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Nitroxyl Radical as a Theranostic Contrast Agent
in Magnetic Resonance Redox Imaging
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Abstract

Significance: In vivo assessment of paramagnetic and diamagnetic conversions of nitroxyl radicals based on cyclic
redox mechanism can be an index of tissue redox status. The redox mechanism of nitroxyl radicals, which enables
their use as a normal tissue-selective radioprotector, is seen as being attractive on planning radiation therapy.
Recent Advances: In vivo redox imaging using nitroxyl radicals as redox-sensitive contrast agents has been
developed to assess tissue redox status. Chemical and biological behaviors depending on chemical structures of
nitroxyl radical compounds have been understood in detail. Polymer types of nitroxyl radical contrast agents
and/or nitroxyl radical-labeled drugs were designed for approaching theranostics.
Critical Issues: Nitroxyl radicals as magnetic resonance imaging (MRI) contrast agents have several advan-
tages compared with those used in electron paramagnetic resonance (EPR) imaging, while support by EPR
spectroscopy is important to understand information from MRI. Redox-sensitive paramagnetic contrast agents
having a medicinal benefit, that is, nitroxyl-labeled drug, have been developed and proposed.
Future Directions: A development of suitable nitroxyl contrast agent for translational theranostic applications
with high reaction specificity and low normal tissue toxicity is under progress. Nitroxyl radicals as redox-
sensitive magnetic resonance contrast agents can be a useful tool to detect an abnormal tissue redox status such
as disordered oxidative stress. Antioxid. Redox Signal. 36, 95–121.

Keywords: theranostics, redox imaging, nitroxyl radical, redox-sensitive contrast agent, magnetic resonance
imaging, electron paramagnetic resonance

Introduction

The term ‘‘redox’’ is a word created by combining re-
duction and oxidation. Reduction means receiving an

electron and oxidation means losing an electron; therefore,
reduction and oxidation, that is, a redox reaction, occur si-
multaneously. Redox is the exchange of an electron between

molecules. All life is maintained by systematically regulated
redox reactions. An exogenous compound introduced into a
living cell system is reduced or oxidized according to the
tissue redox status/balance. The tissue redox status is an in-
dex of activity or condition of cells constituting the tissue. A
hypoxic environment in cancer/tumor tissue produced by
uncontrolled vasculature may shift the redox balance in the
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tissues/cells (18, 36, 134). Collapsed vasculatures in wound
tissue make tissue hypoxic and shift the redox status in tissue
(82, 141, 160). Pathological conditions in tissues/cells, such
as inflammation, can also alter the tissue redox status
(63, 130).

Redox imaging, which can visualize the redox status of a
target tissue/organ noninvasively, was developed as a diag-
nostic technique for analyzing redox physiology, investigat-
ing oxidative stress in animal pathophysiological models, and
improving radiation therapy. Redox sensing using nitroxyl
radicals was initially developed in the field of in vivo electron
paramagnetic resonance (EPR) spectroscopy (3, 46, 65, 132).
The historical development of in vivo EPR instruments and
techniques was well summarized in previous review articles
(10, 169). Nitroxyl radicals are stable free radical species
when dry or dissolved in pure water, and they are directly
detectable by EPR at room temperature. The nitroxyl radicals
are reduced to corresponding hydroxylamines when admin-
istered to a living experimental animal (64, 121, 131). The
rate constant of this in vivo reduction of nitroxyl radicals
varies according to oxidative stress (144, 178, 184). An un-
balanced tissue redox status, that is, faster or slower reduction
rate of nitroxyl reduction beyond a normal range, can be
considered an index of failure of redox metabolism in the
tissue (102).

Since the early 2000s, nitroxyl radicals have been used as a
redox-sensitive contrast agent, which was so-called spin
probe at that time, in EPR imaging (EPRI) experiments (99,
104, 180, 189). When combined with EPRI, the distribution
and time course of nitroxyl contrast agents in tissues can be
observed (118, 123, 166). Although the temporal resolution
of EPRI in that time was in the order of minutes due to the
magnetic field scans based on continuous wave (CW) mo-
dality, the current temporal resolution of CW EPRI has
markedly improved (159).

Nitroxyl radical compounds, which have an unpaired
electron, are paramagnetic species and exert T1-shortening
effects on nuclear spin similar to gadolinium compounds.
Therefore, nitroxyl radical in an aqueous sample can be de-
tected by enhanced T1-weighted contrast on magnetic reso-
nance imaging (MRI). Mapping of the in vivo redox status of
a target tissue, such as cancer/tumor, can be achieved by T1-
weighted MRI with nitroxyl radicals as the contrast agent
(119). Spatial and temporal high-resolution redox mapping of
a particular slice is possible with excellent anatomical in-
formation from MRI.

Overhauser-enhanced MRI (OMRI) or proton electron
double resonance imaging (PEDRI) is another magnetic
resonance technique for imaging nitroxyl radicals in vivo
(123, 166). These techniques can produce and observe dy-
namic nuclear polarization (DNP) effect in vivo by injecting a
nitroxyl radical compound into experimental animals (24, 41,
186). Nitroxyl compounds are not suitable for producing
better DNP effects due to the relatively broad EPR line width,
that is, fast relaxation time, even using a 15N-labeled nitroxyl
radical compound. However, OMRI can observe spectral
information based on EPR and high image resolution based
on MRI, and therefore this multimodality is advantageous for
future theranostic approaches.

In this review, the authors describe the detection and
analysis of redox reactions using a stable nitroxyl radical
probe in vitro and in vivo. Recent applications of imaging the

tissue redox status using stable nitroxyl radicals as redox-
sensitive MRI contrast agents are also discussed. In addition,
theranostic approaches and/or translational applications of
magnetic resonance (MR) redox imaging techniques are
introduced.

Chemistry and Redox Properties of Nitroxyl Radicals

Cyclic nitroxyl radicals with methyl groups at the carbons
adjacent to the nitrogen are stable under ambient conditions
and exhibit unique redox properties. Recently, their detailed
chemical and electrochemical properties were reviewed
(105, 106, 142). They (2,2,6,6-tetramethylpiperidine-N-oxyl:
TEMPO as a representative example) undergo reversible
one-electron oxidation reactions to produce the correspond-
ing oxoammonium cations (oxoammonium form of TEMPO
[TEMPO+]) (Fig. 1). A reversible cyclic voltammogram was
first reported for TEMPO in 1973 (177). The six-membered
ring nitroxyl radicals are generally oxidized at lower poten-
tials than the five-membered ring compounds (11, 76, 111).
The greater flexibility of the six-membered ring enables the
nitrogen center to planarize more easily upon oxidation than
the five-membered ring. The electron-donating groups on the
ring stabilize the positive charge on the oxoammonium cat-
ions, resulting in the negative shift in the oxidation potentials.
Furthermore, a significant negative shift in the oxidation
potentials of carbamoyl-PROXYL (3-carbamoyl-2,2,5,5-
tetramethylpyrrolidine-N-oxyl) and TEMPOL (4-hydroxy-
2,2,6,6-tetramethylpiperidine-N-oxyl or 4-hydroxy-TEMPO)
was reported with increasing solvent polarity (111). The
stabilization of the oxoammonium cations by the solvent via
dipolar interaction leads to a negative shift. The effects of the
structure of the nitroxyl radicals on the oxidation potentials
have been examined, and a good correlation was demon-
strated between experimental oxidation potentials and theo-
retical values estimated by density functional theory
calculations (108, 193).

FIG. 1. Redox and acid–base chemistry of TEMPO.
TEMPO, 2,2,6,6-tetramethylpiperidine-N-oxyl.
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Cyclic nitroxyl radicals were reported to undergo chemical
oxidation by hydroxyl radicals (�OH), hydroperoxyl radical
(HO2

�), RO2
�, �NO2, and CO3

�- (55, 56, 58, 155). The rate
constants correlate with their oxidation potentials. The in-
volvement of electron transfer in the reaction of carbamoyl-
PROXYL with cumylperoxyl radical was demonstrated by
the acceleration in the presence of a redox-inactive metal ion
(137), which is known to act as a catalyst in the electron
transfer reactions (48, 49).

The reduction processes of the nitroxyl radicals strongly
depend on the pH of the solution (89) because they are coupled
with proton transfer (Fig. 1). The electrochemical reduction of
the cyclic nitroxyl radicals has also been reviewed in detail
(105, 106, 142). A marked change in the cyclic voltammo-
grams depending on pH was reported for the reduction of
several cyclic nitroxyl radicals (89). Recently, Stahl and col-
leagues reported a full Pourbaix diagram of TEMPO (Fig. 2),
providing valuable information about the pH dependence of its
redox properties (52). The reduction potentials of TEMPO
shift to the negative direction as the pH of the solution in-
creases, whereas the oxidation potential is pH insensitive.

The 6-membered ring nitroxyl radicals are also reduced at
lower potentials than the 5-membered ring radicals due to the
flexibility of the ring structure. Furthermore, the substituent
effects on the reduction potentials of cyclic nitroxyl radicals
were reported (112, 133).

