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Abstract

Purpose This technical note seeks to act as a practical guide for implementing a supervised clustering algorithm (SVCA)
reference region approach and to explain the main strengths and limitations of the technique in the context of 18-kilodalton
translocator protein (TSPO) positron emission tomography (PET) studies in experimental medicine.

Background TSPO PET is the most widely used imaging technique for studying neuroinflammation in vivo in humans.
Quantifying neuroinflammation with PET can be a challenging and invasive procedure, especially in frail patients, because it
often requires blood sampling from an arterial catheter. A widely used alternative to arterial sampling is SVCA, which identifies
the voxels with minimal specific binding in the PET images, thus extracting a pseudo-reference region for non-invasive quan-
tification. Unlike other reference region approaches, SVCA does not require specification of an anatomical reference region a
priori, which alleviates the limitation of TSPO contamination in anatomically-defined reference regions in individuals with
underlying inflammatory processes. Furthermore, SVCA can be applied to any TSPO PET tracer across different neurological
and neuropsychiatric conditions, providing noninvasivequantification of TSPO expression.

Methods We provide an overview of the development of SVCA as well as step-by-step instructions for implementing SVCA
with suggestions for specific settings. We review the literature on SVCAapplications using first- and second- generation TSPO
PET tracers and discuss potential clinically relevant limitations and applications.

Conclusions The correct implementation of SVCA can provide robust and reproducible estimates of brain TSPO expression. This
review encourages the standardisation of SVCA methodology in TSPO PET analysis, ultimately aiming to improve replicability
and comparability across study sites.

Keywords TSPO - PET - Supervised clustering - Pseudo-reference region

Introduction

The need for arterial blood sampling to quantify the binding
potential of positron emission tomography (PET) tracers is a
major obstacle to the widespread use of PET in research pro-
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tocols, let alone in clinical practice. 18 kDa translocator pro-
tein (TSPO) PET imaging is no exception. In recent years,
several approaches have been proposed as less invasive alter-
natives to arterial sampling; these include image-derived input
function [1], population-derived input function [2], venous-
based input function [3, 4] and simultaneous estimation
(SIME) of the input function [5, 6]. These methods, however,
have been unable to provide reliable and replicable solutions
that are consistently valid across tracers and conditions.

For TSPO PET studies in particular, these approaches
have been unable to account for the complex interactions
between tracers and TSPO sites in the blood and vascular
compartments [7, 8]. In addition, the ubiquitous expres-
sion of TSPO in the brain precludes modelling with a
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reference region approach. Thus, some authors have pro-
posed using a pseudo-reference (or normative) region—
that is, a region that expresses TSPO but whose density
does not change under pathological conditions. Examples
of pseudo-reference regions include the cerebellum [9],
the occipital cortex [10, 11], the white matter [12] or even
the whole brain [13]. Although normalizing over the
whole brain may improve the detection of focal effects
by robustly reducing between-subject variability, it also
precludes the possibility of detecting global effects. This
becomes problematic when the condition investigated is
characterized by widespread, rather than regional, inflam-
mation (e.g. neurologic disorders with widespread inflam-
mation, peripheral inflammatory challenges).

To overcome the lack of a proper reference region,
Turkheimer and colleagues described a supervised clustering
algorithm (SVCA) to identify a reference region without prior
anatomical hypothesis [14]. SVCA uses pre-defined kinetic
classes to segment the tissue and to automatically extract ref-
erence time-activity curves, defined as the average curve of all
voxels where the specific binding component is minimal. This
algorithm, initially validated for ''C-(R)-PK 11195, allows for
the non-invasive quantification of TSPO across a variety of
diseases. The method has been replicated by independent
groups [15] and used in different clinical conditions associated
with microglial activation, including Alzheimer’s disease [16,
17], traumatic brain injury [18], psychosis [19] and glioma
[20]. However, ''C-(R)-PK11195 is a radioligand with low
specific binding [21], and there seems to be an inverse rela-
tionship between the affinity of the tracer and the effectiveness
of SVCA [22]. The method has been extended to other TSPO
tracers including '®F-DPA-714 [23] and ''C-PBR28 [24], two
second-generation tracers with ~ 1.5-fold and ~ 5-6-fold
higher affinity to TSPO than ''C-(R)-PK 11195, respectively
[25].

