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Abstract: S100 is a broad subfamily of low-molecular weight calcium-binding proteins (9–14 kDa)
with structural similarity and functional discrepancy. It is required for inflammation and cellular
homeostasis, and can work extracellularly, intracellularly, or both. S100 members participate in a
variety of activities in a healthy cell, including calcium storage and transport (calcium homeostasis).
S100 isoforms that have previously been shown to play important roles in the immune system as
alarmins (DAMPs), antimicrobial peptides, pro-inflammation stimulators, chemo-attractants, and
metal scavengers during an innate immune response. Currently, during the pandemic, it was found
that several members of the S100 family are implicated in the pathophysiology of COVID-19. Further,
S100 family protein members were proposed to be used as a prognostic marker for COVID-19
infection identification using a nasal swab. In the present review, we compiled the vast majority of
recent studies that focused on the multifunctionality of S100 proteins in the complex immune system
and its associated activities. Furthermore, we shed light on the numerous molecular approaches and
signaling cascades regulated by S100 proteins during immune response. In addition, we discussed
the involvement of S100 protein members in abnormal defense systems during the pathogenesis
of COVID-19.

Keywords: nutritional immunity; inflammation; immune cells; alarmins; antimicrobial peptide;
autoimmune disease; COVID-19

1. Introduction

S100 is a large subfamily of low-molecular weight calcium-binding proteins, consisting
of numerous isoforms (30 isoforms in humans) with structural similarity and functional
differences. In 1965, Moore designated this protein as “S100” due to its solubility in 100%
ammonium sulfate at neutral pH [1]. The S100 protein family is unique among all other
Ca2+-binding proteins in terms of its structure, molecular conformation, functions, and
on account of accessibility as extracellular and/or intracellular proteins [2]. Due to their
existence in only vertebrates, S100 protein family were determined to be phylogenetically
new proteins. The whole-genome sequence analysis of invertebrates, including plants,
drosophila, yeast, and nematodes such as C. elegans, revealed no S100 family protein
expression [3,4]. In humans, there are 24 S100 isoforms in the epidermal differentiation
complex (EDC) cluster on the chromosome locus 1q21. Additional S100 isoforms have been
identified at various chromosomal locations, including S100B (21q22), S100G (Xp22), S100P
(4p16), and S100Z (5q14) [5].

The S100 protein monomer consists of two helix–loop–helix structural motifs, and is
also known as EF-hands. These two EF-hands contain the binding potential for transition
metal [6], are arranged consecutively, and are connected through a flexible hinge region
in the center [7–10]. For complete S100 protein activation, it requires two mechanistic
regulatory steps. The first is transition metal binding (Ca2+, Zn2+, Cu2+, and Mn2+) [11,12]
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for its folding. The second is the formation of homo- and heterodimers [13]. S100 isoforms
show high structural similarity. However, variation in the C-terminal extension and hinge
region causes sequence variability, which could be a reason for functional discrepancy
among members [14].

S100 proteins can act intracellularly and extracellularly. Intracellular S100 isoforms
control immune system functions, such as transcription regulation, trafficking activity,
intracellular receptors, free radicals scavenger, and cytoskeleton rearrangement, to name a
few examples. Moreover, secretory S100 isoforms can interact with a variety of cell surface
receptors, including G protein-coupled receptors (GPCR), Receptor For Advanced Glyca-
tion End-Products (RAGE), Toll-Like Receptor-4 (TLR-4), proteoglycans heparin sulphate
and N-glycan, and scavenger receptors [15] (Figure 1). S100 proteins, in particular, function
as cytokines and bind with RAGE and TLR-4 to activate the pro-inflammatory signaling
cascade, thus increasing immune cell recruitment for their proliferation and differentiation.
This protein also enhances the expression of MMPs (Matrix metalloproteases) and CAMs
(Cell adhesion molecules) required for tissue remodelling and chemotaxis, respectively. No-
tably, S100 protein members undergo extensive post-translational modifications to acquire
functional activity; the isoforms and modifications are as follows: S100B, S100A1, S100A8
(nitrosylation), S100A8/A9, S100A11 (phosphorylation), S100A8/A9 (carboxymethyla-
tion), S100A3 (citrullination), S100A11 (transamidation), S100A14 (myristoylation), S100A1
(glutathionylation), S100A8/A9 (oxidation), and S100A4 (sumoylation) [16].
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Figure 1. S100 isoforms interact with a range of cell surface receptors, such as GPCR, RAGE, TLR-4,
and proteoglycans heparin sulphate and N glycan scavenger receptors. GPCR, G protein-coupled
receptors; RAGE, Receptor for Advanced Glycation End-Products; TLR-4, Toll-Like Receptor-4.
* S100A4, S100A7, S100A8/A9, S100A11, S100A13, and S100P interact with and/or activate RAGE,
but the exact domain is unknown.

S100 protein family members play a wide range of roles in healthy cells that are not
restricted to calcium storage and transport (calcium homeostasis). Instead, they extend
to diverse cellular activities, such as S100A8/A9 scavenging ROS and nitric oxide (NO).
S100A1, S100A4, S100A6, and S100A9 monomers are involved in cytoskeleton assembly.
S100A10 and S100A12 function in membrane protein recruitment and trafficking. S100A4,
S100A11, S100A14, and S100B are responsible for controlling transcriptional regulation
and DNA repair. S100A6, S100A8-A9, and S100B are involved during cell differentiation.
S100A8-A9, S100A12, and S100A13 are involved in the release of cytokines and antimi-
crobial agents. S100A1 is involved in muscle cell contractility, while S100A4, S100A8/A9,
S100B, and S100P are involved in cell growth and migration. Finally, S100A6, S100A9, and
S100B all play a role in programmed cell death [17].

Separate genes for each isoform in different chromosomal locations, as well as their
existence as intracellular and extracellular proteins, enable S100 proteins to perform a
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wide range of functions. Additionally, the ability to bind with different transitional metals
(Ca2+, Zn2+, and Cu2+), the ability to form non-covalent homo- and heterodimers, and
significantly less sequence homology in the hinge and extended C terminal region, all
contribute to the functional discrepancy of this protein group [11,18,19].

This article highlights the multi-functional role of S100 protein members associated
with the immune system. The immune system is mostly controlled by three processes
and/or components that fall into two categories: innate immunity and adaptive immu-
nity. These components include immune system cells (myeloid and lymphocytes), active
molecules (alarmins, antibodies, cytokines, interleukins, chemo-attractants, antimicrobial
peptides, and components of the complement system), and the immune process (inflamma-
tion, complement system, phagocytosis, and necrosis). S100 protein family members have
the potential to function as active immune system molecules. In this review, we will discuss
how members of the S100 protein family participate in a variety of active immunological
and associated responses.

2. Function of S100 Protein in Host Defense Mechanism

The host defense mechanism, or immune system, is a uniquely managed systematic
process in mammalian physiology. It is not limited to higher organisms, but is instead
employed by all life forms to counter invading unwanted microbes. Certain microorgan-
isms, such as viruses, act as pathogens, inducing the host’s defense system. However,
all microbes are not pathogenic; some are beneficial, or good, bacteria (e.g., intestinal
microbiota or probiotics) [20]. For instance, healthy symbiotic microbiota are involved in
digestion, anti-inflammatory, anti-infectious, and immune-modulating processes [21].

On the other hand, harmful invading microbes impair normal bodily functions, re-
sulting in severe illness, and, if left untreated, death. The immune system uses both a
fundamental (adaptive immune response) and a non-specific defense strategy in order to
fight infection (innate immunity or first line of defense) [22,23]. The immune system utilizes
various strategies to defeat pathogens, including (I) master processes such as inflamma-
tion, complement system, phagocytosis, necrosis, and apoptosis (II) immune cells such as
monocytes, macrophages, neutrophils, natural killer cells, dendritic cells, and lymphocytes
(III) communication through molecular factors such as antibodies, cytokines, interleukins,
chemo-attractants, antimicrobial peptides, PRRs, and other proteins. Interestingly, S100
family proteins are important in all three above-mentioned immunological functions, such
as in the regulation of immune cells, and operate as active molecular factors in significant
immunological responses or diseases.