The cyclic nitroxyl radicals are chemically reduced to the
corresponding hydroxylamines by biological reductants such as
ascorbate (12, 53). Yamada and colleagues demonstrated that
the reduction rates of cyclic nitroxyl radicals by ascorbate cor-
relate well with their reduction potentials and Gibbs free energy
changes (DG) (185). When the DG is negative, reduction of the
nitroxyl radicals by ascorbate occurs spontaneously, whereas
no reduction occurs in the case of a positive DG. The in-
volvement of hydrogen tunneling at room temperature was re-
ported based on large kinetic isotope effects (KIE, kH/kD) in
the reduction of TEMPO by ascorbate in water (kH/kD = 24.2)

and water–dioxane mixed solvent (1:1 v/v; kH/kD = 31.0) at
room temperature (87, 153). A large KIE of 12.8 was also ob-
served for the reaction of ascorbate with 2-phenyl-4,4,5,5-
tetramethylimiazolione-1-oxide (PTIO�) in a phosphate buffer
solution at ambient temperatures (138). Thus, quantum tunnel-
ing plays a role in the reduction of nitroxyl radicals by ascorbate.

Recently, the catalytic (redox) cycle of TEMPO in the
reaction with peroxyl radicals (ROO�) in aqueous solution
was proposed by Pratt and colleagues (Fig. 3) (62). TEMPO
scavenges ROO� via electron transfer to produce TEMPO+

and ROO-. Then, a hydride donor, such as NAD(P)H or
tetrahydrofuran (THF), converts TEMPO+ to the corre-
sponding hydroxylamine (TEMPO-H). The conversion of
TEMPO+ to TEMPO-H by NADH was demonstrated to be
via a two-electron transfer reaction (55). TEMPO-H can also
scavenge ROO� via hydrogen-atom transfer to regenerate
TEMPO. However, turnover is limited at a low pH due to the
protonation of TEMPO-H because the pKa of TEMPO-H2

+,
which is not a hydrogen-atom donor, is 7.34 (Fig. 3). Under
hypoxic conditions, the reaction of R� with oxygen (O2) to
produce ROO� hardly occurs, thus TEMPO is consumed
faster by the reaction with R� to produce TEMPO-R than
under aerobic conditions. Furthermore, in the absence of O2,
the oxidation of R� by TEMPO+ takes place to produce R+

and TEMPO (bottom-left dashed arrows in Fig. 3). Under
acidic conditions, a comproportionation between TEMPO+

and TEMPO-H occurs to produce two molecules of TEMPO
(middle dashed arrow in Fig. 3).

Cyclic nitroxyl radicals were demonstrated to be irre-
versibly consumed in the presence of thiols (57). The oxi-
dation of thiols by reactive radicals, such as �OH, �NO2, and
CO3

�-, leads to the corresponding thiyl radicals (RS�). RS�

reacts with the nitroxyl radicals (>NO�) to produce the adduct
>NOSR. Under physiological conditions >NOSR is decom-
posed to the corresponding amine (>NH) (57). These redox
conversions are highly informative regarding the chemical
reactivity of nitroxyl radicals as in vivo spin probes.

FIG. 2. Pourbaix diagram of TEMPO in buffered
aqueous solutions. [Adapted with permission from Gerken
et al. (52). Copyright 2018 American Chemical Society.]

FIG. 3. Redox cycle of TEMPO in the reaction of
ROO�. ROO�, peroxyl radical. [Adapted with permission
from Griesser et al. (62). Copyright 2018 American Che-
mical Society.]
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Development of Redox Sensing into Redox Imaging

Nitroxyl radicals as a T1 contrast agent

In the early 1980s, the use of nitroxyl free radicals as T1

contrast agents in MRI was examined (13). However, ni-
troxyl radicals were not considered optimal as MR contrast
agents due to their low T1-relaxivity (r1) and rapid in vivo
reduction at that time. Current MRI scanners operating with a
higher magnetic field, a better signal-to-noise ratio, and ef-
ficient pulse sequences make it possible to reconsider nitroxyl
radicals as potential T1 contrast agents.

The indirect detection of nitroxyl radicals based on proton
MR T1 contrast is not quantitative. However, the low r1 of
nitroxyl radicals gives an almost linear relationship be-
tween T1 enhancement and the concentration of a contrast
agent in a lower concentration region (117). T1-weighted
images of an identical phantom containing several concen-
trations of solutions of a nitroxyl radical, MC-PROXYL
(3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl),
scanned with the same fast low angle shot (FLASH) sequence
using 1- and 7 T scanners are shown in Figure 4 (135). The r1

of nitroxyl radicals was estimated to be 0.27 mM-1$s-1 at 1 T
and 0.14 mM-1$s-1 at 7 T, and good linearity was observed for
the relationship between T1 enhancement and the concentra-
tion when the concentration was <3 mM. A plot of simulated
values of T1-weighted gradient echo MR contrast versus the
concentration of nitroxyl radicals calculated using a r1 of
0.14 mM-1$s-1 is shown in Figure 5. The simulation revealed
an almost linear relationship between percentage signal am-
plification of T1-weighted image (DM%) and the concentra-
tion of nitroxyl contrast agent with an R2 = 0.9991 when the
concentration range was <3 mM (Fig. 5C). Although the decay
rate of DM% was slightly different from the true reduction rate
of nitroxyl radicals, the differences were sufficiently small
when parameters in practical ranges were used (117).

Loading decay rate of nitroxyl radicals on the image

By attaching an additional dimension to a simple distri-
bution image, we can obtain functional information from a set
of images. The time axis is easily attached by sequential
measurement of several images (118, 123). Consequently,
EPR signal decay rates calculated in a pixel-wise manner,
namely decay rate mapping, can be obtained.

Evidence of a faster decay rate of nitroxyl radicals in tumor
tissues was obtained from EPRI experiments (101, 166). A
nitroxyl radical called carbamoyl-PROXYL decayed faster in
a RIF-1 tumor than in the normal tissue (101). Another study
also reported that carbamoyl-PROXYL decayed faster in a
SCCVII tumor than in the normal tissue (166).

The MR signal is composed of the intrinsic signal of the
tissue and enhancement with nitroxyl contrast agent. To
calculate the contribution of nitroxyl radicals to the enhanced
T1-weighted MR signal, the baseline signal, that is, intrinsic
T1-weighted signal of tissue before the administration of
contrast agent, must be subtracted from that after the admin-
istration of contrast agent (Fig. 6). The MR signal was com-
posed of tissue T1 and nitroxyl radical-induced T1 signals.

The time course of chemical reduction of a nitroxyl radical
using ascorbate was compared by EPRI and T1-weighted
MRI (Fig. 7) (119). MRI yields a higher spatial and temporal
resolution than EPRI, but the resulting decay rates are

FIG. 4. A comparison of percentage signal amplifica-
tion of T1-weighted image (DM%) and T1-relaxivity (r1)
of a nitroxyl radical, MC-PROXYL, between different
magnetic fields 1 and 7 T. An identical 7-tube phantom was
scanned by FLASH (TE = 5.1 ms, TR = 75 ms, FA = 45�),
and T1-weighted images at (A) 1 T and (B) 7 T were ob-
tained. The number indicated in (A) is the concentration of
MC-PROXYL. The center tube contains water. (C) Re-
lationships of DM% and concentrations of MC-PROXYL
were almost linear. (D) T1 relaxation rates (R1) observed
from T1 mapping of the phantom were plotted versus the
corresponding concentration of MC-PROXYL, and r1 was
obtained from slopes of the plots as 0.27 mM-1$s-1 for 1 T
and 0.14 mM-1$s-1 for 7 T. FA, flip angle; FLASH, fast low
angle shot; MC-PROXYL, 3-methoxycarbonyl-2,2,5,5-
tetramethylpyrrolidine-N-oxyl; TE, echo time; TR, repetition
time. The figure was partly modified from our previous report
(135).
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similar. The decay rate obtained from MR T1 contrast can be
handled as a proxy-decay rate, which is not the same as the
original EPR decay rate, but the theoretical error between the
proxy- and original EPR decay rates is sufficiently small
under biological conditions (117).

Advantages of MR detection of nitroxyl contrast agents

A relatively broad EPR linewidth and hyperfine splitting
make the EPR signal intensity low in EPRI. The signal/noise
ratio of EPR images decreases depending on the complica-

tion of hfs and linewidth (anisotropy) even if deconvolution
techniques are used to remove spectral information (123). T1-
weighted MRI can simplify the detection of nitroxyl contrast
agents. This may be a great advantage to modify nitroxyl
contrast agents chemically and to design organ/tissue speci-
ficity for in vivo use. The lower quantification ability of T1-
weighted MRI may not be problematic for redox estimation.
Detection of nitroxyl by T1-weighted MRI is fast and pro-
vides high resolution.

