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Abstract
Objectives: Women with an increased life-time risk of breast cancer undergo supplemental 
annual screening MRI. We propose to predict the risk of developing breast cancer within one
year based on the current MRI, with the objective of reducing screening burden and 
facilitating early detection.

Materials and Methods: An AI algorithm was developed on 53,858 breasts from 12,694 
patients who underwent screening or diagnostic MRI and accrued over 12 years, with 2,331 
confirmed cancers. A first U-Net was trained to segment lesions and identify regions of 
concern. A second convolutional network was trained to detect malignant cancer using 
features extracted by the U-Net. This network was then fine-tuned to estimate the risk of 
developing cancer within a year in cases that radiologists considered normal or likely benign.
Risk predictions from this AI were evaluated with a retrospective analysis of 9,183 breasts 
from a high-risk screening cohort, which were not used for training. Statistical analysis 
focused on the tradeoff between number of omitted exams versus negative predictive value, 
and number of potential early detections versus positive predictive value.  

Results: The AI algorithm identified regions of concern that coincided with future tumors in 
52% of screen-detected cancers (60/115, CI: 42.7-61.6%). Upon directed review, a 
radiologist found that 71.3% of cancers (82/115, CI: 62.1-79.4%) had a visible correlate on 
the MRI prior to diagnosis, 65% of these correlates were identified by the AI model (53/82, 
CI: 53.3-74.9%). Reevaluating these regions in 10% of all cases with higher AI-predicted risk
could have resulted in up to 33% early detections by a radiologist (56/167, CI: 26.4-41.2%). 
Additionally, screening burden could have been reduced in 16% of lower-risk cases 
(1,496/9,350, CI: 15.3-16.8%) by recommending a later follow-up without compromising 
current interval cancer rate. 

Conclusions: With increasing datasets and improving image quality we expect this new AI-
aided, adaptive screening to meaningfully reduce screening burden and improve early 
detection. 



Key points

Retrospective analysis found that the machine identified higher-risk cases with regions
of concern that coincided with future tumors in 52% of screen-detected cancers 
(60/115, CI: 42.7-61.6%). When re-evaluating 10% of the machine-predicted higher-
risk cases, 33% of developing cancers can be detected one year early (56/167, CI: 
26.4-41.2%). Following AI recommendations, 16% of patients can extend the interval 
of their next screening exam (1,496/9,350, CI: 15.3-16.8%).

Summary Statement
Predicting the short-term risk of developing breast cancer from MRI using AI has the 
potential to meaningfully improve early detection, while simultaneously reducing screening 
burden. 

Introduction
A frequent question among women who undergo breast cancer screening is when they 
should return for their next examination? In the case of breast cancer supplemental 
screening with magnetic resonance imaging (MRI), this question is particularly pressing. In 
the U.S., more than 500,000 women undergo yearly supplemental screening breast MRI,1 
often beginning at 25-30 years of age, with some undergoing up to 40-50 MRIs in their 
lifetime. Women are enrolled in such supplemental screening breast MRI exams because 
they are at increased risk of breast cancer.2 Yet, only a minority of these women will actually 
develop breast cancer in their lifetime. Indeed, the number of supplemental breast MRI 
screening is likely to increase given the recent recommendation to enroll women with 
extremely dense breasts.3 based on the result of the DENSE4,5 and ECOG-ACRIN6 clinical 
trials. However, the incidence of breast cancer in this population is lower than in the high-risk
population and thus many of these screening exams will remain negative. 

There is an urgent unmet need for a new precision prediction model in women at increased 
risk of breast cancer. While risk can be stratified by considering individual genetic factors,7 
family history8 or imaging information,9,10 and there are a number of established risk models 
in use, (e.g., the Tyrer-Cuzick model or the updated Gail model).11 The current risk models 
are largely static and do not take into account the current risk that may be gleaned from 
screening exams. Although a few models do include mammographic breast density as 
predictor,12–14 MRI information is currently not used. Earlier efforts with deep-learning 
suggest that MRI has value in predicting risk of developing cancer within 5-years.15 Thus, we
suggest a new framework to determine an individual’s probability of developing breast 
cancer within a defined period of time based on the current MRI. The goal of this framework 
is both early detection and individualized screening intervals based on risk.

After a negative screening mammogram, supplemental screening MRI can detect an 
additional 15-18 cancers per 1,000 high-risk women.16 Due to the higher sensitivity of MRI 
over mammography,17,18 we see a potential for estimating individual short-term risk within the
high-risk screening population based on the most recent MRI. For instance, retrospective 
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studies suggest that 34-47% of detected cancers were present already in prior MRI 
exams.19–21 In addition to local signs of cancers, one may be able to identify global features 
of general risk. For instance, fibroglandular breast tissue,22 which is linked to the risk factor 
of breast density, can be assessed in MRI.23 Background parenchymal enhancement may be
an additional predictors of breast cancer risk.24–27 But these MRI features, including dynamic 
contrast enhancement have not been systematically leveraged to predict individual risk. 