2.1. Role of S100 Protein in Most Prevalent Innate Immune Cells
2.1.1. Macrophage and Monocytes

Macrophages are key players in the role of an active immune system. Bacterial
LPS (lipopolysaccharides), also known as lipoglycans and endotoxins, cause macrophage
activation. This promotes S100A8 monomer expression by activating the TLR-4 receptor
on macrophage surfaces [10]. TLR-4 activation amplifies the signal via the downstream
signaling cascade, activating various transcriptional factors, such as NF-κB, AP-1, and IRF-3,
via non-endosomal and endosomal TLR-4 pathways [24]. These transcriptional regulatory
factors regulate the transcription of primary response genes (IL-10), as well as class II
transcriptional factors (C/EBPs, AP-1, and Stat-3). Further, in macrophages, IL-10 increases
the expression of S100A8 monomer. Stress-induced ROS through NADPH oxidase (NOX)
and mitochondria also induces S100A8 monomer expression during pathogen perturbation,
implying that S100A8 functions as a stress response element. The intracellular S100A8/A9
heterodimer acts as an oxidant scavenger by binding to cytoskeletal proteins, to rearrange
the cytoskeleton, and releasing into the extracellular matrix through non-classical secretory
pathways [10] (Figure 2). In addition, the induction of S100A8, S100A9, and S100A12
heterodimer complexes in macrophages is a complicated process that is heavily influenced
by proinflammatory factors. LPS, for example, induces the expression of the S100A8
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monomer in endothelial cells, fibroblasts, and macrophages, which can be amplified by
glucocorticoids [25]. However, IL-10 has no direct influence on the expression of the S100A8
/S100A9 heterodimer complex. Instead, Th2 cytokines, such as IL-4 and IL-13, can suppress
S100A8 /S100A9 heterodimer production in macrophages generated by LPS [26,27].
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Figure 2. The activation mechanism of macrophages is depicted. Bacterial LPS and endotoxins cause
phagocytic macrophages to activate. This activates the TLR-4 receptor on macrophage surfaces, which
triggers S100A8 expression. TLR-4 activation enhances the signal via the downstream signaling
cascade, activating NF-κB, AP-1, and IRF-3 transcription factors via non-endosomal and endosomal
TLR-4 pathways. These transcriptional regulatory factors regulate primary response genes, IL-10 (an
anti-inflammatory cytokine), and class II transcriptional factors, such as C/EBPs, AP-1, and Stat-3.
In addition, the expression of S100A8 as a secondary response gene, or late gene, should be raised.
IL-10 promotes the expression of S100A8 in macrophages. S100A8 works as an oxidant scavenger in a
heterodimer with S100A9, interacting with cytoskeletal proteins for cytoskeleton reorganization and
secreting, into the extracellular matrix, via non-classical secretory pathways, its extracellular activity.
LPS (Lipopolysaccharides). Created with BioRender.com.

CD147 is an EMMPRIN (extracellular matrix metalloproteinase), or basigin, a trans-
membrane protein that is abundantly glycosylated and serves as an inducer of extracellular
MMPs in various cell types, including hematopoietic and leukocyte cells. Current research
shows that CD147 can bind to the spike protein of COVID-19, and may be involved in the
invasion of host cells [28,29]. Another protein, CyPA, is a known EMMPRIN ligand, and
is required for monocytes/macrophages to regulate MMP-9 and chemotaxis [30]. S100A9
stimulates the release of pro-inflammatory cytokines by binding to the TLR-4 receptor and
activating the NF-κB transcription factor, resulting in the expression of pro-inflammatory
response genes in monocytes (Figure 3). A recent discovery indicates that S100A9 is in-
volved in monocyte/macrophage migration during the pro-inflammatory process. Similar
to CyPA, monocyte and macrophage chemotaxis, via S100A9, is selectively dependent
on EMMPRIN. However, migration via the S100A8/A9 heterodimer is independent of
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EMMPRIN. S100A9 primarily induces ERK and Akt phosphorylation by interaction with
EMMPRIN, promoting monocyte and macrophage migration via an EMMPRIN/ERK-
dependent pathway [31]. It can be concluded that EMMPRIN only participates in the
momentary action of monocytes/macrophages via the S100A9/A9 homodimer, but does
not participate in S100A9 monomer- or S100A8/A9 heterodimer-induced inflammation
and chemotaxis of macrophages/monocytes. S100A8 and S100A9 also improve monocytes’
ability to perform their functions as Ca2+ stores/sensors, as well as Ca2+-dependent inter-
actions with the cytoskeleton, enhanced movement, increased degranulation, increased
phagocytosis, S100A9 monomer downregulation, and microtubule polymerization [32].
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Figure 3. The image depicts the S100 isoform, S100A9, which stimulates the release of pro-
inflammatory cytokines by binding to the TLR-4 receptor, which activates the NF-κB transcription
factor, resulting in the expression of pro-inflammatory response genes in monocytes. Created with
BioRender.com.

S100A12 expression is higher in classical (CD14hiCD16-) monocytes than in non-
classical (CD14+ CD16hi) monocytes, and decreases during monocyte-to-macrophage differ-
entiation, but not during macrophage polarization, according to some studies. Additionally,
S100A12 expression is modulated by monocytes in periodontitis. This altered level of
S100A12, in both peripheral circulatory and gingival tissue monocytes, indicates its func-
tional role in periodontitis pathogenesis. Therefore, it can be concluded that S100A12 is
primarily expressed and released by monocytes, rather than by differentiating macrophages.
Furthermore, the accumulation of S100A12 in inflamed tissue indicates that it is initially
released from monocyte cells [33].

2.1.2. Neutrophil

Several members of the S100 family, including S100A4, S100A6, S100A8, S100A9,
S100A11, and S100A12, have been found to be expressed in neutrophil cells [34]. The ex-
pression profile of each isoform is distinct; for instance, S100A8 and S100A9 are expressed
abundantly, whereas S100A4 is constitutively expressed, and S100A6 and S100A12 expres-
sions are restricted or conditional [10]. Differential expression of isoforms is depending on
distinct stimuli; for example, physical damage, such as injury or UV irradiation, induces
S100A8 and S100A9 expression in keratinocytes [28]. The expression of these isoforms

BioRender.com


Cells 2022, 11, 2274 6 of 27

in different immune cells can be affected by PAMPs (pathogen-associated molecular pat-
terns) such as LPS, double-stranded RNA, and bacterial flagellin protein. Similarly, the
pro-inflammatory cytokines TNF-α and IL-1β promote calgranulin (S100A8, S100A9, and
S100A12) upregulation in keratinocytes and microvascular endothelial cells. It is important
to note that, due to the antimicrobial activity of S100A8 and S100A9, these S100 proteins
are also referred to as calprotectin [27].