Coupling multiple nitroxyl molecules can improve the T1-
weighted contrast effects of nitroxyl-based contrast agents
(124). A good linear relationship was obtained between T1-
weighted image enhancement and the concentration of the

FIG. 5. Relationship between the concentration of ni-
troxyl contrast agent and simulated DM% of T1-weighted
image. (A) DM% increased with the concentration of para-
magnetic nitroxyl contrast agent, then peaked and decreased.
(B) The relationship between DM% and concentration of
nitroxyl contrast agent slightly curved at the lower concen-
tration region <10 mM. (C) Fairly good linearity
(R2 = 0.9991) was obtained between the simulated DM% and
concentration of nitroxyl contrast agent for the concentration
region <3 mM. Values used for the simulation were as fol-
lows: r1 = 0.14 mM-1$s-1, M0 = 1000, TR = 75 ms, TE = 5.1
ms, FA = 45�, T1 of water = 2350 ms, and T2* = 50 ms.

FIG. 6. A schematic drawing of the concept of MR
redox imaging. The additional time dimension to the 2D or
3D mapping of the contrast agent can provide functional
information such as pharmacokinetics of the nitroxyl radi-
cal. The time axis can be provided by repeated scanning of
an identical ROI. The DM% of the T1-weighted image,
which is the contribution of T1 enhancement by nitroxyl
radicals, was obtained by subtracting the baseline image
from those observed after administration of the contrast
agent. As a result, pixel-wise decay rates of nitroxyl radicals
can be obtained. 2D, two dimensional; 3D, three dimen-
sional; MR, magnetic resonance; ROI, region of interest.
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contrast agent up to three spins in a molecule. The r1 levels of
nitroxyl contrast agents increase depending on the number of
nitroxyl spins in a molecule. Although the coupling of mul-
tiple nitroxyl molecules broadens its EPR spectrum and
makes EPRI difficult, T1-weighted MRI techniques enable
the mapping of the multispin nitroxyl contrast agents. How-
ever, support by EPR spectroscopy remains important to
understand information from MRI.

Mapping the in vivo nitroxyl decay rate in a SCCVII tumor
on the mouse thigh was measured using MRI (119). The
location of the axial slices including the SCCVII tumor and
normal leg of a mouse is shown in Figure 8A. T1 contrast was
enhanced in both normal and tumor tissues after the admin-
istration of carbamoyl-PROXYL, and then it gradually de-
creased (Fig. 8B). The time course of T1 contrast in the region
of interest (ROI)-1 and ROI-2 is shown in Figure 8C. The
tumor region exhibited a faster decay rate than the normal
region. The decay rate mapping (Fig. 8D) demonstrated a
notable difference in decay rates between tumor tissue and
the normal tissue. The difference between tumor tissue and
normal tissue remained around the tumor tissues and was
clear due to the high spatial resolution.

Redox information rather than clearance

Hydroxylamine can be easily oxidized to the correspond-
ing nitroxyl radical by adding a strong oxidant such as po-
tassium ferricyanide. Then, the total amount of contrast agent
in the tissue, including the nitroxyl radical form plus hy-
droxylamine form, can be measured by EPR. The time course
of the total amount of contrast agent in both the tumor and
normal tissues was stable during the time period used in the
imaging experiment (Fig. 9). Therefore, the in vivo disap-
pearance of EPR signal and T1 contrast induced by a nitroxyl
contrast agent is due to reduction (119).

The pharmacokinetics of three different nitroxyl con-
trast agents with different membrane permeability were in-
vestigated (79). TEMPOL is an amphiphilic molecule with
high membrane permeability. Carbamoyl-PROXYL has
slight membrane permeability. However, carboxy-PROXYL
(3-carboxy-2,2,5,5-tetramethylpyrrolidine-N-oxyl) is mem-
brane impermeable. T1-weighted signal amplification
(DM%) images and pharmacokinetic profiles after the
administration of nitroxyl contrast agents are shown in
Figure 10. The concentration of the free radical forms of
nitroxyl contrast agents in the tissue calculated based on the
enhancement of T1 contrast and the concentration of the total
amount of contrast agents according to EPR measurement
were compared (Fig. 10, lower panels). For TEMPOL and
carbamoyl-PROXYL, T1 contrast decay curves demonstrated
faster decay than that of the total contrast agents. Carboxy-
PROXYL, however, exhibited similar decay slopes between
T1 contrast and the total contrast agent. Cell-impermeable
nitroxyl radicals are stable against reduction. Redox imaging

‰

FIG. 7. A comparison of chemical reduction courses of
a nitroxyl radical monitored by EPRI or T1-weighted
spoiled gradient echo MRI. (Upper panel) A phantom used
for experiments. (Left column of lower panel) A time course
of EPR images and the signal decay profile in the ROI.
(Right column of lower panel) A time course of DM% signal
of T1-weighted MRI and the signal decay profile in the ROI.
An identical cylindrical phantom (internal diameter,
1.27 cm) was set in the 30 · 50 mm (diameter · length) Litz
resonator operating at 300 MHz EPR or a birdcage-type
MRI coil. The cylinder was previously filled with 50 mM
phosphate buffer (pH 7.4). The same volume of 4 mM
carbamoyl-PROXYL solution and 10 mM AA solution was
simultaneously delivered into the cylinder with the same
flow rate using a stopped-flow system; then the flow was
stopped after the internal volume of the cylinder was re-
placed by the reaction mixture. Scans were started 5 min
before the starting reaction and repeated at 2.3-min intervals
for EPRI and 30-s interval for MRI. The signal decay rates
were obtained from the slope of the linear portion of the
decay curves. AA, ascorbic acid; carbamoyl-PROXYL, 3-
carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl; EPR,
electron paramagnetic resonance; EPRI, EPR imaging;
MRI, magnetic resonance imaging. The figure was partly
modified from our previous report (119).
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techniques using a combination of a membrane-permeable
nitroxyl radical and dynamic scanning T1-weighted MRI can
provide redox information for the target tissue.

Approaches of redox imaging to planning radiation
therapy

Ionizing radiation ionizes or excites water molecules, and
then generates �OH, hydrogen radicals (�H), hydrated elec-
trons (e-

aq), and other ions (129). Due to its markedly high
reactivity, �OH is generally considered to be the major oxi-
dative attacker in radiation biology. Molecular O2 can react
with �H to make a HO2

� and superoxide (O2
�-). Hydrogen

peroxide (H2O2) can be generated by the reaction of 2 HO2
�

or reaction of 2 �OH. As 70%–80% of the body volume is
composed of water molecules, 70%–80% of the effects of
ionizing radiation are due to indirect actions, in which di-
rectly generated reactive species by water radiolysis or sec-
ondary generated species attack biological molecules.
Therefore, most of the effects of radiation are due to the
oxidative stress by such reactive oxygen species (ROS).

The results of radiation therapy would be affected by
physiological and/or pathological conditions in the target
tissues, especially by the low partial oxygen pressure (pO2) in
cancer/tumor tissues. The tissue pO2 affects the yield of
secondary ROS such as H2O2, O2

�-, and/or other reactive
species in the tissue (122). Therefore, the tissue pO2 and/or
accompanying tissue redox status is important for the effec-
tiveness of radiation therapy. For safer and more accurate
cancer/tumor radiation therapy, a diagnostic method for tis-
sue pO2 and/or tissue redox status using a noninvasive
functional imaging technique is required (123, 166).

The time course of redox status in the mouse brain after
irradiation by X-rays or carbon-ion-beams was investigated
(136). The signal decay rate k1 decreased several hours after
irradiation, and then gradually recovered to the original level
after X-ray irradiation; however, it mostly recovered or ex-
ceeded the original level 1 day after carbon-beam irradiation
(Fig. 11). The decrease in k1 observed several hours after ir-
radiation may be due to reduced blood flow because both de-
cay rates at the later time window k2, which reflects clearance
rather than reduction of nitroxyl radicals, and maximum signal

FIG. 8. An example of MR-
based redox imaging. (A) Direc-
tion of the slice view of MRI with
respect to the subject mouse. (B)
Time course of DM% signal of T1-
weighted MRI and scout T2 map-
ping for ROI selection. Time after
injection is indicated in each im-
age. ROI-1 for normal leg and ROI-
2 for tumor leg were estimated
based on previous T2 mapping. The
field of view was 3.2 · 3.2 cm. (C)
Time course of average DM% sig-
nal in ROI-1 and ROI-2. Logarith-
mic values of DM% signal in the
ROIs are plotted against time. De-
cay rate constants were obtained
from the slope of linear decay after
the peak. (D) The decay rate map
overlapped on the corresponding
multislice multiecho image shows
the distribution of decay rates with
clear anatomic information. The
figure was partly modified from our
previous report (119). Color images
are available online.
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intensity temporally decreased several hours after irradiation.
The brain exhibited different responses to X-rays and carbon
beams. Ionizing radiation can affect the brain tissue redox
status for a week, and redox imaging can visualize the tissue
status that was not visually discernable.