The technical implementation of SVCA is not standard-
ized, which may hamper the reproducibility of the results.
Definition of kinetic classes, noise, quality of raw data, use
of masking, normalization in the image processing and the
effects of genetic polymorphism of TSPO ligands [26] all
make it difficult to compare results obtained with the SVCA
method. This paper seeks to function as a practical guide for
SVCA implementation in the context of TSPO PET studies.
The paper focuses on explaining the most common choices
when implementing the method and highlights its main
limitations.

The supervised clustering approach
SVCA aims to identify voxels that exhibit a kinetic profile

similar to those of the low-binding grey matter in healthy
volunteers. These voxels can be used as a pseudo-reference
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region because they are less affected by inflammation and
contain a minimal amount of TSPO. The main interest of
SVCA would be to extract these voxels in participants who
are affected by global neuroinflammatory processes.

SVCA first requires that a set of kinetic classes
representing the expected tracer kinetics in different tissue
types be defined, including both reference and non-reference
tissue. Defining the kinetic classes is the most laborious and
time-consuming step of the SVCA, but it needs to be per-
formed only once for a given tracer and scanner combination.

Once the set of kinetic classes is built, the SVCA will
calculate a set of weights for each PET scan voxel, with one
weight corresponding to each kinetic class. The weight
assigned to a tissue kinetic class represents how much that
class contributes to the observed activity of the given voxel.
Only voxels with high relative weight for the reference region
tissue class are included to calculate the final reference curve.

A description of the two steps of the SVCA is detailed
below. The first specifies how the kinetic classes are defined,
and the second describes how reference region voxels are
extracted. It should be noted that the SVCA procedure de-
scribed here is specific to TSPO tracers, although the same
rationale can be applied to all PET tracers.

Part 1: Defining the kinetic classes

Defining the kinetic classes first requires a dataset of healthy
volunteers (training dataset, generally N> 10) acquired with
the same tracer and, ideally, with the same experimental pro-
tocol and scanner as the PET images to which the SVCA will
be applied (testing dataset). Good quality anatomical MRI
images are also necessary to define tissue masks. The data
processing pipeline performed for each subject of the training
dataset is summarized in Fig. 1.

The dynamic PET images of each participant must first be
normalized in order to enhance the dissimilarity of the tracer
kinetics between tissue types and to reduce intra-subject var-
iability. PET image normalization is done by subtracting the
mean of all voxels within the PET frame from each voxel of
that frame and dividing the result by the standard deviation of
all voxels within the PET frame. Because it has been shown to
improve SVCA results [15, 27], the use of a brain mask in this
step (i.e. using the mean and standard deviation of only the
voxels within the brain mask rather than the whole frame) is
recommended.

The kinetic classes are extracted from the normalized dy-
namic PET images. Generally, for TSPO PET applications,
four different classes are defined: (1) low-binding grey matter;
(2) white matter; (3) blood and (4) high-binding grey matter or
a region with high specific binding. The low-binding grey
matter class is assumed to represent the expected reference
region kinetics. These classes are defined as follows:
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Fig. 1 Image processing for the definition of kinetic classes. (1) Tissue
compartment masks are defined using tissue segmentation and region
definitions from structural MRI. Thalamus is shown as an example of
high-binding grey matter (GM) tissue, while a combination of both PET

1. Low-binding grey matter can be derived from the cerebel-
lar and/or cerebral cortical grey matter regions in healthy
volunteers. These regions can be obtained by segmenting
the corresponding anatomical MRI into different tissue
types and aligning the grey matter mask to the PET image.
To limit partial volume effects, only voxels with a high
probability (generally > 0.9) of being grey matter should
be included and, in the case of a non-probabilistic seg-
mentation, a small erosion should be applied to the final
mask.

and MRI images can be used to extract the blood kinetic class. (2) Voxels
of dynamic PET contained within the normalization mask are used for
PET normalization. (3) Normalized time-activity curves (TACs) are ex-
tracted from normalized dynamic PET for each tissue compartment mask

White matter can similarly be derived from the
supratentorial white matter region in healthy volunteers.
Cerebellar white matter is usually smaller and more dif-
ficult to segment on anatomical MRI. Partial volume ef-
fects can again be limited by only including voxels with a
high probability of being white matter or by eroding the
non-probabilistic white matter mask.

Blood activity can be derived by summing the first frames
of the dynamic acquisitions (usually the first 2 to 3 min)
and by extracting the voxels with the highest PET signal
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(usually ~ 50). Other methods consist of segmenting the
carotids or the cerebral sinuses directly from the summed
PET or MRI images. The final shape of the blood activity
curve should be visualized to check that it exhibits the
expected behaviour of a sharp peak at early frame times
followed by a fast washout, typical of PET blood input
functions.

