, such as _VO2PEAK [52].

Conclusion

In conclusion, a slower _VO2 off-kinetics response to walking is partially related to body com-

position, arterial compliance, and hematological and inflammatory profiles. Lower skeletal

muscle mass, greater arterial stiffness, a reduced number of erythrocytes and higher systemic

inflammation have been related to a greater amount of oxygen uptake during the recovery

phase in post-stroke individuals.
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