The biological effects of radiation persist, causing symp-
toms at a late stage even if there were no visible symptoms at
an early stage after irradiation. The prognosis and prevention
of late-onset disorders of radiation can be investigated using
redox imaging.

Approaches of MR redox imaging for theranostic
applications

The mechanism of the radioprotection effects of TEMPOL
on the salivary gland was analyzed using MR redox imaging
(20). A SCCVII tumor was prepared on the right front leg of

mice to obtain the salivary gland and tumor tissue in an iden-
tical slice (Fig. 12A). Increased T1-weighted MR signal induced
by TEMPOL quickly appeared and peaked at 1 min, and then
gradually disappeared (Fig. 12B). Natural logarithmic values of
TEMPOL-mediated MR intensity in normal muscle, tumor, and
salivary gland were plotted as a function of time after the in-
jection of TEMPOL, and then decay rates were obtained from
the slopes (Fig. 12C). The decay rate in MR intensity was
similar for normal leg tissue and the salivary gland; however,
the decay rate was significantly faster in the tumor (Fig. 12D).
The differential radioprotection by TEMPOL resides in the
faster reduction to the nonradioprotective hydroxylamine in the
tumor than in normal tissues.

The hypoxic environment in tumor tissues inhibits reoxida-
tion of a hydroxylamine to the corresponding nitroxyl radical,
and the apparent reduction rate consequently markedly in-
creases. Hyodo et al. (78) reported that the reduction rate of a
nitroxyl radical increased as a function of tumor size (Fig. 13).
The markedly higher reduction rates of nitroxyl contrast agents
in tumors than in normal tissues can be exploited for diagnosis.

Different redox environment between normal and tumor
tissues causes the difference in concentration of nitroxyl
radicals between normal and tumor tissues after administra-
tion. The concentration of the free radical form in the tumor
tissue rapidly decreases and remains around zero; however,
that in the normal tissue remains slightly higher due to re-
oxidation of the hydroxylamine form. The nitroxyl contrast
agents can be normal tissue-selective radioprotectors in ra-
diation therapy, which may be carried out after the diagnosis.
The nitroxyl contrast agents can be used twice during radi-
ation therapy, first as a redox probe and second as a radio-
protector for normal tissues.

Another future possibility of nitroxyl contrast agents is in
brain imaging (23, 118, 125). There are several nitroxyl radicals
with the ability to permeate the cell membrane because their
membrane permeability can be easily regulated by altering a
part of the molecule. Nitroxyl-induced T1 contrast in the mouse
head is shown in Figure 14. Different distributions of nitroxyl
contrast agents in the brain are observed depending on blood–
brain barrier (BBB) permeability. Membrane-impermeable
carboxy-PROXYL resulted in no T1 contrast in the brain
(Fig. 14A), whereas carbamoyl-PROXYL, which has slight
membrane permeability, partly induced T1 contrast in the brain
(Fig. 14B). Highly permeable MC-PROXYL, 23c [4-(N-
methylpiperidine)-2,2,5,5-tetramethylpyrroline-N-oxyl] (23),
and TEMPOL demonstrated high T1 contrast induction in the
entire brain (Fig. 14C, E, F). CxP-Am (acetoxymethyl-2,2,5,5-
tetramethyl-pyrrolidine-N-oxyl-3-carboxylate), which is a BBB-
permeable molecule, was hydrolyzed to membrane-impermeable
carboxy-PROXYL in the brain and remained there for a long time
(Fig. 14D) (157). The structures of BBB-permeable nitroxyl
probes are shown in Supplementary Figure S1.

Investigations of in situ or in vivo drug delivery using
nitroxyl-labeled drugs have long been conducted in the field
of EPRI (39, 40, 45). In MRI, Zhelev et al. (196) successfully
visualized that i.v.-injected TEMPO-labeled nitrosourea
(SLENU), which is an anticancer drug labeled by a nitroxyl
radical, could penetrate through BBB and distribute into
whole brain. This is to say a redox-sensitive paramagnetic
contrast agent has a medicinal benefit and vice versa. Using
such a hybrid contrast agent, the distribution of the drug and
additionally tissue redox status could be observed.

FIG. 9. Time course of total (nitroxyl radical
form1hydroxylamine form) amount of carbamoyl-
PROXYL in the normal muscle (black circle) and tumor
tissues (gray circle) after the i.v. injection of the nitroxyl
radical form of carbamoyl-PROXYL. Each tissue from
each mouse was homogenized, and then K3[Fe(CN)6] was
added to the homogenate to make the final concentration
2 mM for oxidizing the hydroxylamine form to the nitroxyl
radical form. The homogenate from each mouse was mea-
sured by X-band EPR in triplicate. Marks and error bar in-
dicate the average – SD of three mice. The horizontal lines in
the figure are obtained by least-squares fitting for the values
of normal and tumor tissues. SD, standard deviation. The
figure was partly modified from our previous report (119).
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FIG. 10. Comparison of pharmacokinetic profiles of three nitroxyl contrast agents by T1-weighted MRI. (Upper
image panels, Slice 1) DM% images of a 2 mm-thick slice containing the normal left leg (Mu) and tumor planted on the
right leg (Tu) scanned after the administration of TEMOPL (left), carbamoyl-PROXYL (center), or carboxy-PROXYL
(right). The time after injection is indicated in each image. (Lower image panels, Slice 2) DM% images of a 2 mm-thick
slice containing the artery and the right and left kidneys, Ki(R) and Ki(L) simultaneously obtained for the same mouse in
Slice 1. (Lower panels) The pharmacokinetic profiles of the oxidized form and total (nitroxyl radical form+hydroxylamine
form) TEMPOL (left), carbamoyl-PROXYL (center), and carboxy-PROXYL (right). The time course of nitroxyl radical
form in normal tissue (blue circle), tumor tissue ( purple circle), blood (red circle), and kidney (left kidney, dark green
circle; right kidney, light green circle) were obtained by T1-weighted MRI. The concentrations of total nitroxyl contrast
agent (nitroxyl radical+hydroxylamine) measured by X-band EPR spectroscopy in the corresponding tissues are indicated
by gray diamonds or black diamonds for tumor tissue. carboxy-PROXYL, 3-carboxy-2,2,5,5-tetramethylpyrrolidine-N-oxyl;
TEMPOL, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl. The figure was partly modified from our previous report (79).
Color images are available online.
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FIG. 12. Comparison of decay rates of TEMPOL in tu-
mor and normal tissues. (A) A schematic drawing of the
position of the mouse in the resonator and the slice selected for
MRI experiments. A transverse slice (2 mm) covering the
normal muscle tissue on foreleg (Mu), SG, and the tumor in the
contralateral leg (Tu) was selected to monitor the time course of
TEMPOL-induced signal. (B) T1-weighted images of the se-
lected region after i.v. injection of TEMPOL. The ROIs were
selected in the normal leg, SG, and tumor to monitor TEMPOL
decay rates. (C) Representative TEMPOL decay profiles after
i.v. injection in a mouse for the selected ROIs. (D) Summary of
decay rates from the three ROIs in normal muscle, SG, and
tumor (n = 4 for SG and n = 6 for tumor per normal leg). The
figure was partly modified from our previous report (20). Color
images are available online.

FIG. 11. The time course of redox status in the mouse
brain after irradiation by X-rays or carbon-ion-beams.
(A) Distribution of a nitroxyl contrast agent, MC-PROXYL,
in mouse brain and the time course of DM%. (B) Responses
of the k1 decay rate of MC-PROXYL in the mouse brain
after 8 Gy X-ray irradiation for a week. (C) Responses of
pharmacokinetic parameters of MC-PROXYL in the mouse
brain after 8-Gy carbon-ion-beam irradiation (290 MeV
mono beam, LET = 60 keV/lm at the surface) for a week.
The values on the y-axis (0 day) indicate those for normal
healthy mice (n = 12). Other values are indicated by the
average – SD of nine mice for X-rays and of six mice for
carbon ion beams, except for the values several hours
(0.2 day) after irradiation, which were averaged from three
mice. The figure was partly modified from our previous
report (136). The letters indicate the initial character of
corresponding brain region, and single, double, and triple
asterisk(s) or #(s) indicate grades of significance, i.e.
p < 0.05, p < 0.01, and p < 0.001, respectively. Color images
are available online.
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In addition, nitroxyl radicals itself have preventive effects
against inflammation, and the mechanisms and applications
have been investigated. Deguchi et al. (24) reported pre-
ventive effects of nitroxyl radical compounds against
indomethacin-induced gastric ulcers in rats based on OMRI
signal decay. Eguchi et al. (37) reported that daily gavage of
polymeric micelles possessing nitroxyl radicals for 4 weeks
decreases hepatic inflammation in nonalcoholic steatohepa-
titis model mice. Diagnostic processes of redox status in an
inflammatory tissue by a redox imaging with a suitable ni-
troxyl contrast agent may also be a therapeutic process.