Extracellular S100A8/A9 heterodimer release is essential for enhancing inflammatory
responses via aberrant regulatory activity, either autocrine activation of neutrophils or
paracrine stimulation of other inflammatory cells [28,35]. In addition, S100A8 and S100A9
proteins promote phagocytosis and increase ROS levels. Despite this, S100A8 inhibits ROS
and Ca2+-dependent cytoskeleton–cytoskeleton interactions, leading to increased migration,
degranulation, and phagocytosis. As a result, S100A9 inhibits microtubule polymerization,
whereas S100A12 regulates neutrophil Zn2+ homeostasis [32]. Hence, S100A8/phospho-
A9, but not the S100A8/A9 heterodimer, regulates the expression of cytokines (IL-1α,
IL-1β, TNF-α, IL-6) and chemotactic factor, including CCL2 (monocyte attraction), CXCL8
(neutrophil attraction), and CCL3 and CCL4 (NK cell attraction) [35]. Furthermore, the
mechanism of S100A8 and S100A9 secretion from various cells is dependent on the type of
stimuli. Normally, S100A8 and S100A9 are secreted when an activated monocyte interacts
with endothelial cells. However, dead cells can also stimulate neutrophils to secrete S100A8
and S100A9 [35] (Figure 4).Cells 2022, 11, 2274 7 of 29 
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Figure 4. S100A8/PhosphoA9 induces a pro-inflammatory response. Neutrophils stimulated by
various stimuli (PMA, MSU, Aspergillus fumigates, or Aspergillus nidulans) release NETs via a pathway
involving NADPH oxidase, PAD4, NE, and MPO. During NET formation, the phosphorylated
S100A8/A9 heterodimer is released into the extracellular space. S100A8/PhosphoA9 can then
activate neutrophils in the surrounding area, causing them to release cytokines (TNF-α and IL-6) and
chemokines (CCL2, CCL3, CCL4, and CXCL8). TLR4 signaling pathways are primarily responsible
for this release, while additional receptors (such as RAGE) are involved in S100A8/PhosphoA9-
mediated CCL2 secretion. As a result, S100A8/PhosphoA9 produced by neutrophils is implicated
in amplifying the inflammatory process, and may be a defining feature of inflammatory disorders.
Here, MPO stands for myeloperoxidase; MSU stands for monosodium urate monohydrate; NE
stands for neutrophil elastase; PAD4 stands for peptidyl arginine deiminase; PMA stands for phorbol
12-myristoyl 13-acetate; NET stands for a neutrophil extracellular trap; NADPH oxidase stands for
nicotinamide adenine dinucleotide [35]. Created with BioRender.com.
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Activated neutrophils induce chromatin decondensation, nuclear membrane disrup-
tion, and chromatin release during NETosis [36,37] (Figure 4). NETs (neutrophil extracel-
lular traps) capture microbial invaders, such as fungi and bacterial pathogens, and may
have evolved to trap critical microbes that are difficult to consume by phagocytosis. The
process is primarily characterized by the release of chromatin, which consists of extended
chromatin fibers that intersect and bundle with one another, forming a mesh-work or
trap that immobilizes extracellular microorganisms, and is thus referred to as a NET [35].
In vitro induction of NETs has recently demonstrated functional involvement of the S100
protein group. Neutrophil activation is triggered by stimuli such as Aspergillus fumigates
or Aspergillus nidulans, PMA, or MSU, and releases NETs through a mechanism involving
NADPH oxidase, myeloperoxidase (MPO), NE, and PAD4. During this step, phosphory-
lated S100A8/A9 heterodimers are secreted into the extracellular space by neutrophils.
Consequently, S100A8/phospho-S100A9 establishes the surrounding neutrophils by ener-
gizing them for TNF-α and IL-6 (cytokines) secretion and CCL2, CCL3, CCL4, and CXCL8
(chemokines). The secretion of these chemokines and cytokines is primarily regulated by
the TLR-4 and RAGE receptors (participate in CCL2 secretion) over the surface, locally or
nearby accessible neutrophils at the inflammatory site. This mechanism indicates that the
S100A8/A9 heterodimer plays a significant role in the progression of the inflammatory
process [35].

2.2. S100 Protein’s Role in the Immune System as an Active Molecule
2.2.1. Alarmins or DAMPs

Alarmins are endogenous molecules that belong to the DAMP (damage-associated
molecular patterns) family, which also includes extracellular hyaluronan fragments pro-
duced by tissue injury, as well as intracellular heat shock protein and HMGB1 (high-mobility
group box 1) [38–41]. In the aftermath of trauma and microbial infections, alarmins serve as
intermediate signaling mediators for the inflammatory process. During a threat, alarmins
send an intracellular defense signal to the host defense system’s immune cells by interacting
with chemotactic factors and PRRs (Pattern Recognition Receptors, such as TLR, NLRs
(NOD-like receptors), and MRs (mannose receptors)) [42–45]. PRRs enable the innate im-
mune system to detect tissue injury by sensing mislocalization and changes in endogenous
effector molecules, such as DAMPs [46]. S100 protein is released via the same route as
DAMP [47]. However, the binding of a few S100 protein members to TLR, and the similar
secretion pattern, make this protein vulnerable to functioning as an alarmin.

During tendinopathy, the S100A8/A9 heterodimer (calprotectin) has an immunomod-
ulatory effect that stimulates the innate immune response and controls the stromal mi-
croenvironment. In tendinopathy, calprotectin serve as alarmins, recruiting immune cells to
nearby areas. As a result, the HMGB1 alarmin stimulates inflammatory cytokine expression
and modulates the matrix through TLR-4 dependent receptors in tendon cells. Further-
more, constitutive expression of the S100A8/A9 heterodimer dominates the downstream
signaling cascade to enhance the expression and secretion of CCL2, CCL20, CXCL10, IL-6,
IL-12, and IL-8 in the tendon matrix, through the DAMP receptor [48]. Moreover, secre-
tory S100A8 and S100A9 amplify the recruitment of immune cells to the tendon matrix;
altogether, damage triggers the release of CCL2 from the tenocyte, which recruits mono-
cytes to the inflamed area. During tendinopathy conditions, the inductive expression and
secretion of S100A8 and S100A9 affect the activation of local tenocytes, boosting immune
cell recruitment to the injured site and altering the stromal microenvironmental cue [48].
Quantifying the expression study of alarmin in diseased supraspinatus tendons suggested
that S100A9 and HIF-1α may have pro-inflammatory effects in tendon disease, nuclear
IL-33 may protect against pro-inflammatory stimuli, and HMGB1 may play a role in tendon
recovery [49]. Alarmins are not limited to tendinopathy; they are much more. T. gondii
infection triggers the biochemical release of endogenous effector molecules, such as IL-12
and CCL-2, from immune cells in mice and humans. Monocytes can identify S100A11 as an
alarmin secreted by parasite-infected cells and activate an innate immune response [50].
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Sepsis is a dangerous sickness characterized by hyperactivation of the host defense
inflammatory mechanism, which causes activation of the inflammatory process in the
entire body and could lead to septic shock or death. Recently, Ulas et al. revealed the
role of the S100A8/A9 heterodimer, describing significant function in overcoming sepsis
conditions in neonates. They elucidated that S100A8 and S100A9 alarmins control and
modulate the reprogramming of genes, such as MyD88-dependent proinflammatory genes,
in the perinatal stage of the newborn, to prevent hyper-inflammation without affecting
host-pathogen defense mechanisms or TIR-domain-containing adapter-inducing interferon-
β (TRIF)-dependent regulatory genes (at the very beginning these are epigenetically silent,
but expression increases gradually in the first year of the neonate). Although, alteration in
transient S100-mediated gene programming could lead to hyper inflammation and sepsis.
Primarily, the S100 protein precisely activates p65, NF-κB, and IRF5 to enhance the expres-
sion of pro-inflammatory cytokine genes, leading to the recklessness of the MyD88 signaling
cascade. After birth, the direct exogenous insertion of S100A8/A9 heterodimer alarmins
shuts out tissue damage, secondary microbial overgrowth, and hyper-inflammation af-
ter an S. aureus challenge. S100A8 was found to be more effective than the S100A8/A9
heterodimer in shutting off hyper-inflammation and microbial growth [51]. Thus, the
S100A8/A9 heterodimer plays a critical role as an immune regulator to hamper extensive
inflammation in infants. In brief, a human mother’s breast milk contains a high amount of
calprotectin, which mediates sepsis protection during the initial period of a newborn’s life.
In vitro studies showed that breast milk calprotectin could inhibit the growth of numer-
ous bacteria, such as Staphylococcus aureus, B streptococci, and E.coli, by withdrawing the
essential nutrient magnesium and starving them for the nutrition of newborns [51–53].

Apart from microbial pathogen assault, an uncommon, but potential, cause of inflam-
mation or sterile inflammation could be a misregulation of the adaptive mechanism of
the defense system. Microbial agents do not always activate an inflammatory process, in
simpler terms, instead triggering endogenous factors released as a stress signal or sterile
inflammation. The best example of sterile inflammation is calprotectin, a highly abundant
alarmin that is secreted during psoriasis, allergies, arthritis, infections, autoimmune disease,
pulmonary and heart disease, and intestinal disease. It necessitates an understanding of
the systematic molecular approach to causing sterile inflammation. A recently classified
mechanism of auto-inhibitory activity of extraordinary calprotectin has been revealed. In
auto-inhibition, the Ca2+-dependent tetramerization ability of calprotectin exterminates the
proinflammatory potential of the S100A8/A9 heterodimer. In short, S100 alarmin-driven
inflammation is potentiated to establish self-control. Intracellular Ca2+ deficiency typically
promotes S100A8/S100A9 heterodimerization and the release of activated neutrophils [54].

2.2.2. Functional Implication of S100 Protein as Antimicrobial Peptides and in
Nutritional Immunity

The family of S100 proteins is a critical connecting link in innate immunity. It facilitates
the immune response cascade through direct participation, and provides host defense
mechanisms by triggering immunological responses against numerous invasion pathogens.
Notably, antimicrobial peptides and/or proteins (AMPs) play an essential role in the
first line of defense against a wide range of pathogens [55]. In humans, there are many
antimicrobial peptides (AMPs), bactericidal factors, and host defense peptides (HDPs),
including RNase7 [56], Reg3 [57], α- and β-defensins [58], S100A7 (psoriasin) [59,60],
S100A15 [61], the S100A8/A9 heterodimer (calprotectin) [6], and Cathelicidin/hCAP-18
(cleaved into LL-37 and FALL-39) [62–65]. Keratinocytes also express the S100 protein
subgroup (S100A7, S100A8, S1009, and S100A15), which functions as an anti-viral peptide.
Thus, keratinocytes show antiviral and immunomodulatory properties through the S100
subgroup, which affects viruses’ replication cycle or activity [66].

