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Microsatellite instability (MSI), an important biomarker for immunotherapy and the diagnosis of
Lynch syndrome, refers to the change of microsatellite (MS) sequence length caused by
insertion or deletion during DNA replication. However, traditional wet-lab experiment-based
MSI detection is time-consuming and relies on experimental conditions. In addition, a
comprehensive study on the associations between MSI status and various molecules like
mRNA and miRNA has not been performed. In this study, we first studied the association
between MSI status and several molecules including mRNA, miRNA, lncRNA, DNA
methylation, and copy number variation (CNV) using colorectal cancer data from The
Cancer Genome Atlas (TCGA). Then, we developed a novel deep learning framework to
predict MSI status based solely on hematoxylin and eosin (H&E) staining images, and
combined the H&E image with the above-mentioned molecules by multimodal compact
bilinear pooling. Our results showed that there were significant differences in mRNA, miRNA,
and lncRNA between the high microsatellite instability (MSI-H) patient group and the low
microsatellite instability or microsatellite stability (MSI-L/MSS) patient group. By using the H&E
image alone, one can predict MSI status with an acceptable prediction area under the curve
(AUC) of 0.809 in 5-fold cross-validation. The fusion models integrating H&E image with a
single type of molecule have higher prediction accuracies than that using H&E image alone,
with the highest AUC of 0.952 achieved when combining H&E image with DNA methylation
data. However, prediction accuracy will decrease when combining H&E image with all types
of molecular data. In conclusion, combining H&E image with deep learning can predict the
MSI status of colorectal cancer, the accuracy of which can further be improved by integrating
appropriate molecular data. This study may have clinical significance in practice.

Keywords: microsatellite instability, H&E images, multi-omics data, multimodal deep learning, compact
bilinear pooling
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1 INTRODUCTION

Colorectal cancer (CRC) is a common digestive tract malignancy.
CRC is the third largest cancer in the world, and the second leading
cause of cancer-related death; the incidence rate and mortality rate
of CRC were third and fifth, respectively, among all cancers in
China, with more than 250,000 new patients and 140,000 deaths
annually (1–3). Sporadic colorectal cancer (SCRC) accounts for
about 85%, and hereditary nonpolyposis colorectal cancer
(HNPCC) accounts for about 10%–15% of all CRC patients (4).
SCRC is mainly affected by environment, diet, living habits, and
chronic inflammation, which leads to the mutations of the
“administrator gene” and “guard gene”; the mutations disrupt the
mechanisms for inhibiting cell growth, promoting cell death, and
maintaining cell stability. Among them, microsatellite instability
(MSI) is involved in the occurrence of SCRC, with an incidence of
12%–15% (5). The value of MSI in the diagnosis, treatment
response, and prognosis of CRC has attracted global attention (6–8).

MSI refers to the change in the length of normal microsatellites
caused by the deletion or insertion of repeated bases compared with
normal tissue cells (9). In 2001, Fukushima and Takenoshita (10)
found that MSI significantly increased the random mutation rate of
genes, especially the mutation of tumor-related genes, which is an
important mechanism of tumorigenesis.

There is some evidence to support the use of pre-diagnostic MSI
in clinical decision-making. First, MSI detection is recommended
for the diagnosis of Lynch syndrome. Lynch syndrome is the most
common hereditary colon cancer syndrome, which is associated
with germline mutations in the MMR gene (MLH1, MSH2, MSH6,
or PMS2) (11). MSI status helps to identify families with the
syndrome. Second, MSI is one of the key factors affecting the
prognosis of CRC, especially in early cases (12, 13). In general,
patients with stage II CRCwith highMSI (MSI-H)/MMR deficiency
(d MMR) have a better prognosis than patients with microsatellite
stability (MSS) and low MSI (MSI-L)/MMR (p MMR) (13). Third,
MSI status can be used to evaluate therapeutic response, including
fluoropyrimidine-based chemotherapy (14) and immunotherapy
(15). Fluoropyrimidine (5-FU or capecitabine) is the pillar of the
CRC chemotherapy strategy. It plays an important role not only in
neoadjuvant therapy but also in prognosis treatment (16, 17).
However, patients with MSI-H status are usually resistant to 5-
FU-based chemotherapy (18). Immunotherapy is an emerging and
promising treatment for CRC because MSI-H tumors have a large
number of mutant neoantigens, which makes them sensitive to
immune checkpoint inhibitors (19). Therefore, MSI status is crucial
for selecting CRC treatment and evaluating the response to
treatment (20).