Another design of nitroxyl radical-labeled polymer-type con-
trast agents, which have dendrimer core and lapping polyethylene
glycol chains, was proposed for MRI (139). A nitroxyl radical,
fluorophore, prodrug was loaded onto the lapping polymer, and
the polymers were conjugated on the core. This structured
polymer contrast agent simultaneously works as a drug carrier.

Nitroxyl Radical Contrast Agent for Imaging Redox
Imbalance and Oxidative Stress in Living Biological
Subjects

Imaging redox imbalance and oxidative stress
in the brain

Due to its complex structure and functions, brain is one of
the major targets for redox imaging using nitroxyl-enhanced
EPRI and MRI, especially at aging, immobilization stress,
neurodegenerative damage, hypoxia, and others (156, 179).

Yokoyama et al. published a series of studies on EPRI of
brain injuries induced in experimental animals accompanied
by the development of oxidative stress (187–191). The au-
thors’ basic concept of time-resolved EPRI of the brain is
presented in Figure 15 (190). In the brains of rats with

FIG. 13. Relationship between TEMPOL reduction
rate and tumor size. (A) T2 map of the SCCVII tumor
grown on the hind leg of the same mouse scanned at days 4
and 9. (B) Decay rates of TEMPOL in normal muscle and
tumor, and the tumor size as a function of time. The figure
presents data from experiments in our previous report (78).
Color images are available online.

FIG. 14. Distributions of nitroxyl contrast agents in the
mouse brain. T1-weighted signal enhancement in the mouse
head was observed after i.v. injection of (A) carboxy-
PROXYL, (B) carbamoyl-PROXYL, (C) MC-PROXYL,
(D) CxP-Am, (E) 23c, or (F) TEMPOL. The horizontal row
shows the time course of the T1-weighted signal enhancement.
23c, 4-(N-methylpiperidine)-2,2,5,5-tetramethylpyrroline-N-
oxyl; CxP-Am, acetoxymethyl-2,2,5,5-tetramethyl-pyrrolidine-
N-oxyl-3-carboxylate. The figure was partly modified from our
previous report (125) with some additional data. Color images
are available online.
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seizures induced by kainic acid, the half-life of the EPR
signal of the nitroxyl radical MC-PROXYL was longer in the
hippocampus than in the cortex, indicating a lower reducing
ability of the hippocampus.

These observations were confirmed by the injection of
diamagnetic acyl-protected hydroxylamine ACP, which un-
dergoes intracellular oxidation to a nitroxyl radical (188). In
this case, the authors detected EPR signal and an increase in
its intensity in the hippocampus and striatum of kainic acid-
treated animals, but not in the cortex. In other studies, the
same authors treated animals with neuroleptics known to
induce oxidative stress in the brain and analyzed the tissue
redox status using MC-PROXYL (187, 189, 191). The brain
tissues exhibited lower reducing capacity of the injected ni-
troxyl probe. This decrease in reducing capacity was also
observed in elderly rats compared with young individuals
kept under standard conditions (61, 140, 191).

One of the most widely used models for the induction of
oxidative stress in the brain is experimental ischemic–
reperfusion injury caused by reversible occlusion of the carotid
artery (‘‘middle cerebral artery occlusion model’’). This condi-
tion is accompanied by the generation of high amounts of ROS
and induction of oxidative stress in the affected areas (148).
Lower reducing capacity was also reported in this model using
MC-PROXYL as a redox-sensitive contrast probe and nitroxyl-
enhanced EPRI and MRI (77). Similar results were reported by
Yokoyama et al. (187) in an EPRI study of a rat model of
neonatal ischemia-induced reperfusion encephalopathy, using
3-(hydroxymethyl)-1-oxy-2,2,5,5-tetramethylpyrrolidine (HM-
PROXYL). Treating animals with an antioxidant abolishes (re-
moves) this effect.

Another approach to alter the tissue redox status is the
induction of septic shock by i.v. injection of lipopolysac-
charides (LPS) in animals. In this case, EPRI revealed that the
rate and degree of reduction of the HM-PROXYL spin probe
increased in all parts of the brain of LPS-treated mice (47).
Pretreatment of mice with allopurinol (xanthine oxidase in-
hibitor) or aminoguanidine (NOS inhibitor) suppressed the
effects of septic shock on the degree of HM-PROXYL re-
duction, which is indirect evidence of the role of O2

�- and
nitric oxide in the dynamics of nitroxyl contrast.

In 2013, a methodology for direct visualization of O2
�-

production in vivo in the dopaminergic area of the brain
in Parkinson’s disease was developed, based on the
redox cycle of mito-TEMPO (2,2,6,6-tetramethyl-4[[2-
(triphenylphosphonio)acetyl]amino]-1-piperidinyloxy) and
its MRI contrast (195). The experiments were conducted on
healthy and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-treated mice (Fig. 16). In healthy mice, the nitroxyl-
enhanced MRI signal in the ‘‘substantia nigra pars compacta’’
(SNpc) was weak and short lived. The histograms suggested
high reducing activity of normal brain tissues against mito-
TEMPO. In MPTP-treated mice, the nitroxyl-enhanced MRI
signal in the SNpc was strong and long lived. The histograms
suggested high oxidative activity of dopaminergic tissues in the
MPTP-treated brain. This nitroxyl-based MRI study demon-
strated that O2

�- is a major inducer and/or mediator of neuro-
degenerative damage in Parkinson’s disease in mammals.

Imaging redox imbalance and oxidative stress
in cancer

It is generally accepted that the redox signaling of cancer
cells and tissues is different from that of normal tissues due
to the hypoxic environment, increased levels of ROS (es-
pecially O2

�-), and increased amount of reducing equiva-
lents (mainly glutathione) in tumors (16, 83, 93, 97, 143,
174, 175). The effectiveness of radiation therapy and many
chemotherapeutic approaches depends on the degree of
oxygenation in tumors (19, 51). A number of studies on
cancer models have been published (22, 79–81, 101, 102,
119, 168).

Imaging is the preferred technique for functional diag-
nostics of cancer due to the heterogeneity of tumor tissues in
two aspects—their redox status and oxygenation (4, 22,
175). Therefore, spatially separated images for both are
preferred: (i) the distribution of nitroxyl contrast agent in
the tumor and its elimination from tumor tissue; and (ii)
tumor oxygenation. To achieve this goal, different ap-
proaches are used by combining EPR and MRI, and the
selection of appropriate contrast probes (50, 54, 79–81, 101,
102, 127, 147, 168, 183).

FIG. 15. EPRI of the rat brain. Left: The dynamic pattern of selected transversal EPR images of the rat head 5 mm
posterior to the bregma in the KA-treated and control groups at different times after injection of nitroxyl radicals (MC-
PROXYL). Right: Pharmacokinetic curves for brain regions. The cortical half-lives of MC-PROXYL in the control and KA
groups were 18.0 – 1.2 and 19.2 – 0.7 min, respectively, whereas the hippocampal half-lives of MC-PROXYL in the control
and KA groups were 10.4 – 0.8 and 15.9 – 0.7 min, respectively. [Adapted from Yokoyama et al. (190).] KA, kainic acid.
Color images are available online.
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An early example of visualization andanalysis of redox status
of tumors in mice by nitroxyl-enhanced MRI and EPRI using
carbamoyl-PROXYL as a redox-sensitive contrast agent is
presented in Figure 8 (119). The authors of this study suggested
that the rate of reduction of the nitroxyl radical carbamoyl-
PROXYL in tumor tissue is higher than that in nontumor tissues
based on the increased levels of endogenous reducing equiva-
lents in tumor cells (mainly glutathione and glutathione-
dependent antioxidants), in addition to the presence of hypoxia
in tumors. Similar opinions have been expressed by other au-
thors using carboxy-PROXYL or carbamoyl-PROXYL as
contrast probes (79–81, 101, 102, 127, 183).

In vivo studies in tumor-bearing animals using
13C-dehydroascorbate as an endogenous redox sensor and
hyperpolarized MRI revealed that tumor tissues are charac-
terized by higher levels of glutathione and ascorbate than
normal tissues of healthy animals (90, 91). However, the
authors noted that the ratio of oxidized/reduced forms of the
two substances is in favor of the oxidized form in the tumor
tissue and in favor of the reduced form in the normal tissues.
This suggested that the reducing capacity of normal (healthy)
tissues is higher than that of tumor tissues.

Roshchupkina et al. (150) reported a unique approach to
determine the amount of reduced glutathione in isolated
cancer cells and tissues by EPR spectroscopy, using two
15N-labeled nitroxyl rings connected by a disulfide bridge.
The EPR spectrum of the biradical differs from that of the
monomer nitroxyl radical, which enables monitoring of
the reaction of the probe with reduced glutathione.