The antimicrobial S100 protein (S100A7, also known as psoriasin) was found to be
highly expressed in inflamed psoriatic skin or, more commonly, in healthy skin. S100A7 also
acts as a chemotactic factor for immune cells, stimulating cell proliferation or differentiation,
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triggering cytokine/chemokine synthesis (immunomodulatory), and enhancing first-line
defense by maintaining skin protection barriers. Both S100A7 and S100A15 exhibit bacterici-
dal activity against E. coli. On the other hand, the S100A8/A9 heterodimer and S100A12 act
efficiently to defend numerous viruses or fungi categories from invaders [67,68]. Another
example of S100 protein’s antimicrobial ability is the high abundance of FLG-2 (S100 fused
type protein) protein in the upper epidermis against Pseudomonas aeruginosa and other
Gram-negative bacteria from soil and water. C-terminal FLG2 fragments act as antimi-
crobial defense shields by hampering bacterial replication and restricting their growth in
the epidermis. The antimicrobial activity of FLG2-4 does not resemble pore formation by
insertion. Instead, FLG shows engagement with the cytosolic side of the membrane and
impedes replication machinery by hampering DNA polymerase activity, causing bacterial
death [69].

S100 as AMPs did not originate in the human defense system; thus, they evolved
before mankind, and the best example is bovine. Proof of this is bovine S100A12, which
has been potentiated to inhibit microbial growth (E. coli) in vitro, suggesting the S100
protein’s capacity to work as an antimicrobial protein. Transcriptional upregulation of
bioactive innate immune proteins (S100A7, S100A9, S100A11, and S100A12) [70,71] has
been detected in the milk of mastitis-infected mammary glands, compared to healthy
ones [72]. Furthermore, S100 protein can bind with the outer surface of the bacterial
membrane, through negative-charge phospholipids, to facilitate destabilization and pore
formation in the microbial membrane to destroy bacteria, resembling the functionality of
the complement system in an efficient arm of the innate immune system [73,74].

The functional implications of AMPs are limitless, not just restricted to pore formation,
and include scavengers. For instance, almost all pathogens usually require a surplus of
transition metals as nutrients for their growth. In response to infectious invaders, the host’s
innate immune system dwindles the essential ions available to starve the microbes, con-
sequently decreasing the pathogen’s growth. This process is called nutritional immunity.
Calgranulins have the highest expression in infectious conditions, and play a critical role
in the innate immune response to restrict microbial growth [67]. S100 protein members
can also bind with a transition metal; calgranulins, in particular, take advantage of this in-
triguing property and inhibit microorganism growth by essential-nutrient deprivation [75].
Another example of nutritional immunity is that of birds and reptiles. Calgranulin (also
known as MRP126) promotes the existence of an innate immune response against micro-
bial pathogens in birds and reptiles. Avian MRP126, similar to human calgranulin, can
selectively sequester Zn (II) and limit its availability, thereby limiting pathogen-invasion
growth [76].

Furthermore, granulocytes (neutrophils) and phagocytic cells first reach the site of
infection, govern microbial infection by phagocytosis, and simultaneously initiate various
innate immune responses by producing antimicrobial peptides or protein NETosis forma-
tion and ROS and NO intermediates. Interestingly, calprotectin is an essential candidate
for nutritional immunity, constituting 60% of neutrophil cytoplasm protein content. Neu-
trophil participates in nutritional immunity by producing calprotectin and innate immune
responses via antimicrobial peptide formation (such as calprotectin and lactoferrin) [73]. For
example, a broad range of research suggests that calprotectin functions as an antimicrobial
protein via metal-chelating capacity, which causes essential ions to be in poor condition for a
variety of pathogens such as Candida albicans, Acinetobacter baumannii, Klebsiella pneumoniae,
H. pylori, E. coli, and S. aureus. Calprotectin also regulates the pursuit of proinflammatory
virulence factors secreted by them [77]. Moreover, calprotectin obstructs iron uptake and
facilitates iron starvation through sequestering Fe (II) at the His6 amino acid position in
response to Pseudomonas aeruginosa [78]. Similarly, calprotectin also acts as a manganese
sequester against Staphylococcus aureus [79].

S100A7 also acts as an antimicrobial protein, shows bactericidal activity, and inhibits
the growth of E. coli by Zn-ion depletion through sequestering Zn (II) [80]. However, the
R. temporaria protein RtS100A7, a human S100A7 orthologue, lacks a Zn binding site,
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potentially limiting microbial growth under Zn starvation independently, implying that
antimicrobial function evolved early in tetrapod evolution [80].

The rarest example is corneal abrasion (CA), which is an eye injury due to a scratch on
the cornea’s surface. Topical insertion of cationic antimicrobial protein enhances resurfacing
by replacing damaged cells with new epithelium, or re-epithelialization, at the injury site
in corneal abrasion, and facilitates wound healing. During CA, increased transcriptional
expression of S100A9 occurs in the cornea, followed by a release into extracellular space,
which enables the inflammatory response to defend against invader microorganisms. The
S100A8/A9 heterodimer discloses its pro-inflammation cascade function via RAGE and
TLR-4 [81].

Helicobacter pylori are spiral-shaped, Gram-negative bacterium that tenaciously col-
onize the stomach in about half of the world’s population. Its existence in the gut can
cause adverse health consequences, such as peptic and duodenal ulcers, gastritis, MALT
(Mucosa Associated Lymphoid Tissue) lymphoma, and invasive gastric cancer. The pri-
mary wrongdoer responsible for pathogenesis is cag Pathogenicity Island (cag PAI), which
contains genes coding for a secretory effector protein (CagA) and multiple T4SSs (type
IV secretion systems) proteins necessary for the conveyance of CagA into gastric host
cells [82,83]. Recently, it was shown that H. pylori, which acts as a causative agent of severe
gastric disease, is a significant attraction center for research [82]. A study reports the
functional implication of calgranulin C (S100A12) in regulating H. pylori growth [84]. For
instance, it has been elucidated that, in a dose-dependent manner, calprotectin efficiently
alters numerous activities of H. pylori, such as the modification of lipids [85], a structural
component of the outer membrane, and the slowing down of the cag-Type IV secretion
process mainly responsible for pathogenesis. Moreover, S100A2 can bind Zn and limit the
availability of Zn micronutrients required for the growth or proliferation of H. pylori to
provide nutritional immunity against it [86].

2.3. Role of S100 Protein in Various Immunological Process
2.3.1. S100 Protein Could Be the Prognostic Marker for COVID-19

The epidemic of COVID-19 has become the greatest global public health disaster
worldwide. As of 10 July 2022, more than 555 million infections and 6.35 million confirmed
deaths had been documented globally. This below-included web link will allow you to
determine the current update number (https://www.google.com/search?client=firefox-
bd&q=world+covid+casis#colocmid=/m/02j71&coasync=0) (Last visited on 10 July 2022).
Recent publications have explored potential clinical interventions, including the use of the
S100 gene family as a prognostic marker based on omics data from COVID-19 virus–host
interactions and immune responses. The S100 family of genes (S100A6, S100B, S100A8,
S100A9, S100A12, and S100P) was identified as a key category of host factors that appeared
at the end of the meta-analysis, as well as being validated in the COVID-19 cohort. Multiple
genes from the S100 family, such as S100A8, S100A9, S100A6, S100A11, and S100P, as well
as a few other genes, such as ASS1, neutrophil defensin alpha 3 (DEFA3), and SERPINB3,
were significantly upregulated in patients with positive symptoms. This indicates that they
may have diagnostic and prognostic value which is independent of age and gender [87].
However, multiple investigations have assessed transcriptional and proteomic changes
in moderate, severe, and fatal COVID-19 cases to find diagnostic and prognostic serum
signs [88,89] (Figure 5).

https://www.google.com/search?client=firefox-bd&q=world+covid+casis#colocmid=/m/02j71&coasync=0
https://www.google.com/search?client=firefox-bd&q=world+covid+casis#colocmid=/m/02j71&coasync=0
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Serum S100A8/A9 heterodimer (calprotectin) levels have been linked to disease sever-
ity and an excess of cytokines [90,91]. Patients with fatal COVID-19 infections had over-
expression of S100A12, S100A8, S100A9, and S100P in transcriptomic analyses of lung
tissue [92]. All of the above-mentioned S100s (excluding S100A12) displayed significant
sensitivity as predictive markers of symptomatic COVID-19, according to the ROC curve
analysis of the Positive Asymptomatic and Positive Symptomatic group gene expression
data [87]. Furthermore, S100B levels were also found to be significantly higher in mild and
severe disease cohorts than in healthy controls [93,94]. However, some previous studies
showed a correlation between S100B and pulmonary inflammation, with S100B being
upregulated in bronchiolar epithelial cells and airway dendritic cells [95,96]. However, the
source of increased serum S100B in COVID-19 patients has yet to be identified.