4. High-binding grey matter can be derived from the
pathological grey matter segmented in a set of partic-
ipants with known neuroinflammatory processes.
Alternatively, the high-binding grey matter can be de-
rived from the thalamic region in healthy volunteers,
as this is the region with the highest expression of
TSPO in the healthy brain [23, 28].

The final kinetic classes are obtained by averaging all the
normalized time-activity curves across participants.
Alternatively, the median can be used, which may be more
appropriate when handling data outliers. As an additional
note, in neuroinflammation PET studies with second-
generation TSPO tracers, the Alal47Thr genetic polymor-
phism modulates the tracer-to-target affinity. Therefore, sepa-
rate sets of kinetic classes for high- and medium-affinity
binders (HABs and MABEs, respectively) should be created
for each subgroup of participants with a similar tracer binding
profile.

Part 2: Extracting the reference region

To extract a reference region with the SVCA approach, the
dynamic PET scan must first be normalized as described in
part 1, above. It is crucial that the same definition of brain
mask as the one used for generating the kinetic classes is
employed for this step. Failing to use the same mask will lead
to a mismatch between testing and training data which could
lead to the incorrect selection of voxels to be used as the final
reference region.

The second step consists of mathematically comparing
each voxel of the normalized PET scan to the kinetic classes
generated in part 1. More specifically, a multilinear regression
is performed where the response variable is the time-activity
curve of a single voxel from the normalized PET scan and the
explanatory variables are the pre-defined kinetic classes (see
Eq. (1), multilinear regression model). In other words, the
normalized time-activity curve of each voxel is represented
as a weighted linear combination of the kinetic classes.

TAC, = wiK| + ... + wiK; + ... + WK, (Wi, oo, Wiy .oy w, >0)

(1)
The equation is solved using a non-negative linear estima-

tor that provides the weights (w;) for each kinetic class (K;)
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that give the best description of the voxel time-activity curve
(TAC,). These weights can be thought of as the estimated
contribution of each corresponding kinetic class to the activity
of the voxel under investigation. To reduce the computational
cost and prevent the selection of voxels of unwanted tissue
types, the calculation of the weights can be limited to low-
binding grey matter voxels rather than the full brain mask.

The ratio of the contribution of the low-binding grey matter
class (W ggm) to the sum of the contribution of all classes
(X w; ) is calculated (see Eq. (2), calculation of low-binding
grey matter ratio (LBGM ratio)) and used to determine wheth-
er the voxel should be included as a reference voxel.

WLBGM ( 2)

LBGM ratio = —;
21 Wi

Only voxels with a low-binding grey matter ratio greater
than a pre-defined threshold (usually > 0.9) are included in the
final mask in order to only include highly homogenous grey
matter voxels while maintaining a sufficient number of voxels
to use as reference [29]. The reference region time-activity
curve is obtained by averaging the time-activity curves of
the voxels included in the final mask. The pipeline for
extracting the reference region is summarized in Fig. 2.

Quality control

It is important to run quality control steps throughout the
SVCA to ensure that the kinetic classes, selected reference
region voxels and final SVCA reference region time-activity
curve exhibit their expected behaviour. First, the normalized
time-activity curves for the training dataset should exhibit
similar behaviour (i.e. time-activity curve shape) within each
tissue type. Plotting the normalized time-activity curves of the
individual tissue classes against each other is important for
identifying tracer kinetic heterogeneity and investigating out-
liers, both of which must be done before calculating the sum-
mary statistic to be used as the kinetic class.

Once the SVCA reference region has been extracted, the
selection of voxels should be visualized to ensure that a suit-
able number of voxels are present and that these are generally
evenly distributed across the healthy grey matter. If no or a
negligible number of voxels have been selected, it means that
SVCA likely failed to find a suitable reference region.