In our recent studies, we used several nitroxyl radicals as
redox sensors to visualize and analyze the tissue redox status in
cancer tissues in vivo using MRI on animals: (i) SLENU—
highly hydrophobic, cell-penetrating, and DNA-alkylating;
(ii) TEMPOL—amphiphilic, cell-penetrating; and (iii)

carbamoyl-PROXYL—hydrophilic and very low/non-
penetrating in living cells and tissues (6, 194, 197, 198). A
strong and long-lived nitroxyl-enhanced MRI signal was de-
tected in the cancer tissues, and a relatively strong and
long-lived signal was detected in the surrounding tissues of
cancer-bearing mice (Fig. 17). In contrast, a short-lived
nitroxyl-enhanced MRI signal was detected in the tissues of
healthy mice. This suggested that cancer and noncancer tissues
of cancer-bearing animals are characterized by high oxidative
activity toward nitroxyl radicals, whereas tissues of healthy
animals are characterized by high reducing activity. It should
be noted that SLENU was the most appropriate nitroxyl probe
to evaluate tissue redox status in vivo due to its easy intra-
cellular delivery and prolonged retention in the tissues. In
addition, our recent EPR study on cultured cells with different
proliferative indexes demonstrated that EPR signal decay is
well correlated with proliferating activity (199). The slowest
rate of EPR signal attenuation was detected in rapidly prolif-
erating cancer cells, with a higher rate in slowly proliferating
noncancer cells and the highest rate in nonproliferating cells.

Imaging redox imbalance and oxidative stress
in the kidneys

Hirayama et al. (73) used mice with acute renal failure due
to ischemia–reperfusion and noted a slower decrease in EPR
signal of carbamoyl-PROXYL than that in controls. This
result can be explained by the induction of oxidative stress in
the kidneys of mice with impaired renal function. The same
group also published an EPRI study of the redox status of
renal tissues in mice with hypertension induced by ligation of
the right renal artery (74). In mice with hypertension, the
half-life of the nitroxyl-enhanced EPR signal was longer than
that in healthy mice. Treatment of mice with azelnidipine (a

FIG. 16. Visualization of superoxide production in vivo in the dopaminergic area of the brain in Parkinson’s disease.
(A) Nitroxyl-enhanced MR imaging of tissue redox status in dopaminergic neurons [according to Zhelev et al. (195)]. Extracted
nitroxyl-enhanced MRI signal in the brain of healthy and MPTP-treated mice obtained 5 min after the injection of nitroxyl
contrast agent (mito-TEMPO; T1-weighted MRI, gradient-echo). The green arrow indicates the SNpc. The red arrow indicates
the cortex. (B) Molecular hypothesis for enhancement of MRI signal in MPTP-affected and oxidatively active dopaminergic
neurons [according to Vila and Przedborski (182) and Zhelev et al. (195)]. DT, dopamine transporter; mito-TEMPO, 2,2,6,6-
tetramethyl-4[[2-(triphenylphosphonio)acetyl]amino]-1-piperidinyloxy; MPP+, 1-methyl-4-phenylpyridinium; MPTP, 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine. Color images are available online.
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calcium channel blocker) for 2 weeks improved the reducing
ability of the kidneys and shortened the life of the nitroxyl
radicals. The same group also used another model of renal
dysfunction, Nrf2-deficient mice with lupus-like autoim-
mune nephritis (75). The fourfold longer half-life of EPR
signal of carbamoyl-PROXYL in the injured tissues of Nrf2-
deficient elder mice compared with that of young wild-type
mice was due to the combination of transcription factor
deficiency and aging. The authors suggested that a lower
reducing ability plays a role in the development of autoim-
mune nephritis.

Carbamoyl-PROXYL and EPRI were also applied to redox
imaging of the kidneys of a murine model of streptozotocin-
induced diabetes (120, 158, 161, 162, 176). These studies
reported faster reduction of the nitroxyl probe in the kidneys
of diabetic mice. It is generally accepted that diabetes is ac-
companied by the development of oxidative stress in tissues,
with ROS playing a significant role in the pathogenesis of the
disease (88, 149). However, it is unclear why oxidative stress
in the kidneys leads to a delay in some cases (73–75, 161) and
to acceleration of the EPR signal attenuation of the nitroxyl
probe in others (120, 158, 161, 162, 176).

Brasch et al. (14) investigated the dynamics of nitroxyl-
enhanced MRI in the healthy animals and animals with
experimental renal ischemia and hydronephritis, using an
amphiphilic nitroxyl radical 4-[(3-carboxy-1-oxopropyl)
amino]-2,2,6,6-tetramethyl-1-piperidinyloxy (TES). Increased
contrast was found in damaged kidneys compared with
kidneys in healthy animals. Renal ischemia and hydrone-
phritis are accompanied by the induction of high oxidative
stress in the kidneys due to mitochondrial dysfunction, and
production of inflammatory factors and ROS/reactive ni-
trogen species (7, 92, 110, 151, 152, 165). Decreased per-
fusion in damaged kidneys has also been reported in many
studies (7, 116), which implies that penetration of this organ
by contrast agent is difficult. Therefore, the increased con-

trast of TES in the damaged kidney after ischemia/
reperfusion is most likely a result of oxidative stress and
existence of nitroxyl contrast agent mainly in a radical form.

Although a possibility of delayed or accelerated filtration
of nitroxyl contrast agent in the kidneys would be the main
factors that can affect the dynamics of the nitroxyl probes
in this organ regardless of the redox state of the tissues,
discussion about renal clearance of the past experimental
model had been lacking. In models of renal dysfunction, at
least one conventional contrast agent and technique, such as
gadolinium-enhanced MRI, must be used to determine
whether the signal dynamics in the damaged kidney are the
result of an increased or decreased filtration rate.

One of the well-described models of renal dysfunction based
on chronic inflammation is hypercholesterolemia-induced mi-
crovascularization in the renal cortex, and subsequent calcifi-
cation that causes glomerulosclerosis and degeneration of the
proximal tubules (92, 116, 152). In this experimental model, we
did not detect nitroxyl-enhanced MRI signal in the kidneys of
mice with hypercholesterolemia using carbamoyl-PROXYL as
a contrast probe (Fig. 18) (173). However, a large decrease in
renal perfusion was found using gadolinium-enhanced MRI.
This suggests that the lack of nitroxyl-enhanced MRI signal of
carbamoyl-PROXYL in the dysfunctional kidneys was not a
result of rapid reduction of this nitroxyl radical to its diamagnetic
form. In healthy mice, cell penetration of carbamoyl-PROXYL
is limited in vivo due to the competition of this process with its
relatively rapid excretion (79, 171). In contrast, using a hydro-
phobic and cell-penetrating nitroxyl radical, mito-TEMPO, we
observed a long-lived nitroxyl-enhanced MRI signal in the
kidneys of mice with hypercholesterolemia and short-lived MRI
signal in the kidneys of healthy mice (Fig. 19) (103).

In this case, the probe was retained in the renal tissues, and
the higher intensity of MRI signal of mito-TEMPO in the
kidneys of mice with hypercholesterolemia was mainly due
to the lower reducing capacity of inflamed renal tissues than

FIG. 17. Nitroxyl radicals as redox sensors to visualize and analyze the tissue redox status in cancer tissues. (A) Typical
MR images of healthy brain and cancer-bearing brain of mice: (A.a) MR images of the mouse brain; (A.b) extracted nitroxyl-
enhanced MRI signal obtained 6 min after the injection of nitroxyl radicals (SLENU). The arrows indicate the tumor area.
(B) Molecular hypothesis for increased MRI signal in metabolically (oxidatively) active cancer cells and tissues. SLENU,
TEMPO-labeled nitrosourea [according to Zhelev et al. (194) and Bakalova et al. (6)]. Color images are available online.
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the kidneys of healthy mice. This approach enables also the
assessment of the effectiveness of antilipidemic drugs
(Fig. 19).

The studies described above demonstrate the potential
of nitroxyl probes for translational studies on functional
MR urography (35, 38, 145). The major problem of this

clinical approach is the use of contrast substances that in-
crease the risk of intoxication in patients with impaired
renal filtration. The efforts of clinicians are focused in
two directions: (i) development of noncontrast methods
for visualization and assessment of renal dysfunction; and
(ii) development of nontoxic or low-toxicity contrast

FIG. 18. Nitroxyl-enhanced MRI of the kidney in mice on a ND or high CD using carbamoyl-PROXYL as a
contrast probe: black and white images: T1-weighted MR images of the kidney before the injection of carbamoyl-
PROXYL. Color images: extracted MRI signal intensity normalized to the averaged baseline level (before the injection of
carbamoyl-PROXYL). (A) Kinetic curves of normalized MRI signal intensity in kidneys before and after the injection of
Gd-DTPA in ND mice (A1) or CD mice (A2). The data are the mean from four animals (standard error did not exceed 20%).
ImageJ software was used for data processing. (B) Typical kinetic curves of Gd-enhanced MRI in the ROI within the kidney
of healthy humans (B1) and humans with renal pathology (B2). CHOP-fMRU software was used for data processing of the
postcontrast T1 VIBE Dynamic sequence in the coronal plane during excretory MR urography. CD, cholesterol diet; ND,
normal diet [according to Tomizawa et al. (173)]. Color images are available online.
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substances for functional urography (5, 8, 128). Low-
toxicity nitroxyl-based contrast probes have the potential to
meet the second condition. The structures of several
TEMPO analog nitroxyl probes commonly used are shown
in Supplementary Figure S2.