In addition, a recent study demonstrated that S100A4, S100A9, and S100A10 have
a role in the inflammatory conditions, as well as the severity, of COVID-19 patients, and
have the ability to influence the prognosis of the severe form of the disease [97]. This
study shows a link between S100A4, the S100A8/A9 heterodimer, and S100A10 and LDH
levels, suggesting these molecules contribute to acute lung injury and ARDS (acute respira-
tory distress syndrome) [98]. According to some studies, S100A4, S100A9, and S100A10
expression is proportional to neutrophil/lymphocyte ratio, and may reduce peripheral
blood lymphocytes in COVID-19 patients [97]. Chen et al. relate blood concentrations of
S100A8/A9 heterodimer with concentrations of a variety of pro-inflammatory cytokines,
most notably IL-8, MCP-3, MCP-1, IL-1ra, CTACK, β-NGF, IL-7, IL-10, RANTES, G-CSF,
IL-1α, and IL-17A [90]. However, Bagheri et al. demonstrated a significant association
between the expression of S100A4, S100A9, and S100A10 and inflammatory indices (CRP
(C-reactive protein), ESR (erythrocyte sedimentation rate)), and elevated leukocytosis in
COVID-19 patients [97]. Based on these results, the S100 family may be able to control
cytokine release syndrome and get more monocytes and neutrophils to the target sites in
COVID-19 patients.

BioRender.com
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When researchers attempt to determine if S100A8 levels rise in other viral infections,
such as encephalomyocarditis virus (EMCV), herpes simplex virus 1 (HSV-1), and influenza
A virus (IAV), the authors discovered that its levels are elicited solely by the COVID-
19 virus. In addition, the author also examined an increase of S100A8 in MHV (Mouse
hepatitis virus). Keeping together, the coronaviruses, COVID-19 and MHV, elicited a nearly
homogeneous immune response. This indicates that coronaviruses, but not other viruses,
induce abnormal expression of S100A8 [99]. It is difficult to explain how S100A8 regulates
the pathogenesis of COVID-19 because S100A8 plays a critical function in immunological
responses. As of right now, it is unclear if S100 protein regulates COVID-19 infection in a
positive or negative way.

Under normal physiological settings, neutrophils and myeloid-derived dendritic cells
retain enormous amounts of S100A8 and S100A9, whereas monocytes express modest quan-
tities of S100A8 and S100A9 constitutively [100,101]. In the lungs of rhesus macaques in-
fected with COVID-19 virus, markers for monocytes and natural killer cells were marginally
elevated, T cells were unaffected, and B cells were considerably downregulated [99]. Re-
cently, it has been studied how COVID-19 infection activates anti-bacterial responses,
by analyzing the differential expression of genes before and after infection. In addition,
they also discovered that S100A8 was the most strongly upregulated gene of all known
alarmins [100].

In mice infected with coronavirus, neutrophils were deformed. The majority of neu-
trophils in mice infected with COVID-19 and MHV were CD45 + CD11b + Ly6Gvarying, when
compared to neutrophils in the control group, which were CD45 + CD11b + Ly6Ghigh [100].
This indicates that a population of dysplastic aberrant neutrophils was produced by the
coronavirus infection, which could lead to deregulation of the innate immune system.
To determine if S100A8, which is a major cytoplasmic protein of neutrophils, influences
neutrophil activity, paquinimod, an inhibitor of S100A8/A9 heterodimer binding to TLR4,
was used. Compared to the coronavirus infection group, the majority of neutrophils in mice
treated with Paquinimod reverted to normal CD45 + CD11b + Ly6Ghigh levels, thereby
rescuing the mice from a fatal outcome due to coronavirus infection. In addition, other
recent studies also found that these aberrant neutrophils exhibited obvious immature char-
acteristics [100–105]. Studies indicate that S100A8 can be used as a prognostic marker for
COVID-19-positive patients and could be the most effective treatment target for COVID-19
by blocking the S100A8/A9 heterodimer binding to the TLR receptor. However, addi-
tional studies are necessary to clinically demonstrate the most effective therapy target
against COVID-19.

2.3.2. Functional Contacts of Nerves with Immune Cells through S100 Protein

In normal conditions, S100 is known for its function in neurite growth and supports
the viability of neurons [15]. Recently, an altered concentration of S100 induces proinflam-
matory cytokines, such as IL-1β, TNF-α, and NO synthetase (stress-inducing enzyme).
Moreover, S100-dependent induction of NO formation in astrocytes leads to neuronal
death [106]. Glaucoma is an eye disorder associated with vision loss and blindness caused
by damage of the optic nerves and the gradual death of RGCs (Retinal Ganglion Cells) with
intraocular pressure (high eye pressure) characteristics. The latest research output suggests
the significant contribution of immunological function to multifactor mediated glaucoma
through the S100 protein. The study used an autoimmune glaucoma model to explain the
immune system-related process in the nervous system [107]. Exogenous insertion of S100B
(used as an ocular antigen) in the glaucoma model caused a loss of RGCs (Retinal Ganglion
Cells) and degeneration of the optic nerve after 28 days of the window, without intraocular
pressure. They also detected a high number of microglial cells (macrophage cells of the
CNS (Central Nervous System) and autoantibodies in RGCs and optic nerves after the
treatment of S100B [107]. TLR-4 plays a role in neuronal cell death in the CNS, microglial
cell life in optic nerves and RGCs, and complement-pathway protein secretion through
retinal microglial cells during optic nerve injury disease, providing insight into the immune
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system’s functional intervention through S100B activation. The induction of TLR-4/NF-κB
pathway proteins by S100B enhances neuroinflammation by activating the innate immune
response (complement activation). In addition, S100B-induced NF-κB in microglial cells
govern cells’ chemotaxis movement toward the injury site via β-integrin CD11a expression.
As a result, it can be concluded that S100B-mediated activation of NF-κB and complement
pathways plays a vital role in the pathogenesis of glaucoma [107].

Therefore, exogenous insertion of S100B in vitreous humor confirms the direct/indirect
function implication of S100B protein activation of the above-mentioned late systemic
immune response during glaucoma, and begins from the degeneration of both retinal
ganglion optic nerves, leading to the brokerage of the blood–retinal barrier (BRB). Intact
blood–retinal barriers usually regulate the immigration of immune cells from the choroid
to the sub-retinal space. Altered or compromised integrity of the BRB increases ocular
hypertension and accumulation of B-cells in the retina. Hence, compromised porous BRB
further facilitates immune response strengthening of the degeneration of retinal ganglion
cells and nerves in the eyes. It is known that apoptosis is an earlier phenomenon, that
occurs during the degeneration of the ganglion and optic nerve. A high level of S100B
activates the caspase-mediated cell death cascade during degeneration by increasing the
level of active caspase 3 [108].

Cross-communication between the nervous and immune systems is critical for immune
system regulation, and is mainly regulated by the HPA (Hypothalamic–Pituitary–Adrenal)
axis and the SNS (Sympathetic Nervous System) [109]. The latest hardwired neural path-
way elucidates the contact connection between sympathetic nerves and immune cells in
lymphoid tissue. Moreover, S100-positive cells in cervical lymph nodes are directly targeted
by nerve fibers from the superior cervical ganglion. Furthermore, the transmission of a
signal from the CNS to immune cells is mediated by the expression of neurotransmitters,
such as neuropeptide Y, norepinephrine, and vasoactive intestinal polypeptide, by post-
ganglionic nerve fibers of the extremity, which innervate S100+ cells to induce a further
immune response in lymphatic tissue. Thus, it concludes that the cross-talk communicable
approach between the nervous system and the immune system plays a crucial role in
transmitting messages or signals from central nervous system nerve cells to targeted S100
positive immune cells in lymphatic organs [110].