Finally, the time-activity curve of the extracted SVCA ref-
erence region can be plotted and compared with the time-
activity curve of anatomically defined low-binding grey mat-
ter regions (e.g. cerebellar grey matter). The supervised refer-
ence region time-activity curve is expected to have a compa-
rable or higher peak at early frame times and comparable or
lower activity at later frame times than that of the anatomically
defined low-binding grey matter reference region.
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Fig. 2 Extraction of the voxels for the supervised reference region. (1)
Low-binding grey matter (GM) mask containing prospective reference
region voxels is defined using tissue segmentation and region definition
from structural MRI. (2) Voxels of dynamic PET contained within the
normalization mask are used for PET normalization. (3) Multilinear re-
gression is performed on each voxel of the normalized dynamic PET

image within the prospective reference region mask, providing weights
(w;) for each kinetic class (K;) that give the best description of the voxel
time-activity curve (TAC,). (4) Voxels with a low-binding grey matter

tissue class weight (W pgym) greater than a pre-defined threshold are se-
lected to be used as reference
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Validation

SVCA must be validated before it can be applied for the first
time to a dataset using a new PET tracer. Proper validation
would ensure that the reference region extracted with SVCA
lacks specific/displaceable binding. In this context, a blocking
study could be conducted by applying the SVCA to the baseline
scan to extract a candidate region and then by testing whether
the distribution volume (V) of this region is affected by the
blocking agent [30]. However, given the background level of
TSPO expression present in the brain of even healthy volun-
teers, some degree of specific binding will inevitably be present
in the extracted region [31, 32]. Nonetheless, a blocking study
would still be useful because it would allow the extent of TSPO
expression in the extracted region to be quantified.

A less stringent requirement would be to verify whether the
amount of specific binding included in the extracted reference
region occurs independently of the condition under analysis.
This could be done by simply comparing the Vr of the refer-
ence regions extracted in different clinical groups. It is impor-
tant to note that failing to show a difference—for example by
showing a non-significant p value—does not suffice; rather,
the absence of a significant difference has to be demonstrated
by appropriate statistical procedures (e.g. equivalence tests)
[33].

Code availability

An open-source Matlab-based implementation for SVCA is
freely available at https://github.com/molecular-
neuroimaging/svca.

Applications in brain TSPO PET studies

Because of the obvious interest in avoiding arterial sampling,
SVCA has been used in several clinical research protocols
with, to date, three different TSPO tracers. An overview of
these studies highlights not only the versatility of the tech-
nique but also the different methodological approaches and
improvements in the implementation.

C-(R)-PK11195

The SVCA method for 11C-(R)-PK 11195 has been extensive-
ly used to study several neurological and psychiatric condi-
tions, including Alzheimer’s disease [16, 17], multiple sclero-
sis [34], traumatic brain injury [18], schizophrenia [19] and
changes in TSPO expression in normal ageing [35]. In
Turkheimer’s initial implementation, the normalization step
was performed at the whole field-of-view level, i.e. the entire
PET frame was normalized by subtracting its mean and by
dividing the result by its standard deviation. Moreover, six
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different kinetic classes were defined: nonspecific grey matter,
nonspecific white matter, pathologic TSPO binding, blood
pool, skull and muscle. All these classes were built from a
cohort of 12 healthy volunteers who underwent an C-(R)-
PK11195 PET scan, except for the pathologic TSPO binding
class, which was defined on the striatum and globus pallidus
of three patients with Huntington’s disease. The nonspecific
grey matter class was considered as the reference region. With
this method, a reference region was extracted in six healthy
volunteers for whom the arterial input function was also avail-
able. The binding potentials (BPnp, [36]) of several regions of
interest (ROIs) in the brain were estimated using rank-shaping
exponential spectral analysis [37] with either the arterial input
function or the extracted reference region. Good agreement
was observed between arterial input and reference tissue
input-derived BPyp (Pearson’s correlation =0.81, p < 10"
5). This implementation of the SVCA was further tested on
four patients with Alzheimer’s disease who underwent two
llC—(R)—PK] 1195 PET scans each, with a delay of less than
6 weeks between the two exams. The BPyp estimated using
the simplified reference tissue model (SRTM) obtained a
mean intraclass correlation coefficient (ICC) of 0.88 and a
mean test—retest variability of 10.6% across ROls, suggesting
good reproducibility of the method.