In recent years, the deep learning method has become a newly
developing method, which has shown excellent performance in the
fields of computer vision (21, 22), speech recognition (23), and
bioinformatics (24–27). Deep learning technology has the
characteristics of end-to-end training, and can also represent
abstract concepts or patterns level by level through deep neural
networks (28). At the same time, researchers use the technology of
transfer learning to transfer the networkmodel pre-trained by Image
Net to the classification task of pathological image segmentation by
fine-tuning the classifier layer of convolutional neural network. In
Frontiers in Oncology | www.frontiersin.org 2
the 2016 CAMELYON breast cancer lymph node metastasis
challenge, 25 of the 32 algorithms submitted by the contestants
used convolution neural networks (CNNs) (29) including VGG-16
(30), GoogLeNet (31), and other well-known models such as (32).
Xu et al. used pre-trained AlexNet to extract the features of brain
tumor pathological image blocks and achieved 97.5% classification
accuracy on the small-sample MICCAI 2014 brain tumor digital
pathology challenge dataset. Yang et al. proposed a multimodal deep
learning method to predict the recurrence and metastasis risk of
Her2-positive breast cancer by integrating pathological image with
clinical information (33). Ye et al. developed a deep convolution
network to evaluate prognosis of cervical cancer (34). Ke et al. (35)
used the knowledge distillation model of multistage CNN to classify
MSI-H and MSS, and obtained an AUC = 0.802; Kather et al. (36)
used ResNet18 to predict the histopathological sections of CRC, and
the AUC obtained by MSI was 0.84.

With the increasing availability of high-throughput genomic
and transcriptional data, there are several molecular biomarkers
in The Cancer Genome Atlas (TCGA), including somatic
mutation, copy number variation, gene expression, microRNA
expression, and DNA methylation, which were used to track
cancer (37–39) and predict cancer recurrence and metastasis
(40). Hayes identified relevant microRNA and mRNA features
that predict high-risk and low-risk patients with glioblastoma
(GBM). Sun et al. integrated gene expression profile, CNA
spectrum, and clinical data to predict the prognosis of breast
cancer, achieving a good performance of AUC = 0.843.

Based on the feasibility of cancer prediction and multimodal
fusion from the pathological image level, our goal was to
compare these unimodal data and combinations to predict the
MSI ability of CRC in a unified context and to explore whether
multimodal data fusion can significantly improve prediction
accuracy compared with single-mode data.
2 MATERIALS AND METHODS

2.1 Data Description
We overlapped the H&E images data and omics data to obtain 353
sample sizes, of which 63 were labeledMSI-Hs, which were marked
as 1; 290 cases were labeled MSSs, which were labeled as 0.

Pathological image. We used the method of Kather et al. to
publish the CRC with hematoxylin and eosin stabilized (CRC-HE)
dataset, including 100,000 pieces of 224 × 224 pixel H&E-stained
pathological images that were divided into blocks; each pixel in the
block corresponds to 0.5 mm× 0.5 mmorganization. To eliminate the
color difference of slices from different data sources in the process of
production and scanning, all H&E images have been dyed and
standardized according to the method of Macenko et al. (41).