In nervous system disorders, such as early-onset Alzheimer’s disease (AD) and bac-
terial meningitis, a member of the S100 protein family has been identified as a potential
candidate. Several studies have shown the existence of S100 proteins within or near protein
inclusions, including those within β-amyloid (Aβ) aggregation and others in astrocytes and
microglial cells located near the A aggregation, implying that this protein plays a significant
role in AD [111–114]. Excess Zn+2 ions induce neurotoxicity in nerves, perhaps by aiding
in the deposition of β-amyloid (Aβ), leading to plaque formation, which is the pathogenic
systematic hallmark molecular pattern for AD brain. It has been found that astrocyte-
originated S100A6 [111] and S100B [112] proteins effectively regulate Zn+2 elevation, and
subsequently hamper Zn+2-mediated plaque formation (Aβ aggregation) by chelating the
zinc ions to inhibit. However, astrocyte and microglial cells enhance the production and
release of numerous S100 proteins around the plaque inclusion to contribute to several
misregulated molecular processes during AD. For instance, S100A1, S100B, and S100A6
involve NETosis, disassembly of the cytoskeleton, and Tau phosphorylation. Contrarily,
S100B and S100A9 contribute to neurofibrillary tangles. Several members are involved in
amyloid precursor protein (APP) processing, which generates Aβ peptide through prote-
olytic digestion of type I transmembrane protein (APP). S100A9 controls the activity and
expression of β-/γ-secretase (an enzyme responsible for proteolysis of APP [115]. S100B
and S100A1 govern the level of APP. S100A8, S100A7, S100B, and S100A9 influence Aβ

levels. Furthermore, zinc homeostasis is maintained through the zinc buffering activity of
S100B and S100A6. In addition, S100A1, S100B, and S1009 potentiate engagement of the
Aβ peptide and inhibit aggregation [114].
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Bacterial meningitis is a nervous system-associated inflammatory disease character-
ized by the severe inflammatory response of meningeal cells (dura mater, arachnoid mater,
pia mater, and the subarachnoid space) to the blood–brain barrier of the brain. Astro-
cytes are prime cells for structural support and management of the blood–brain barrier.
Therefore, it they play a significant role in inflammation, neurodegeneration apoptosis,
and bacterial and viral strikes. In addition, these cells participate in the innate immune
response to combat bacterial meningitis or viral infection by secreting various AMPs, such
as cathelicidin, defensins, and S100A15, during an inflammatory situation. Moreover,
meningeal cells, or glial cells, also initiate the release of multiple inflammation modulators.
Accumulation of S100A7 during the onset of AD, in early mild cognitive impairment, and
inflammation, as AMPS, during bacterial/viral infection in CNF has been reported [116].

Although there was little evidence regarding the existence of S100A4 in the CNS,
it was recently discovered that S100A4 is highly expressed in activated microglial cells
of the CNS in mice, and that niclosamide inhibits its transcription. Additionally, it has
been shown that amyotrophic lateral sclerosis patients’ astrocytes, microglial cells, and
fibroblasts have increased levels of S100A4. This indicates that S100A4 has a functional role
in microglial reactivity, contributing to the regulation of neuroinflammation [117].

2.3.3. Involvement of S100 Protein in Autoimmune Disease or Immune
System-Related Disease

An autoimmune disorder is a clinical disease condition where host defense mech-
anisms initiate recognizing their own body units (such as cells or tissue) as the foreign
invader’s entity and damage their own body tissue through autoimmunity. One of the pri-
mary defense mechanisms of the systemic immune system, known as sterile inflammation,
acts as a driving factor for various chronic inflammatory diseases, such as autoimmune
disease [118,119], atherosclerosis [120], psoriasis [58], intestinal bowel disease [121,122],
sepsis [51], rheumatoid arthritis [123], glaucoma [107], and liver disease [124] (Figure 6).
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a. Rheumatoid arthritis (RA)

RA is an autoimmune disorder that includes 200 distinct diseases. It is characterized
by inflammation in the synovial tissue of the joints and progresses to cartilage and bone
loss. Endogenous and exogenous proinflammatory factors, or alarmins (DAMPs), induce
inflammation by interacting with PRRs, such as RAGE, TLR-4, GPCR, and EMMPRIN (also
known as basigin or CD147), which is a well-known process in rheumatoid arthritis or
synovial tissue damage [125]. Some S100 protein members are abundantly expressed in
rheumatic diseases. The S100A8/A9 heterodimer, S100A4, S100A11, S100A12, and S100B
are well known in rheumatic diseases. Serum S100A4 triggers TLR4 receptor activation to
induce expression of IL-1β, IL-6, and TNF-α by stimulation of peripheral blood mononu-
clear cells, and leads to an expression release of MMPs in synovial fibroblasts. Similarly,
in RA disease, S100A8 and/or S100A9 activate synovial macrophages and enhance TNF-
α expression, IL-6, and IL-1β in monocytes, and induce MMPs to mediate chondrocyte
dependent cartilage destruction [126].

b. Osteoarthritis (OA)

OA is another example of an autoimmune RA related disease, where S100 protein
members play a critical role in disease pathogenesis through RAGE and TLR-4 receptor
engagement dependent manner. In OA, expression of the S100A8/A9 heterodimer has been
reported in the synovium and cartilage of joints. Elevation of S100A8/A9 during osteophyte
formation in humans has been demonstrated by elevated S100A8/A9 plasma levels in
people with early symptomatic OA. Using S100A9-KO mice as a model for OA, the author
discovered that S100A8 and S100A9 are required for the formation of large osteophytes
at both the bone margins and in ligaments. Previously, it has been shown that cartilage
damage is reduced in S100A9-monomer-KO mice during OA [127]. However, a recent study
found that S100A8 and S100A9, which are important products of activated macrophages
during synovial activation in OA, may increase osteophyte size in experimental OA with
synovial inflammation. The S100A8/A9 heterodimer has the ability to upregulate and
activate MMPs, which aid in cartilage matrix remodelling and allow osteophytes to grow
in size [128]. The S100A8/A9 heterodimer may, thus, be a useful biomarker for predicting
cartilage damage and osteophyte progression in human OA. S100A8 and S100A9 enhance
interleukins expression from immune cells and formation of osteophyte. In addition,
S100A8 is connected to pain generation in OA. S100A10 contributes to MAPK and NF-κB-
mediated production of inflammatory cytokines in chondrocytes. S100A4, in OA, similar
to RA, enhances the expression of MMP13 through stimulating the activation of MAPK,
PYK2, and NF-κB in chondrocytes. Similarly, S100B enhances the expression of MMP-13,
mediated by ERK and NF-κB in chondrocytes. Increased expression of S100A12 found
in articular cartilage during OA, as S100A4 and S100B, increases expression of MMP-13
and VEGF in MAPK, p38, and NF-κB manner [41]. Immune cells related to the elevated
level of the S100A8/A9 heterodimer and S100A12 are a significant biomarker of treatment
response in juvenile idiopathic arthritis in adults [129,130] and children upon anti-TNF-α
therapy [131].

c. Osteoporosis

Recently, De Martinis et al. compiled information in a review related to the functional
contribution of alarmins in osteoporosis and arthritis [46]. Osteoporosis is a progressive
inflammatory condition characterized by decreased bone mass and the destruction of bone mi-
croarchitecture, resulting in a loss of physical strength of the body’s skeleton and an increased
risk of bone fracture caused by RA [132]. The alarmin S100 protein is released by leuko-
cytes during inflammation and interacts with extracellular receptors; for example, S100A12
and S100B bind to RAGE, while S100A8/S100A9 bind to TLR-4. Thus, Alarmin S100A8 is
a potentiate member that stimulates osteoclast cells by interacting with TLR-4 to improve
bone structure remodelling by maintenance and repair. Alarmin S100A9, on the other hand,
increases RAGE expression and promotes cytokine release in bone synthesizing, or forming
osteoblast cells. Furthermore, S100A9-treated osteoblasts promote the differentiation and
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activity of osteoclast progenitor cells [46]. Likewise, S100A16 plays a role in osteoblast differ-
entiation and negative interference with osteogenesis by promoting adipogenesis through
upregulation of PPAR (Peroxisome Proliferator-Activated Receptor-
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The S100 protein is primarily involved in embryo adhesion/implantation, endometrial re-
ceptivity, immune tolerance, prolactin secretion, and endometrial epithelial cell apoptosis, 
implying conclusively that it is a hallmark marker for the onset of decasualization [159].  