An improvement over the initial implementation was sub-
sequently proposed by Boellaard and colleagues [27] and fur-
ther validated by Yaqub and colleagues [15]. This method
applied a brain mask to the PET exam before applying the
SVCA method. This had the double advantage of avoiding
the effects of differences in field-of-view between different
scanners in the normalization step as well as requiring only
four classes instead of six, as skull and muscle were not nec-
essary anymore. In the method by Boellaard and colleagues
[27], this optimized implementation (called SVCA4) was test-
ed against the original (SVCAG6) and used the cerebellum as
the reference region in nine healthy volunteers and nine pa-
tients with Alzheimer’s disease who underwent a 60-min
""C-(R)-PK 11195 PET exam. The arterial input function was
available for all participants. Although few quantitative results
were reported, the reference region extracted using SVCA4
appeared to have lower Vr values (estimated via a two-tissue
compartment model (2TCM)) than the reference region ex-
tracted using SVCAG or the cerebellum, suggesting that it
contained less specific binding. Notably, V1 of the reference
region extracted with SVCA4 was statistically different be-
tween young healthy volunteers and patients with mild cogni-
tive impairment and Alzheimer’s disease, indicating contam-
ination by specific binding in patient groups. Moreover, tha-
lamic BPnp estimated using SRTM with the reference region
extracted with SVCA4 appeared to correlate better with those
obtained using 2TCM with arterial input function and, on
average, was higher than BPyp obtained with SRTM with
the reference region extracted with SVCAG6 or the cerebellum.
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These results were essentially confirmed in a cohort of nine
young healthy volunteers, eight old healthy volunteers, nine
patients with mild cognitive impairment and eight patients
with Alzheimer’s disease who underwent a 60-min ''C-(R)-
PK11195 PET exam with measurement of arterial input func-
tion [15]. Both V1 and blood fraction (V) estimated with
2TCM were generally lower in the reference region extracted
using SVCA4 compared to that extracted using SVCAG6 or the
cerebellum, indicating lower levels of blood volume and spe-
cific binding. Moreover, significant differences between clin-
ical groups in thalamic BPyp estimated with SRTM were
observed only when using the reference region extracted with
SVCA4 or SVCAG but not with the cerebellum.

Another study by Plavén-Sigray and colleagues assessed
SVCAA4 performance in a group of six healthy volunteers who
underwent two 60-min ''C-(R)-PK11195 PET scans each
with a delay of approximately 6 weeks between the two scans
[38]. An arterial input function was collected for all partici-
pants. The authors found poor reproducibility (ICC <0.5) of
BPyp estimates regardless of the method used to calculate it
(i.e. 2TCM with arterial input function, SRTM with reference
region extracted with SVCA4 or with cerebellum). Moreover,
large differences in magnitude and poor-to-non-existent cor-
relations between the BPyp values derived with arterial input
function and those derived with reference regions were ob-
served. The impact of different kinetic classes, derived from
three different groups of participants acquired in different lo-
cations and with different scanners, was also evaluated. BPnp
estimates were highly correlated between different kinetic
classes, albeit with significant differences in terms of absolute
values. The authors imputed the low repeatability of BPyp to
the fact that the cohort comprised young healthy volunteers
only (mean age =25.8+3.9 years); TSPO expression would
be expected to be minimal across the brain in this cohort, and
most of the ''C-(R)-PK11195 signal consists of nonspecific
binding and unbound radioligand. In this context of high
background signal and the small effect of interest, the estimat-
ed BPyp values were close to zero (or even negative) and thus
particularly sensitive to even small amounts of measurement
error.

8c_DPA714

SVCA for 'F-DPA714 has already been used for clinical
applications, notably in multiple sclerosis [39] and
Parkinson’s disease (Lavisse et al., 2020 in press). Love and
colleagues first proposed the implementation of SVCA for
"*E_.DPA714 [40]. In their study, eight healthy volunteers
and two patients with stroke underwent a 60-min '®F-
DPA714 PET exam; no blood samples were available. Four
kinetic classes were defined as in the SVCA4 implementation
for 11C-(R)-PKI 1195: blood, white matter, low specific bind-
ing grey matter from the healthy volunteers and specific

binding grey matter from manually defined hyperintense
voxels of the PET data of stroke patients. The authors com-
pared the areas under the time-activity curves of the extracted
reference regions against those of the cerebellum, which was
assumed to be devoid of TSPO in both groups of participants
and found no significant differences between reference re-
gions. The authors also reported significant correlations be-
tween the BPyp of the thalamus (estimated with SRTM2)
calculated using either the SVCA or cerebellum references,
albeit without reporting the magnitude of the correlation.