Multi-omics data. Multi-omics data of CRC were
downloaded from the TCGA database, including messenger
RNA (mRNA), microRNA expression (miRNA), long non-
coding RNA (lncRNA), DNA methylation (Met), and gene
copy number variation (CNV). Their forms include Counts
and FPKM. The difference between FPKM and Counts is that
Counts is the original expression quantity that is not processed in
July 2022 | Volume 12 | Article 925079
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the data background, although FPKM and Counts are data
processing methods. In the analysis of this paper, the
difference analysis part adopts the form of Counts, and the
modeling analysis part adopts the form of FPKM. Table 1
shows the characteristic dimensions of each omics data.

2.2 Feature Extraction
2.2.1 H&E Image Feature Representation
Based on ResNet34
CNN is the latest algorithm for image recognition and
classification because of its stable learning performance (42).
CNN includes an input layer, a middle hidden layer, and an
output layer. The middle-hidden layer is composed of multiple
convolution layers, pooling layers, and full connection layers.
CNN can be optimized through error backpropagation and
Frontiers in Oncology | www.frontiersin.org 3
gradient descent algorithm. However, after reaching a certain
depth, increasing the number of layers of CNN cannot further
improve the classification performance. Due to the vanishing
gradient problem, the network convergence speed is slow and the
classification accuracy is negative. ResNet is used to solve this
problem. The difference between residual network and ordinary
network is that jump connection is introduced, which can help
TABLE 1 | The properties of the dataset.

Data Category Abbreviation Number of features

Messenger RNA mRNA 19,531
MicroRNAs miRNA 1,881
Long non-coding RNA lncRNA 7,308
DNA methylation Met 27,578
Copy number variation CNV 60,483
July 2022 | Volum
FIGURE 1 | The network architecture of ResNet34.
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the information of the previous residual block enter the next
block stream unimpeded, improve the information flow, and
avoid the problem of vanishing gradient and the degradation
caused by the great depth of the network.

ResNet is a large-scale CNN constructed from residual blocks.
We used ResNet34 (Figure 1) to extract H&E image features.
The architecture of ResNet34 is divided into four stages. Every
Resnet architecture performed the initial convolution and max-
pooling using 7 x 7 and 3 x 3 kernel sizes, respectively. The
residual structure of BTNK1 can reduce the dimension, and the
dimension is reduced by a 1 x 1 convolution kernel on the
shortcut branch. It is worth noting that in Stage 2, Stage 3, and
Stage 4, it is executed with stride 2; therefore, the size of the input
will be halved in height and width, but the channel width will be
doubled. When the image advances from one stage to another,
the channel width will be doubled and the input size will be
reduced by half. Finally, the network has an average pool layer,
followed by a full connection layer containing 1,000 neurons.

2.2.2 Feature Extraction of Multi-Omics Data
A common problem with high-throughput sequencing datasets is
the so-called “Curse of dimensionality” (40). Variable selection is
very important for interpretation and prediction, especially for
high-dimensional datasets. In this work, we used the characteristic
importance attribute of Random forest (Gini-index) (43) to deal
with high-dimensional variables in omics data. Features with Gini-
index greater than or equal to 0.005 were the most important
features. Then, the multimodal data are simply spliced from the
important features obtained from the single group data. Then,
select according to the feature importance of random forest, and
the feature with a Gini-index greater than 0.005 is regarded as the
most important feature.

2.3 Feature Fusion
The most common fusion methods are concatenation, element-
wise product, and element-wise sum. These simple operations
are not as effective as the outer product, and complex
relationships can be established between the two modes.
However, the complexity of outer product calculation is too
Frontiers in Oncology | www.frontiersin.org 4
high. The n-dimensional vector calculated the outer product to
obtain the n2-dimensional vector. In this work, our fusion
method was the multimodal compact bilinear (MCB) model.
MCB maps the result of the outer product to low-dimensional
space without explicit calculation of the outer product.