In brief, during normal pregnancy, active homo- and heterodimer formation and ex-
pression of the S100 protein are necessary for proper embryo adhesion, immune tolerance, 
and decidualization. In addition, by increasing IL-10 and decreasing other cytokines (such 
as TNF-α, INF-     ƴ     , IL-2, and IL-12), myeloid cells, such as uNK, T-reg, macro-
phages, and neutrophils, maintain the delicate balance between Th1/Th2 or pro/anti-in-
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) and downregulation
of RUNX2 (Runt-Related Transcription Factor-2) transcriptional expression [133].

d. Psoriasis

Psoriasis is another well-known autoimmune disorder characterized by chronic inflam-
mation with inflamed, red, and scaling skin areas caused by misdirected T-cells, dendritic
cells, and inflammatory cytokines that attack the skin and induce uncontrolled keratinocyte
proliferation. One of the S100 protein members is known as psoriasin (S100A7) because
it is seen in psoriasis and other skin diseases. However, there is extensive information in
the literature about the role of S100A7 in psoriasis. Small subsets of S100 (for example,
S100A7, S100A8, S100A9, and S100A12) have been shown to be upregulated in psoriasis
skin lesions, whereas transcriptomics and ELISA-based approaches indicate that S100A12
is strongly correlated with a functional disease condition [134,135] (Figure 6). S100A4 [136]
and S100B [137] have also been implicated in the pathogenesis of psoriasis. In support
of the preceding finding, new research has revealed significantly elevated expression of
alarmins, such as IL-33, HMGB1, S100A7, and S100A12, in serum, implying a role for these
alarmins in the immunopathology of psoriasis conditions [138]. Regardless of infected
cells, many autoimmune and inflammatory diseases stimulate the release of endogenous
alarmin factors into the extracellular environment, where they interact with corresponding
receptors on immune cells to enhance innate immune response, cell differentiation or
death, and inflammation regulatory pathways. High throughput analysis revealed that the
role of major alarmins, such as S100 proteins (S100A6 and S100A9), HMGB1, and HSPs
(heat shock protein), is required for the establishment and exacerbation of inflammation,
hyperglycemia, cancer, and atherosclerosis [139].

e. Atherosclerosis

Atherosclerosis is a chronic inflammatory disease caused by plaque formation in an
artery’s intima [140]. Initiation of atherosclerotic plaque formation involves oxidized LDL
(oxLDL), dendritic cells, macrophages, foam cells (FCs), and monocytes. LDL molecules
accumulate in the tunica, causing dysregulation and dysfunction of endothelial and smooth
muscle cells (SMCs), resulting in proinflammatory cytokine secretion.

Monocytes in the bloodstream sense the cytokine and move to sub-endothelial space,
attracting the atherosclerotic plaque. These cells differentiate into macrophages with
scavenger receptors, which engulf oxLDL. Active macrophages become foam cells after
ingesting oxLDL [141]. T lymphocytes enter the tunica and control the innate immune
response later. Smooth muscle cells release necrotic matrices and ECM proteins (collagen
and elastin) to form the fibrous cap, which covers the lipid core, oxLDL, and necrotic cells
to stabilize the plaque [142–144] (Figure 7). During the formation of arterial plaques, cal-
granulins begin to engage their corresponding receptors, such as RAGE, TLR-4, and CD36,
thereby contributing to immune-cell response. These members are specifically produced
by monocytes, vascular endothelial cells, and SMCs in response to oxidative stress caused
by atherosclerosis. These secretory S100 proteins binds to the TLR-4 receptor, activating
downstream signaling and increasing NF-κB and ROS production. It begins by increasing
pro-inflammatory activity in a variety of cells in blood vessel extremities, including endothe-
lium, leukocytes, and SMCs (Figure 7). Inhibiting S100 protein-mediated inflammation in
arterial plaque formation could be a promising atherosclerosis treatment [145,146].
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Figure 7. An illustration of the progression of atherosclerosis, a chronic inflammatory disease. The
accumulation of oxidized LDL (oxLDL) triggers the recruitment of macrophages, which consume
oxLDL and transform into foam cells. This mechanism causes endothelial and SMC dysregulation
and malfunction, leading to pro-inflammatory cytokines, such as CCL5, CX3CL1, CCL2, ICAM1, and
VCAM1, into the bloodstream. In addition, this results in the recruitment of even more immune cells,
including monocyte and T-cells. Activated monocytes secrete calgranulins, which activate TLR-4 and
RAGE receptors. In addition, the S100A8/A9 heterodimer and A12 activate SMC and endothelial cells,
and activated endothelial cells induce apoptosis. In addition, this initiates and increases intracellular
ROS while causing a decrease in NO and the release of MMPs, which ultimately causes contraction
of VSMCs and inflammation. SMC, on the other hand, secretes collagen and elastin, which form a
fibrous cap. NO, nitrous oxide; SMC, smooth muscle cell; RAGE, Receptor For Advanced Glycation
End-Products; TLR-4, Toll-Like Receptor-4; ROS, reactive oxygen species; VSMCs, vascular smooth
muscle cells; MMPs, matrix metalloproteinases. CCL5, CX3CL1, CCL2; chemotactic cytokine or
chemokine. ICAM1, Intercellular Adhesion Molecule 1. Created with BioRen-der.com.

f. Inflammatory bowel disease (IBD)

IBD is an immune-related disease triggered by persistent inflammation in the digestive
tract, resulting in digestive problems. There are two subtypes of IBD: ulcerative colitis
(UC) and Crohn’s disease (CD). UC is characterized by inflammation of the colon or large
intestine, while CD affects various parts of the digestive tract from the mouth to the anus,
such as the small intestine’s final segment before it enters the colon [122]. The S100A8/A9
heterodimer (calprotectin), which regulates the inflammatory process, is associated with
chronic inflammatory gut disease, or IBD (Figure 6). It has been noticed that trace residues
of calprotectin in the fecal matter of IBD patients suggest calprotectin as a non-invasive
marker for IBD [147–149]. Active neutrophils containing ~60% calprotectin content in
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the cytosol initiate travel to the intestinal mucosa from the circulatory system during
active intestinal inflammation. Any damage due to inflammation of the inner lining of the
intestinal mucosal membrane leads to leakage of neutrophils, resulting in the release of
calprotectin from neutrophils into the lumen, and, subsequently, into the feces [121,149].

g. Chronic rhinosinusitis (CRS)

S100 members have recently addressed another local and systemic inflammatory con-
dition in the nose, CRS. CRS patients have decreased levels of S100A7 and S100A8/A9,
according to research by Kim et al. [150]. During CRS, psoriasin and calgranulins (S100A8,
S100A9, and S100A12), which are known for their chemo-attractive properties to immune
cells, increased pro-inflammation and triggered proliferation via TLR-4 and RAGE [151,152].
Moreover, recent research by Boruk et al., confirmed that S100A9, MMP3, MMP7, MMP11,
MMP25, MMP28, and CTSK protein levels are elevated in CRS nasal tissues. The prolif-
eration of nasal epithelial cells is induced by S100A9. These findings suggest that MMP3
is sensitive to S100A9 signaling, and that both molecules contribute to nasal epithelial
cell proliferation [153]. More research is necessary to confirm whether S100A9 directly
contributes to CRS progression.

2.3.4. The Immune System Regulates the Expression of S100 Protein during Pregnancy

The mother’s immune system plays a significant role during the successful progression
of a healthy pregnancy, specifically in the establishment, maintenance, and completion of
the pregnancy. Several immune cells and factors play an essential role in the formation
and function of the placenta, which serves as a temporary physical connection between
the embryo and the mother. Successful establishment of pregnancy necessitates a delicate
balance between effector immune cells such as Th1 (T helper 1) and Th2 (T helper 2), as well
as pro-inflammatory and anti-inflammatory factors. In brief, immune cells of the immune
system begin to accumulate in the endometrium during decidualization, and perform
various functions at the maternal–embryo interface, suggesting that the immune system
plays a critical role, specifically during embryo implantation and placental connection
development, as well as during immunity generation against pathogenic disease [154,155].
During a normal pregnancy, for example, modified endometrium or decidua accommo-
date an abundance of immune cells, including 70 percent of uterine natural (uNK) cells,
20–25 percent of macrophages, 1.7 percent of uterine dendritic cells (uDC), and 3–10 per-
cent of regulatory T-cells. Furthermore, it has been demonstrated that, during the first
trimester, uDC, macrophage, and uNK cells penetrate the decidua and begin to gather near
the overwhelmed trophoblast cells, indicating that uNK cells pre-request and necessitate
to trophoblast cells invading the endometrium. In addition, uDC plays a critical role
during blastocyst implantation and decasualization, and influences angiogenic response by
hampering blood vessel maturation [156,157].