In a more extensive evaluation of SVCA for 'F-DPA714,
14 healthy volunteers (seven HABs and seven MABs)
underwent a 90-min '*F-DPA714 PET exam [23]. Three par-
ticipants (two HABs and one MAB) had a second PET scan
around 1 week later, and 10 participants (seven HABs and
three MABs) had data collected with an arterial input function.
Four kinetic classes were defined: blood pool, white matter,
low specific binding (corresponding to the cerebellum) and
high specific binding (corresponding to the thalami). The four
classes were derived from the ensemble of the population
(SVCA_ALL) and for HABs and MABs separately
(SVCA_HAB/MAB). BPyp was estimated in several brain
ROIs using 2TCM with arterial input function as well as
Logan plot with reference region, where the reference region
was extracted using SVCA_ALL, SVCA HAB/MAB and the
cerebellum. All reference regions yielded BPyp estimates that
correlated highly with those obtained with arterial input func-
tion (7> 0.9) and similarly good test-retest variability (< 7%).
The reference regions extracted with both SVCA methods had
lower V1 compared to the cerebellum which, in turn, resulted
in higher and less variable estimates of BPyp across different
brain regions. Thalamic and cingulate cortex differences in
BPyp between HABs and MABs were observed only when
the reference region extracted with SVCA_ ALL and
SVCA HAB/MAB was used, and not when the cerebellum
was used. In general, SVCA_ ALL and SVCA HAB/MAB
gave similar results, even though BPyp estimates obtained
with SVCA_ALL were closer to those obtained with arterial
input function and had a lower relative error rate than those
obtained with SVCA_ _HAB/MAB [23].

SVCA for '"®F-DPA714 has also been validated in a non-
human primate model of local neuroinflammation in which
three-dimensional TSPO immunohistochemistry was per-
formed post-mortem after the PET exam [41]. Four kinetic
classes were derived as in the study by Garcia-Lorenzo and
colleagues [23] from five unrelated non-human primates who
underwent a 90-min '*F-DPA714 PET scan. A voxel-wise
BPyp map of the non-human primate under analysis was es-
timated with Logan plot using both the reference region ex-
tracted with SVCA and the cerebellum. These values were
used to build a binary classifier of TSPO positive and negative
voxels, where the true reference value was determined based
on post-mortem TSPO immunohistochemistry. The BPnp
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estimated using the SVCA approach performed slightly better
than that estimated using the cerebellum as a reference region
(area under the curve of the receiver operating characteristic
curve =0.92 vs 0.90).

Finally, a variant of SVCA for '"*F-DPA714 was developed
for imaging in rodents [42]. The algorithm consisted of only
three classes (brain tissue with low specific binding; brain
tissue with high specific binding and extracerebral tracer sig-
nal), and it was modified to be used at a region level rather
than at a voxel level. This method was tested on 25 Wistar rats
for which neuroinflammation was induced by injecting lipo-
polysaccharide into the right striatum. BPyp was estimated
using SRTM with either the reference region extracted by
the modified SVCA or the contralateral striatum, which was
considered the gold standard. The BPyp values estimated with
the two methods were highly correlated (> 0.9), suggesting
that this variant of SVCA can also be used in animal models of
diffuse inflammation where an a priori reference region is not
known.

1c-PBR28

Zanotti-Fregonara and colleagues first explored SVCA for
"'C-PBR28 in a study of 21 healthy volunteers, 11 patients
with mild cognitive impairment and 25 patients with
Alzheimer’s disease who underwent a 90-min ''C-PBR28
PET exam with measurement of both arterial input function
and free fraction in plasma (f,) [24]. Four kinetic classes were
used: grey matter, normal white matter, sinus extracted from
healthy volunteers and pathologic grey matter extracted from
the voxels of the inferior parietal and middle and inferior tem-
poral cortices in which ''C-PBR28 binding was significantly
increased in patients with Alzheimer’s disease. Distribution
volume ratio (DVR) estimated with Logan reference region
and Vy/f, estimated with 2TCM with arterial input function
were used to test differences between the three groups of par-
ticipants. DVR estimates were substantially less variable than
Vlf, estimates (coefficient of variation =2%—-11% for DVR
and 13%-36% for Vy/fp), resulting in greater sensitivity to
detect regional abnormalities in the brains of patients with
Alzheimer’s disease.

Discussion

As reviewed above, SVCA is a widely used alternative to arterial
sampling that identifies the voxels with minimal specific binding
in PET images, thus extracting a pseudo-reference region for
non-invasive quantification. This approach is particularly impor-
tant because, despite the absence of brain tissues or regions with
no or negligible TSPO expression, reference region approaches
have, to date, been the most widely used quantification methods
for TSPO PET neuroinflammation studies. These pseudo-
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reference approaches are simple and can only return indirect
metrics of TSPO distribution in the brain. Quantification with
full kinetic modelling and arterial input functions are extremely
challenging for clinical applications because of their invasive
nature and the need for sophisticated equipment and experienced
personnel (e.g. anaesthesiologists for placing the arterial catheter
and lab specialists to analyse the blood samples [43]).
Furthermore, absolute quantification of TSPO tracer binding
with or without normalization by a plasma-free fraction is asso-
ciated with high variability that may be attributable to challenges
in obtaining accurate blood measurements and modelling the
brain kinetics of TSPO tracers [44] in addition to physiologic
variability [45]. Notably, the sparse amount of data in the litera-
ture of SVCA and the heterogeneity of its applications to clinical
data sometimes hinder a comprehensive assessment of the
strengths and weaknesses of SVCA in different clinical
situations.