Our proposed framework is based on the hypothesis that the current MRI exams already 
contain information about the outcome of the next yearly screening and AI will be able to 
predict the occurrence of breast cancer in the near future by evaluating the current breast 
MRI exam. We intend that the machine should evaluate all exams deemed normal and 
probably benign by the radiologists within the high-risk screening population, to suggest a 
longer follow-up period for lower-risk cases, and to suggest immediate follow-up for higher-
risk cases. The objectives are 1) reduce the screening burden by identifying individuals who 
can be safely screened at longer intervals and 2) allow early detection by detecting cancers 
that are already present in the prior MRI. This could lead to decreased health care costs, 
minimized exposure to intravenous gadolinium, decreased false-positive biopsies and 
improved quality of life by decreasing anxiety.28 

Methods:

Patient Sample
The evaluation used retrospective data from 12,694 women who underwent breast MRI at a 
tertiary Cancer Center in the United States, either for diagnostic or screening purposes, and 
who have been followed for up to 13 years (Fig. S2). The use of these retrospective data 
was approved by the institutional review board and the need for informed consent was 
waived, and all procedures were HIPAA compliant. All data had been previously de-identified
by removing all patient information and saving exams with anonymized identifiers. The data 
included a total of 69,149 breasts with MRIs taken between 2002 and 2014. Complete data 
was available for 53,858 breasts (see Figure S2 for a full data chart). This sample size was 
the maximum accessible for this study.

Out of the 12,694 patients, 337 had screen-detected cancer. Exams from the preceding year
were available for 193 of these cancers. To be precise, patients do not return necessarily 
within one year for their next screening. Here, any interval up to 15 months was considered 
“1 year” follow-up (see Table S1 for a summary of these numbers) while later follow-ups 
were excluded. Screening exams used for risk predictions included only normal or probably 
benign cases (BI-RADS ≤ 3, excluding BI-RADS 0), and were labeled (future) “benign” if the 
next scheduled screening yielded a BI-RADS ≤ 3 or a negative biopsy, otherwise they were 
labeled “malignant”. By this definition, there were 9,183 benign and 167 malignant breasts 
from the screening population. Ground-truth was defined from the outcome of clinical 
diagnosis and/or pathology. 

Proposed framework of risk-adjusted screening
We first introduce here the proposed framework of risk-adjusted screening based on the 
current MRI. This framework involves using an AI-pipeline to review exams after the 

https://www.zotero.org/google-docs/?r6SYu1
https://www.zotero.org/google-docs/?hXolsI
https://www.zotero.org/google-docs/?NYZBGH
https://www.zotero.org/google-docs/?171SJc
https://www.zotero.org/google-docs/?3oiLVG


radiologist has determined that the exam is cancer-free -- defined here as exams with a 
Breast Imaging Reporting and Data System (BI-RADS) assessment ≤ 3. The machine may 
predict with confidence that, in a year's time, the health status will not have changed (case 
#3 in Fig. 1). In this lower-risk case, the patient may be recommended to come back at a 
time point greater than a year. Otherwise, the machine may determine that there is a finite 
risk for the next exam to present with a malignant lesion (case #2). In this medium-risk case, 
the patient would be recommended to return to the regular yearly screen. Finally, the 
machine may predict a higher probability of developing cancer. In this higher-risk case, the 
recommendation may be to take another look at the exam and for the patient to undergo 
immediate assessment (case #1). If this is the case, the machine should point to the region 
of concern in the breast MRI and re-evaluation may possibly allow tumors to be detected at 
the time of the current MRI rather than at the next yearly MRI. In terms of current clinical 
practice, case #2 changes nothing; case #3 reduces the burden of screening, and case #1 
has the potential to detect breast cancers earlier. 

Figure 1: Framework of risk adjusted screening based on the current MRI exam. The risk of a 
future lesion is predicted based on the current MRI exam and patient information (age, family history, 
ethnicity, race). Example of three cases: The higher risk patient (#1) is referred to the radiologist for 
re-evaluation based on the  identification of a suspicious lesion in the breast by the AI; medium risk 
patient (#2) is asked to return for regular follow-up MRI in a year; and the lower risk patient (#3) can 
skip one follow-up MRI and return for follow-up in two years.

In the proposed framework, the radiologists would evaluate the breast as usual, assigning a 
BI-RADS assessment to the breast. The machine would process only those breasts with BI-
RADS 1 and 2 (Negative and Benign) and BI-RADS 3 (probably benign) assessments. 
Suspicious or highly suggestive of malignancy findings (BI-RADS 4 and 5, respectively), 
would proceed with biopsy recommendation without machine intervention. Higher risk 
prediction by the machine would prompt re-evaluation by a radiologist to decide whether to 
refer for additional imaging and/or biopsy. Lower risk prediction by the machine would also 
prompt a re-evaluation to decide on an extended screening interval. Given that we can only 
analyze retrospective data, we evaluated this proposed work-flow assuming that the 
radiologist accepts the machine’s recommendation.  While the machine does not take the 
radiologist assessment into account, the assessment does determine the overall clinical 
workflow.