Both immune and non-immune cells can express and release the S100 protein. Calgran-
ulins, for example, are primarily released by granulocytes, the early stage of macrophages
and monocytes (myeloid cells) [158]. In addition, it is known that uNKs, macrophages,
T-regs, and neutrophils are responsible for regulating and maintaining immune responses
for a successful pregnancy. As a result, any change in the inflammatory and immunomod-
ulatory pathways could result in increased expression and release of S100 protein via
non-immune cells. Furthermore, S100 proteins, which includes S100A11, S100A10, S100A8,
S100A9, S100P, S100A6, S100G, and S100B, play an important role in pregnancy progression
from non-immune cells.

S10011 was found to be upregulated during a successful pregnancy, and it plays a criti-
cal role in embryo implantation and endometrium receptivity via the EGF-AKT pathway, as
well as increasing the TH2/TH1 ratio. S100A10, which is released by endometrium stromal
cells during the mid-secretory phase, also increases endometrium receptivity and immune
tolerance by inducing apoptosis via annexin 2 and regulating prolactin secretion. S100A8
is a protein found in the uterine fluid, embryo, and maternal vasculature that regulates
preimplantation, to prevent embryo rejection, by regulating the PIF molecular pathway
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and post-implantation maternal angiogenesis regulation. Similarly, S100P is found at a
higher level during the receptive phase of the endometrium and is released by endome-
trial stromal/epithelial cells, the placenta, and the trophoblast. It regulates endometrial
receptivity through a molecular pathway involving RAGE, MAPK, placental ERK, and
trophoblast NF-kB. After implantation, S100A6 (calcyclin) is found in higher concentra-
tions in the decidua to induce placental lactogen (human chorionic somatomammotroph
(CSH) or human chorionic lactogen) secretion from the placenta and trophoblast. It is
also secreted by the uterus’ NK cells during pregnancy. S100G expression is low during
embryo implantation via epithelium luminal cells and glandular epithelium, and aids
in trophoblast invasion by inducing apoptosis and increasing free calcium. To control
calcium channel function, luminal and glandular epithelial cells secrete more S100B during
the luteal phase than during the follicular phase during embryo implantation [159,160].
The S100 protein is primarily involved in embryo adhesion/implantation, endometrial
receptivity, immune tolerance, prolactin secretion, and endometrial epithelial cell apoptosis,
implying conclusively that it is a hallmark marker for the onset of decasualization [159].

In brief, during normal pregnancy, active homo- and heterodimer formation and
expression of the S100 protein are necessary for proper embryo adhesion, immune tolerance,
and decidualization. In addition, by increasing IL-10 and decreasing other cytokines (such
as TNF-α, INF-
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, IL-2, and IL-12), myeloid cells, such as uNK, T-reg, macrophages, and
neutrophils, maintain the delicate balance between Th1/Th2 or pro/anti-inflammatory
ratios to establish a satisfactory innate and adaptive response (Figure 8). Therefore, any
alteration due to pathological conditions in cytokine release and count of myeloid cells due
to any circumstances could lead to a disturbance in Th1/Th2 or pro/anti-inflammatory
ratios, resulting in an alteration in the expression of S100 protein by immune non-immune
cells. This results in altered S100 protein expression, which causes pregnancy-related
complications, such as embryo implantation failure, immune tolerance dysregulation, and
improper decidualization or decidua formation [160–163].
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According to a recent report, S100A8 levels in the peripheral blood are elevated in 
preeclampsia during pregnancy. In addition, differences in inflammatory factor expres-
sion have been discovered as preeclampsia progresses. For example, late-onset severe 
preeclampsia (LS-PE) has higher transcriptional expression of pro-inflammatory cyto-
kines and lower levels of anti-inflammatory cytokines than early-onset severe preeclamp-
sia (ES-PE). Furthermore, S100A8 expression strongly correlates with IL-12, IL-6, and 
TNF-α and negatively correlates with IL-10, indicating that inflammatory cytokines and 
S100 protein interact during preeclampsia [164].  

3. Conclusions 
S100 proteins have been demonstrated to be required by many species for their de-

fense systems. In addition, S100 isoforms serve as an alarm, antimicrobial peptide, pro-
inflammatory stimulant, chemoattractant, and metal scavenger during an innate immune 
response. Thus, they are critical in the treatment of autoimmune diseases. In this review, 
we explored the several roles of S100 in the immune system and its related processes. First, 
the S100-family molecular-binding factors control immunological processes. Second, in-
creasing data suggest that the S100 protein acts as an inflammatory regulator. On the other 
hand, phagocytic cells that are in close proximity to inflamed tissues produce S100A8, 
S100A9, and S100A12. Third, extracellular S100 regulates cell death, differentiation, pro-
liferation, and chemoattraction (migration) in a variety of cell types, including immuno-
logical, epithelial, stromal, fibroblast, neuron, endothelial, and smooth muscle cells. Forth, 
S100 proteins possess antimicrobial activity. Finally, correlation between S100A6, S100B, 
S100A8, S100A9, S100A12, and S100P and COVID-19 pathogenesis is discussed. In addi-
tion, an increase surge in S100A8 and S100B is associated with mild to severe COVID-19 
pathogenesis. Increased levels of both proteins could be used as a biomarker for the prog-
nosis of COVID-19 patients. We have shown, in detail, how S100 proteins work in neutro-
phils, macrophages, inflammation, ageing, pregnancy, and other autoimmune diseases. 

Author Contributions: S.A.A. performed the conceptualization; P.S. collected the data and pre-
pared the original draft; P.S. and S.A.A. reviewed and edited. All authors have read and agreed to 
the published version of the manuscript. 

Figure 8. The interaction of S100 proteins with immune cells to control different characteristic stages
of pregnancy is depicted in this diagram. TNF-α, tumor necrosis factor-alpha; uNK, natural uterine
killer; IFN-γ, interferon-gamma; IL, interleukin; TH, T helper. Created with BioRender.com.

According to a recent report, S100A8 levels in the peripheral blood are elevated in
preeclampsia during pregnancy. In addition, differences in inflammatory factor expres-
sion have been discovered as preeclampsia progresses. For example, late-onset severe
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preeclampsia (LS-PE) has higher transcriptional expression of pro-inflammatory cytokines
and lower levels of anti-inflammatory cytokines than early-onset severe preeclampsia (ES-
PE). Furthermore, S100A8 expression strongly correlates with IL-12, IL-6, and TNF-α and
negatively correlates with IL-10, indicating that inflammatory cytokines and S100 protein
interact during preeclampsia [164].

3. Conclusions

S100 proteins have been demonstrated to be required by many species for their de-
fense systems. In addition, S100 isoforms serve as an alarm, antimicrobial peptide, pro-
inflammatory stimulant, chemoattractant, and metal scavenger during an innate immune
response. Thus, they are critical in the treatment of autoimmune diseases. In this review, we
explored the several roles of S100 in the immune system and its related processes. First, the
S100-family molecular-binding factors control immunological processes. Second, increasing
data suggest that the S100 protein acts as an inflammatory regulator. On the other hand,
phagocytic cells that are in close proximity to inflamed tissues produce S100A8, S100A9,
and S100A12. Third, extracellular S100 regulates cell death, differentiation, proliferation,
and chemoattraction (migration) in a variety of cell types, including immunological, epithe-
lial, stromal, fibroblast, neuron, endothelial, and smooth muscle cells. Forth, S100 proteins
possess antimicrobial activity. Finally, correlation between S100A6, S100B, S100A8, S100A9,
S100A12, and S100P and COVID-19 pathogenesis is discussed. In addition, an increase
surge in S100A8 and S100B is associated with mild to severe COVID-19 pathogenesis. In-
creased levels of both proteins could be used as a biomarker for the prognosis of COVID-19
patients. We have shown, in detail, how S100 proteins work in neutrophils, macrophages,
inflammation, ageing, pregnancy, and other autoimmune diseases.
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