Implementation aspects

As summarized in Table 1, different SVCA studies have imple-
mented this method in different ways. In particular, different
masking methods have been used for the normalization step,
including whole head mask (brain, skull and muscle), whole
brain mask (brain only) or simply using the entire frame without
masking. Entirely skipping a masking step in the normalization
incorporates additional background noise into the mean and
standard deviation calculations, which may contribute to the
shape of the kinetic classes in an unpredictable way.
Moreover, if tissues such as muscle and bone outside the brain
are included in the mask, additional classes must be included in
the kinetic class definitions, which increases variability because
additional parameters have to be estimated. Our recommenda-
tion is to limit the number of kinetic classes by using a brain
mask (i.e. by excluding the skull and other non-brain tissue) and
to use the same brain mask (i.e. calculated using the same
method) for dynamic PET normalization during the definition
of the kinetic classes and reference region extraction.

Defining kinetic classes has also varied between studies. For
example, the low-binding grey matter class has been defined
from the cortical grey matter, cerebellar grey matter or whole
brain grey matter; the blood class has been manually or auto-
matically derived and the high-binding class has been defined
in a variety of ways in each study (Table 1). Some studies have
also accounted for partial volume effect by eroding the tissue
masks or by choosing only voxels with a high probability of
belonging to a tissue type. Our recommendation is to account
for partial volume effects in white matter and grey matter clas-
ses and to derive the high-binding class from patients known to
be affected by neuroinflammatory processes, if available.
Although no direct investigations have yet to be performed to
assess the effect of using inflamed tissue from a patient cohort
to define the high-binding kinetic class, SVCA has been
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Table 1 SVCA implementation in TSPO PET studies
Tracer Normalization N of  High-binding class Reference class ~ Main results Ref

mask classes

C-(R)-PK11195 Whole frame 6

"C«(R)-PK11195 Grey and 4
white matter

Grey matter of patients with
traumatic brain injury

Striatum and globus pallidus of
patients with Huntington’s disease

+ high correlations with the arterial input [14]
function

+ good test-retest reproducibility in pa-
tients with Alzheimer’s disease

+ low specific binding in the extracted
reference region

+ high sensitivity to clinical
abnormalities

+ highly correlated results when using
different sets of kinetic classes

— differences in the Vr of the extracted
reference region between clinical
subgroups

— poor test-—retest reproducibility and
low correlation with arterial input
function in healthy volunteers

Grey matter of
healthy
volunteers

Grey matter of [15,

healthy

volunteers

27, 38]
8E_DPA714 Whole brain 4 Hyperintense voxels in patients with Grey matter of  + comparable results with the [40]
stroke healthy cerebellum
volunteers
- DPA714 Whole brain 4 Thalamus of healthy controls Cerebellar grey  + low specific binding in the extracted  [23]
matter of reference region
healthy + high correlations with the arterial input
volunteers function
+ good test-retest reproducibility in
healthy volunteers (N=3)
+ low variability of tissue estimates
+ high sensitivity to genotype
differences
"C-PBR28 Whole brain 4 Inferior parietal and middle and Grey matter of  + low variability of the distribution [24]

inferior temporal cortices in
patients with Alzheimer’s disease

volume ratio (DVR) estimates

+ high sensitivity to clinical
abnormalities

— differences in the time-activity curves
of the extracted reference region be-
tween genotype subgroups

healthy
volunteers

successfully implemented in cancer where the tissue kinetics of
patients is dramatically different from that of healthy controls
[46]. The successful implementation of SVCA in cancer sug-
gests that applying the normalization step to cohorts with dif-
ferent neuroinflammatory topology is not a major issue.

Other differences in implementation include how the low-
binding grey matter ratio threshold is chosen and how the
reference region time-activity curve is calculated (by simple
or weighted average, where the weights used are those derived
for the low-binding grey matter class by SVCA), as well as
other details; presently, no specific recommendations for these
aspects can be given.