2.4 Screening of Differentially
Expressed Genes
The R package “Deseq2” was used to identify differentially
expressed genes (DEGs) in mRNA, miRNA, and lncRNA gene
expression profiles. Genes with an adjusted p-value < 0.1 and a
log2foldchange (LFC) > 0 were classified as upregulated genes,
whereas those with an adjusted p-value < 0.1 and an LFC < 0
were classified as downregulated genes. Taking |log2
(foldchange)| ≥ 1 and the corrected p-value < 0.05 as the
threshold, the genes with significant differences were selected.
The R-Pack “heat map” shows significantly different genes. The
R-Pack “cluster analyzer” is used for Gene Ontology (GO)
enrichment analysis and calculation. R-Pack ggplot2 is used to
generate enrichment pathways in significantly different genes.

2.5 Evaluation Metrics
Fivefold cross validation (5-f cv) is used to evaluate the accuracy
of the algorithm.5-k cv: Divide the dataset into five equally, and
take turns using four of them as training data and one as test
data. The performance of the classification algorithm is
estimated by averaging 5 test sets. For binary classification, the
area under the subject operating characteristic curve (AUC),
Accuracy (Acc), Precision, Recall, and F1_score are used to
evaluate the performance of the model.

3 RESULTS

3.1 The Overall Framework of This Study
In this work, we studied the data in two parts. In the first part, the
differences of mRNA, miRNA, and lncRNA were analyzed. In the
second part, in the modeling analysis, we conducted two
experiments (Figure 2). First, only the H&E image data were used
to build themodel and predict the classification (Figure 2A). Second,
A

B

FIGURE 2 | Experimental flowchart. (A) Only H&E images data. (B) H&E images combined with multi-omics data.
July 2022 | Volume 12 | Article 925079
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the H&E image was combined with omics for prediction and
classification (Figure 2B), including H&E image combined with
single omics data and H&E images combined withmulti-omics data.

3.2 mRNA, lncRNA, and miRNAs Differ
Significantly Between MSI-H and MSI-L/
MSS Groups
We comprehensively analyzed the differential expression of
mRNA, lncRNA, and miRNA between MSI-L/MSI-H and MSS
Frontiers in Oncology | www.frontiersin.org 5
groups. In the lncRNA group, we obtained 1,130 upregulated
expressions and 631 downregulated expressions. A total of 172
upregulated expressions and 125 downregulated expressions
were obtained in miRNA. In the mRNA group, 5,210
upregulated genes and 5,466 downregulated genes were
obtained. After strictly restricting the adjusted p-value, we
obtained 663 significantly differentially expressed lncRNAs, 61
significantly differentially expressed miRNAs, and 1,898
significantly different mRNA genes (see Supplementary
A D

E

B

C

FIGURE 3 | Differential analysis of mRNA, miRNA, and lncRNA. (A) Heat map of the top 40 differentially expressed genes of mRNA. (B) Heat map of the top 40
differentially expressed genes of miRNA and (C) lncRNA. (D) GO analysis, including BP, CC, and MF. (E) KEGG enrichment analysis.
July 2022 | Volume 12 | Article 925079
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Tables 1–3). As shown in Figures 3A–C, we used the first 40
significant difference expressions to draw the heat map.

GO analysis was used to annotate the function of DEGs
between MSI-H and MSI-L/MSS. In the biological process (BP)
category, genes with significant differences were mainly enriched
in organic acid, organic anion, and carboxylic acid transport. For
cell component (CC) categories, genes with significant
differences were mainly clustered in the apical part of the cell.
In the binding molecular function (MF), significantly different
genes were mainly involved in signaling receptor activator
activity and receptor–ligand activity (Figure 3D). Further
KEGG enrichment analysis was carried out to explore the
potential pathological pathway of cancer. As shown in
Figure 3E, the first two significant enrichment pathways were
neuroactive ligand–receptor interaction and cytokine receptor
interaction. Our significantly different genes were involved in
these pathways, which may also contribute to the diagnosis of
cancer. For example, the MUC6 gene is one of the mucin genes
that make up the gastric mucosa, and its expression is
downregulated in precancerous lesions and gastric cancer
tissues (44). Dpcr1 DPCR1(Mucl3MUCL3) is a protein-coding
gene.MUCL3may regulate NF kappa B signaling and play a role
in cell growth.