Trials of redox imaging in the skin and other organs

The skin is the perfect target for EPRI of oxidative stress
due to necessity of low depth of microwave penetration,
which enables the use of S-band (2–3 GHz) for in vivo

FIG. 19. Nitroxyl-enhanced MRI of the kidney in mice on a ND or high CD using mito-TEMPO as a contrast
probe: black and white images: T1-weighted MR images of the kidney before the injection of mito-TEMPO. Color
images: extracted MRI signal intensity normalized to the averaged baseline level (before the injection of mito-TEMPO): (A)
ND; (B) cholesterol plus cholestyramine diet; (C) CD. The yellow arrows indicate the kidneys. Structural formula and
mechanism of reduced plasma cholesterol by the bile acid sequestrant cholestyramine [according to Lazarova et al. (103)].
Color images are available online.
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imaging or even X-band for isolated samples. After topical
application of nitroxyl, its distribution in the skin and the
redox status of the different layers can be visualized using a
simple EPR spectral-spatial two-dimensional image. The
potential of this approach has been well demonstrated in
studies of human skin in vivo (95, 109, 154, 181), revealing
opportunities for the investigation and diagnosis of skin pa-
thologies, aging, and photo-induced damage.

Fuchs et al. (45) investigated the diffusion of several ni-
troxyl radical compounds into the skin of mice, and reported
that lipophilic nitroxyl-labeled estradiol penetrates the der-
mis faster than hydrophilic nitroxyl-labeled procaine. The
same group used X-band EPR to analyze the stability of ni-
troxyl compounds in skin biopsies, homogenates, and kera-
tinocytes, and in the induction of erythema (43, 44). The rate
of attenuation of the EPR signal of nitroxyl compounds in-
creases in the following order: imidazoline < pyrrolidine <
piperidine < oxazolidine (43). Thus, the nitroxyl compounds
used either do not cause erythema, or the irritation is defined
as moderate even at high concentrations (100 mM) (44). In
this regard, one of the most popular nitroxyl radicals,
TEMPOL, is used in ongoing clinical trials as a radio-
protector for topical application, which prevents hair loss
during radiation therapy of patients with malignancies (126).

Ultraviolet-induced overproduction of ROS in the skin has
been also demonstrated using spin traps (85, 86) or nitroxyl
probes (69–72, 167, 168, 170).

Another model of oxidative stress in vivo is the intoxi-
cation of animals with iron via the induction of Fenton
reactions. Phumala et al. (144) conducted an EPR study on
iron-loaded mice, and found that the EPR signal of
carbamoyl-PROXYL in the liver decreased significantly
faster than that in healthy animals, but this was suppressed
by the pretreatment of mice with desferrioxamine or trolox.
Similar dynamics of the EPR signal of carbamoyl-PROXYL
were observed in the liver of animals exposed to ionizing
radiation (131).

Han et al. (68) and Ahsan et al. (1) found that attenua-
tion of the EPR signal of the nitroxyl radical CAT1
(4-trimethylammonium-2,2,6,6-tetramethylpiperidine-N-oxyl
or choline-TEMPO) was significantly accelerated in the lungs
of mice after intratracheal administration of burned diesel
fuel particles. The effects of diesel particles were suppressed
by scavengers of hydroxyl radicals and thiol-containing
proteins (1, 68). It should be noted that CAT1 does not
penetrate through cell membranes and cannot be an indicator
of the intracellular redox status of alveolocytes. The dy-
namics of the EPR signal of CAT1 are most likely affected by
extracellular substances such as ROS generated by the ‘‘ox-
idative burst’’ of macrophages in the pulmonary loci with
concentrated diesel particles.

Leonard et al. (104) observed a significant delay in the
reduction of the nitroxyl probe TEMPOL in the lungs of
asbestos-treated mice. Caia et al. (15) reported that mice
exposed to cigarette smoke had lower reducing capacity to-
ward the carbamoyl-PROXYL in almost all abdominal organs.

Togashi et al. (172) also used the carbamoyl-PROXYL
and EPRI system to analyze the redox status of the liver in
carbon tetrachloride (CCl4)-treated mice. They reported that
the rate of nitroxyl reduction was significantly slower in
CCl4-treated mice than in untreated controls. Another EPR
study of mice with hepatic injury (as a result of ischemia–

reperfusion) reported that blockade of Ca2+/calmodulin by
the calmodulin antagonist CV159 resulted in faster attenua-
tion of the EPR signal of carbamoyl-PROXYL in treated
animals than in untreated controls (96).

Possibilities of redox imaging of biological
objects using spin trapping

EPR spin-trapping techniques are attractive modalities, as
they enable the detection of specific ROS. The in vivo de-
tection of free radicals by spin trapping was previously
demonstrated in mice irradiated with ionizing radiation,
which induces the overproduction of ROS and severe oxi-
dative stress (66, 67). Visualization of O2

�- and hydroxyl
radicals can be improved by developing more stable spin
traps and the use of 15N-substituted spin trapping, which may
increase the sensitivity and resolution by reducing the num-
ber of lines in the EPR spectrum (94). However, imaging
biological ROS using a combination of in vivo spin trapping
and EPRI and/or MRI is difficult at this time.

Over the last decade, an immunospin capture method was
developed based on the concept that DMPO (5,5-dimethyl-1-
pyrroline-N-oxide) reacts with protein radicals, and the
products can be identified immunologically with high spec-
ificity. Mason (115) developed antibodies against DMPO–
protein radical adducts (anti-DMPO) that can be used in
immunoblotting, immunohistochemistry, immunofluores-
cence, and flow cytometric analyses. This approach signifi-
cantly extends the benefits of using spin traps in the detection
of redox-active substances because immunological tech-
niques are characterized by high sensitivity (17, 115, 146).
Immunospin traps have been used to detect DMPO–protein
products of myoglobin and hemoglobin, as well as ROS ad-
ducts in isolated mitochondria, cells, and tissue samples (17,
26, 59, 60, 100).

However, the method is only applicable in vitro and has
limitations: (i) it cannot detect free radicals, such as O2

�- and
hydroxyl radical, and only enables the identification of
modified protein adducts; (ii) multiple antibodies specific for
different types of protein adducts are required to cover the
full range of targets to ensure high sensitivity of the analysis.

Redox imaging of biological objects
using cyclic hydroxylamines

At the end of the last century, diamagnetic forms of ni-
troxyl radicals, cyclic hydroxylamines (Fig. 20), were found
to be suitable for the detection of O2

�- in biological objects
in vitro and in vivo (27, 29–33). Hydroxylamines are dia-
magnetic and have no EPR/MRI contrast. They are oxidized
by ROS (in particular, by O2

�-) with the formation of stable
paramagnetic substances, nitroxyl radicals, with a half-life of
up to several hours in isolated model and biological systems
(27, 29–31). This enables them to be registered by EPR
spectroscopy, EPRI, and MRI in the case of oxidation.

Compared with nitrons, cyclic hydroxylamines react much
faster with O2

�- radicals, with a reaction rate constant of
*103–104 M-1$s-1 at pH = 7.4. This favors the competition
of hydroxylamines with cellular antioxidants and improves
the efficiency of detection of intracellular O2

�- (30). For this
reason, hydroxylamines can be used at relatively low con-
centrations (0.05–1 mM), which minimizes their side effects
in biological systems. Another advantage of cyclic
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hydroxylamines is that they react with O2
�- in a single che-

mical reaction. This reduces the potential artifacts arising
from multistage redox reactions typical of other redox-
sensitive probes (fluorescent and chemiluminescent) (42).
For example, unlike lucigenin, cyclic hydroxylamines do not
have the so-called ‘‘redox cycling,’’ and no additional ROS
were generated (114).

Dikalov et al. (32) investigated the dynamics of the EPR
signal of cyclic hydroxylamines in biological systems. This
study supports the essential role of the hydrophobic (am-
phiphilic) nature of cyclic nitroxyl probes, and their pene-
tration into cells in the dynamics of their contrast properties
and their ability to be used as intracellular or extracellular
redox sensors. The authors demonstrated that cationic and
membrane-impermeable CAT1-H (hydroxylamine form of
CAT1) detects only extracellular O2

�- released from live
cells or extramitochondrial O2

�- released from isolated mi-
tochondria. In contrast, cell-penetrating MCP-H (hydroxyl-
amine form of MC-PROXYL), PP-H (hydroxylamine form
of 4-phosphonooxy-TEMPO), and mito-TEMPO-H (hy-

droxylamine form of mito-TEMPO) are suitable for the de-
tection of intracellular and extracellular ROS. PP-H is
thought to accumulate in cells by active transport, MCP-H
accumulates predominantly in the cytoplasm, and mito-
TEMPO-H is mitochondrially targeted and localized
predominantly in mitochondria (32, 84). MCP-H may also
accumulate in mitochondria.