Portability of kinetic classes

The portability of the kinetic classes to data acquired from dif-
ferent imaging sites and with different experimental designs has

not yet been systematically investigated. In [38], the 11C-(R)-
PK11195 BPyp estimates obtained with different sets of kinetic
classes, derived from different sites, were highly correlated but
different in terms of absolute value. This indicates that the use of
kinetic classes derived from different imaging protocols will
probably introduce a bias in the estimates, which may not be a
problem if the bias is constant for all participants. In a non-TSPO
brain PET study with ''C-PIB [47], the kinetic classes were
defined from a dataset of healthy individuals and patients with
Alzheimer’s disease acquired with ECAT EXACT HR+ (CTV/
Siemens) [29] and then applied to an independent dataset of
healthy volunteers and patients with multiple sclerosis acquired
with a Siemens HRRT. The results supported the kinetic class
portability, although performance was dependent on the PET
reconstruction settings.

Our recommendation in this case is to re-define the kinetic
classes using site-specific control data collected independently
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from but with the same PET imaging protocol as the study of
interest. If the dataset of healthy volunteers is part of the study,
the reference region in these participants should be obtained
using a leave-one-out approach: for each participant in the
healthy volunteer group, SVCA should be applied using the
kinetic classes defined from all the other healthy volunteers
except the one to which the method is applied.

Anatomical reference region vs SVCA

Both anatomical and SVCA approaches have been extensive-
ly used to identify the reference tissues to be used for kinetic
modelling, although these approaches vary across TSPO
tracers and clinical applications. Anatomical-based reference
region methods use prior knowledge of brain biology to iden-
tify those tissues where TSPO density does not change across
conditions. Using this method, for example, brain regions un-
affected by the disease can be identified in patient-control
cross-sectional studies. Though such an approach might hy-
pothetically be possible for focal inflammatory diseases, it
would certainly not be possible in cases where neuroinflam-
mation is expected to span across the entire brain parenchyma.
In these cases, data-driven reference methods like SVCA are
better alternatives for controlling the reference region-specific
signal because they use statistical (and not biological) criteria
to identify voxels with minimal TSPO density. Indeed, refer-
ence regions extracted with SVCA appear to contain less bind-
ing [15, 23, 27] and less blood volume fraction [15, 27] com-
pared to anatomically defined reference regions, suggesting
that SVCA derives more accurate reference regions.

Nonetheless, other elements must be considered before
using SVCA. One key example is radioligand affinity to
TSPO. In particular, tracer affinity modulates the contrast be-
tween tissue kinetics by increasing both parenchymal and vas-
cular binding which, in turn, affects the use of cluster analysis
to determine a pseudo-reference region [22]. When the con-
trast between grey matter and white matter kinetics was com-
pared across different TSPO tracers, "C-PBR28 was found to
display the lowest tissue contrast, whereas middle-affinity
tracers such as '*F-DPA714 appear to be amenable to the
supervised definition of a reference region [22]. This result
suggests that SVCA reference tissue analysis is poorly suited
to high-affinity TSPO tracers, although further studies are
needed to confirm this hypothesis.

Presence of specific binding in the reference region

Given the background level of TSPO present everywhere in
the brain, even in healthy volunteers, the presence of specific
binding in the reference region is unavoidable. This specific
binding is known to introduce a bias [48], but this is generally
accepted for TSPO tracers [9, 49]. Advanced methods exist
for accounting for this bias [13, 50], but these are rarely used.
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Moreover, it seems that some differences in the amount of
specific binding present in the extracted reference regions
are present across different clinical conditions [15, 24], which
ultimately affects the sensitivity of the method to detect TSPO
brain changes. As a result, the TSPO PET effect sizes obtained
with SVCA are likely to underestimate the true magnitude of
TSPO density changes in the study population. Nonetheless,
the lower variability of estimates obtained with SVCA com-
pared to those obtained with full arterial input function has the
potential to increase statistical power, allowing the detection
of more brain regions with increased TSPO expression.

Conclusion

SVCA can be used to quantify TSPO PET imaging using a
pseudo-reference approach that takes advantage of statistical,
rather than anatomical, information about tracer kinetics to min-
imize the effects of reference region specific binding. Although
SVCA has limitations, when implemented correctly, it provides
robust and reproducible estimates of brain TSPO expression.
Standardization of SVCA methodology in TSPO PET analysis
is encouraged because it would improve the replicability of re-
sults and ease comparability across study sites.
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