3.3 H&E Images Combined With DNA
Methylation Performed Best in Predicting
MSI of Colorectal Cancer
We evaluated the performance of images combined with
omics data in predicting the MSI of CRC. 5-f cv was used to
train ResNet34. As shown in Figure 4A, the prediction result
of H&E images combined with DNA methylation (ROC =
0.952) was higher than that of H&E images, H&E images
combined with multi-omics, and image combined with other
omics data. In addition to H&E images combined with
Frontiers in Oncology | www.frontiersin.org 6
methylation, H&E images combined with other omics was
lower than the prediction result of image in precision index. In
Acc, Recall, and F1_ score index, the prediction results of
image combined with omics were higher than those of
image (Figure 4B).
4 DISCUSSION

As we all know, MSI is widely considered as an indicator of
prediction and prognosis. It has been well studied in several
types of human cancers. In CRC, about 15% to 20% of CRC
cases are found to be associated with MSI-H. Therefore, MSI
states that detection is particularly important for CRC and is
recommended by current clinical guidelines (6, 45). With the
continuous development of computer deep learning
technology, computer-aided diagnosis and prognosis
prediction based on H&E staining images has attracted more
and more attention because of its advantages of high speed, low
cost, and no trauma. Multimodal fusion is a typical
interdisciplinary field and has gradually become a research
hotspot. In many studies, some results have been achieved
(46–48). In conclusion, the accuracy of the image-based
prognosis prediction model needs to be further improved.

In this study, we systematically analyzed the differences in
mRNA, lncRNA, and miRNA omics data between MSI-H and
MSI-L/MSS groups, and compared the classification
performance of image and image data combined with omics
data to predict the MSI of CRC. In this experiment, by
comparing the results of ROC, we found that H&E image
combined with Met had the best performance in predicting the
MSI of CRC. The result of H&E image combined with all omics
data was lower than that of image combined with single omics
data and higher than that of H&E images.
A B

FIGURE 4 | Performance of H&E images and images combined with omics data. (A) The AUC score of image and image combined with omics data.
(B) Performance of each mode in Accuracy, Precision, Recall, and F1_score index. HE_omi: H&E image features combined with multi-omics features.
July 2022 | Volume 12 | Article 925079
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Our study has some limitations. First, the selected omics data
were the cancer sample construction and evaluation model, not
the adjacent data. Only the differences between MSI-L/MSS and
MSI-H in cancer samples were studied. Second, we do not have
independent datasets for validation, because we cannot find
other databases to provide the required data except for the
TCGA database. Finally, our multi-omics feature was just
simple splicing of different single omics. It is best to test
the effects of interactions between omics because the genes of
each omics are not completely independent. Therefore, in our
follow-up study, we will try to include para-cancerous samples,
including independent test samples, and add interactive
items and new classification models to improve the
prediction accuracy.
5 CONCLUSION

To sum up, we integrated molecular biological information
and images to classify and predict the MSI of CRC. This is the
first study to compare the ability of different modes in
predicting the MSI of CRC under the same conditions,
including the same dataset, the same preprocessing scheme,
and the same classification algorithm. There were significant
differences in mRNA, lncRNA, and miRNA omics data
between MSI-H and MSI-L/MSS groups. By comparing the
results of ROC, we found that H&E images combined with Met
had the best performance in predicting the MSI of CRC. The
result of image combined with all omics data was lower than
that of image combined with single omics data and higher than
that of H&E images.
Frontiers in Oncology | www.frontiersin.org 7
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