MCP-H gives a strong EPR signal in cells treated with
phorbol-12-myristate-13-acetate, stimulating the production
of cytoplasmic O2

�-, whereas the signal of mito-TEMPO-H is
weaker in this case (25, 32). In contrast, rotenone-induced
generation of mitochondrial O2

�- results in a strong EPR signal
induced by mito-TEMPO-H and MCP-H, but not PP-H (32).
Thus, relatively accurate information on the origin of ROS
(extracellular, intracellular, or mitochondrial) can be obtained
using appropriate selection of cyclic hydroxylamine.

In general, the advantage of cyclic hydroxylamines is in
their use for direct detection of ROS in cells, subcellular
fractions, and tissue homogenates at room temperature by
examining the accumulation of the nitroxyl radical by EPR

FIG. 20. Detection of mitochondrial and cellular ROS by hydroxylamine probes. (A) Chemical structures of hy-
droxylamine probes. (B) EPR detection of cellular superoxide using hydroxylamines. (C) EPR detection of hydrogen
peroxide using hydroxylamines and HRP. (D) General scheme of EPR detection of superoxide in extracellular, intracellular,
or mitochondrial compartments using cyclic hydroxylamine spin probes. HRP, horseradish peroxidase; Rot, rotenone.
[Adapted from Dikalov et al. (32) and Dikalov and Harrison (31).]
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spectroscopy. Low-temperature EPR is suitable for detecting
ROS in intact tissues. For this purpose, the samples were
incubated in physiological saline containing cyclic hydrox-
ylamines and then frozen in liquid nitrogen, stored at -80�C,
and later analyzed at a low temperature (9, 28).

Kozlov et al. (98) injected cyclic hydroxylamines into
young and old rats, and monitored the appearance and in-
crease in EPR signal in tissue homogenates isolated from
various organs ex vivo. The authors found that the oxidative
capacity of the blood, skeletal muscle, lungs, and heart in-
creases significantly with age, but does not change the redox
status of the intestine, brain, liver, or kidneys. Cyclic hy-
droxylamines have been used in model systems and isolated
biological objects, including blood and biopsy samples from
patients with numerous diseases (9, 113). However, no use of
these spin probes in nitroxyl-enhanced EPRI or MRI has been
reported in intact animals in vivo.

Other contrast substances and techniques for redox
imaging and perspectives on cyclic nitroxyl radicals

There are many contrast media that can give detectable
products reflecting the localization and level of a particular
target investigated; that is, the redox-active molecular species
or the biological redox environments. The most of in vitro
detection of these contrasts (e.g., fluorescence) is feasible
with high sensitivity and resolution, but in vivo detection is
highly difficult to implement. Another group of contrast
agents (e.g., nuclear and ultrasound) can achieve in vivo
detection with high sensitivity, although the resolution is low.
In general, nuclear-labeled contrast agents can provide in-
direct information about the tissue redox status, which can be
given as a result of biochemical and physiological processes
such as glycometabolism, O2 consumption, hypoxia, and cell
retention depending on the cytoplasmic redox potential. In
addition, such radioactive contrast agents may increase
the risks for the patient. Of note, the above-mentioned
methodologies enable assessment of the redox status of the
biological object based on the information obtained for one or
several redox-active compounds. Thus, the discussions and
conclusions in studies are often contradictory.

At present, efforts are focused on mapping the redox status
of tissues and organs in intact organisms. The perfect meth-
odology should provide direct and noninvasive detection of
the redox status of the target organ in vivo. In this context, the
perfect redox-sensitive contrast substances should meet the
following conditions:

� Ability to penetrate the cells and BBB, if possible;
� ability to provide information about the equilibrium

between the intracellular oxidizers and reducers for
the total redox status of cells and tissues, not only for
the status of a certain redox-active compound (e.g., its
oxidized or reduced form);

� be nontoxic or low-toxic in vivo;
� be rapidly excreted through the living organism;
� have high contrast and enable imaging with high

resolution.

Cyclic nitroxyl radicals have a relatively low toxicity
(safer than gadolinium and manganese complexes) and are
not mutagenic (2, 21). They are characterized by favorable
biomedical effects such as anticancer effects, regulation of

body weight, protection against ischemia–reperfusion injury,
protective effects against cataract, sensitizing cancer cells
and tissues to ionizing radiation, and protecting normal cells
and tissues (34, 107, 163, 164, 200). Moreover, some cyclic
nitroxyl radicals are undergoing clinical trials for topical
applications (192). This confirms the potential of nitroxyl
radicals as new contrast substances for redox imaging in
translational studies on humans using MRI. However, this
can only be achieved after many preliminary studies on ex-
perimental animals to select the most appropriate nitroxyl
probes for redox imaging, route of administration, and safe
doses. This will provide a new opportunity for MRI/EPRI
analysis of metabolic pathways, accompanied by minor
changes in the redox status of biological objects and induc-
tion of oxidative stress.

Conclusion

Redox imaging is a useful tool to detect an abnormal tissue
redox status such as disordered oxidative stress or tumor
hypoxia. Data from nitroxyl-enhanced MRI/EPRI in vivo
must be considered and interpreted carefully because the
kinetics of the signal in the target tissue or organ depend on a
number of factors: (i) life time of nitroxyl radicals in the
bloodstream; (ii) penetration through cell membranes and
localization in target cells and tissues; (iii) rate of excretion
from the organism; (iv) selection of appropriate ROI; and (v)
use of healthy individuals as controls. A suitable chemical
and/or biological nitroxyl radical contrast agent will provide
useful information for translational theranostic applications
in the target organ/tissue.
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Abbreviations Used
�H¼ hydrogen radicals
�OH¼ hydroxyl radicals
23c¼ 4-(N-methylpiperidine)-2,2,5,5-

tetramethylpyrroline-N-oxyl
2D¼ two dimensional
3D¼ three dimensional
AA¼ ascorbic acid

BBB¼ blood–brain barrier
carbamoyl-PROXYL¼ 3-carbamoyl-2,2,5,5-

tetramethylpyrrolidine-N-oxyl
carboxy-PROXYL¼ 3-carboxy-2,2,5,5-

tetramethylpyrrolidine-N-oxyl
CAT1¼ 4-trimethylammonium-2,2,6,6-

tetramethylpiperidine-N-oxyl
CCl4¼ carbon tetrachloride

CD¼ cholesterol diet
CW¼ continuous wave

CxP-Am¼ acetoxymethyl-2,2,5,5-
tetramethylpyrrolidine-N-oxyl-3-
carboxylate
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Abbreviations Used (Cont.)

DMPO¼ 5,5-dimethyl-1-pyrroline-N-oxide
DNP¼ dynamic nuclear polarization

DT¼ dopamine transporter
EPR¼ electron paramagnetic resonance

EPRI¼EPR imaging
FA¼ flip angle

FLASH¼ fast low angle shot
H2O2¼ hydrogen peroxide

HM-PROXYL¼ 3-(hydroxymethyl)-1-oxy-2,2,5,5-
tetramethylpyrrolidine

HO2
�¼ hydroperoxyl radical

HRP¼ horseradish peroxidase
KA¼ kainic acid
KIE¼ kinetic isotope effects
LPS¼ lipopolysaccharides

MCP-H¼ hydroxylamine form of
MC-PROXYL

MC-PROXYL¼ 3-methoxycarbonyl-2,2,5,5-
tetramethylpyrrolidine-N-oxyl

mito-TEMPO¼ 2,2,6,6-tetramethyl-
4[[2-(triphenylphosphonio)acetyl]
amino]-1-piperidinyloxy

mito-TEMPO-H¼ hydroxylamine form
of mito-TEMPO

MPP+¼ 1-methyl-4-phenylpyridinium
MPTP¼ 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine

MR¼magnetic resonance
MRI¼magnetic resonance imaging
ND¼ normal diet
O2¼ oxygen

O2
�-¼ superoxide

OMRI¼Overhauser-enhanced MRI
pO2¼ partial oxygen pressure

PP-H¼ hydroxylamine form of
4-phosphonooxy-TEMPO

ROI¼ region of interest
ROO�¼ peroxyl radical

ROS¼ reactive oxygen species
Rot¼ rotenone
RS�¼ thiyl radicals
SD¼ standard deviation
SG¼ salivary gland

SLENU¼TEMPO-labeled nitrosourea
SNpc¼ substantia nigra pars compacta

TE¼ echo time
TEMPO¼ 2,2,6,6-tetramethylpiperidine-

N-oxyl
TEMPO+¼ oxoammonium form of TEMPO

TEMPO-H¼ hydroxylamine form of TEMPO
TEMPOL¼ 4-hydroxy-2,2,6,6-

tetramethylpiperidine-N-oxyl
TES¼ 4-[(3-carboxy-1-oxopropyl)amino]-

2,2,6,6-tetramethyl-1-
piperidinyloxy

TR¼ repetition time
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