The objective of reducing screening burden and the objective of early detection are not in 
opposition. We describe this in some detail in the Supplement (Fig. S1), but briefly, the two 



criteria depend on two separate risk thresholds to determine lower and higher risk cases. As 
the lower-risk threshold is changed (square in Fig. S1A) the fraction of exams that could be 
omitted changes. This threshold also determines the precision of predicting health in a year’s
time changes, i.e. the negative predictive value (NPV, Eq. S1 in Supplement). The trade-off 
between NPV and reduced screening burden is captured by the resulting precision-effort 
curve (Fig. S1B). Similarly, as the higher-risk threshold changes (circle in Fig. S1A) the 
fraction of cases that need to be re-evaluated changes, along with the precision of predicting
cancer in a year's time, i.e. the positive predictive value (PPV, Eq. S3). The trade-off 
between PPV and fraction that needs to be re-evaluated potential early detection is captured
by the resulting precision-effort curve (Fig. S1C).  

Figure 2: The proposed workflow integrates traditional radiologist’s BI-RADS assessments and the AI
predicted risk. Higher-risk patients are referred to the radiologist to evaluate suspicious lesions 
identified by the AI to consider possible biopsy. Medium-risk patients are asked to return for regular 
follow-up MRI (6 months for BI-RADS 3 and 12 months for BI-RADS 1 and 2). Finally, lower risk 
patients can extend the interval of the next scheduled MRI, after confirmation with the radiologist (12 
months for BI-RADS 3 and 24 months for BI-RADS 1 and 2).

Development of a Risk Prediction Network
For a detailed description of the development of a risk prediction network, please refer to the
Supplement. Note that the small number of screen-detected cancers in the screening 
population presents a clinical challenge.29,30 It is also a challenge for machine learning which 
benefits from large datasets. To overcome this limitation the development of the risk 
prediction network was divided into three steps, with transfer learning used in each step. The
first step involved using a segmentation network (developed previously31) to identify several 
regions of concern in each scan, i.e., regions with a high probability of belonging to a 
malignant lesion (see examples in Fig. 3A). Second, a diagnostic network was trained on a 
large dataset of breast MRIs including diagnostic and screening exams. Image features 
generated by the segmentation network from several regions of concern (n = 5) serve as 
input to this network to determine if the current exam has a biopsy-confirmed malignant 
lesion anywhere in the breast (Fig. 3B). Model development and selection was done using 
this diagnostic task. Third, a risk prediction network was obtained by fine-tuning the 
diagnostic network, to predict if a breast in the screening cohort that is currently cancer-free 
will or will not develop cancer within a year. Therefore, the diagnostic network was trained to 
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predict the immediate outcome of the current exam, while the risk prediction network, with 
identical architecture and input, was fine-tuned to predict outcomes of the next scheduled 
screening. This network outputs a prediction for the overall breast, based on the 5 most 
relevant regions as identified by the segmenter. Risk prediction is a much harder task than 
diagnosis as it operates on exams that the radiologist has deemed cancer-free, and the 
tumors become apparent only in a year’s time in only 2% of cases.32  

Figure 3: AI deep-network pipeline.  A) A segmentation network (U-Net) extracts regions of concern
from a breast MRI, which have a high likelihood of being part of a cancerous lesion. Here shown for 
an exam that develops cancer in a year . Two regions from a single slice are shown, but in general 
the regions of concern may come from different slices in the breast volume. Input to the risk-prediction
network are features extracted by the segmentation network  from aT1-weighted image (T1w) as well 
as dynamic contrast enhancement images.  B) Architecture of the risk-prediction network (CNN) to 
predict exam outcomes. Convolutional layers (orange) include a 2D convolution, ReLU, batch-
normalization and max-pooling. The feature maps from the 5 regions are concatenated (blue) and 
classified together with demographic information in a final dense layer with a sigmoid (green).

The segmentation network, previously developed,31 was retrained on 30,253 breasts 
(including 1,220 segmented cancers). The diagnostic network used  9,006 breasts (including
2,331 cancers) for training and model selection. The risk prediction network was fine-tuned 
and evaluated with 5-fold cross-validation on a retrospective set of 9,350 MRI-screened 
breasts with 167 cancers (See Fig S3 and Table S1 for a summary and data partitions). 
The data from the training the segmentation and diagnostic networks came from 7,732 
unique patients, while the data for fine-tuning the risk-prediction network came from a set of 
4,962 patients. There is no overlap in exams between the two data sets. For acquisition, 
preprocessing and harmonization of the data as well as demographics see the Supplement. 

Radiologist review of screen-detected tumors
A breast radiologist reviewed all MRIs for the 167 cancers in the risk-prediction test set. BI-
RADS features could not be evaluated in 33 cases because the MRI at time of diagnosis 
was not available and 19 cases couldn't be evaluated due to post-lumpectomy change (n=5),
axillary recurrence (n=3), post-treatment imaging (n=2), biopsy change obscured 
visualization  (n=6) of there was no measurable disease (n=3). This left 115 cases for 
analysis of tumor location and BI-RADS features. To obtain an unbiased estimate of lesion 
size at both time points, we used automatic segmentation.31 We selected a connected 
component at the location of the index lesion, and measured its length in the principal axis in
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2D. We confirmed this metric on 4 cases measured by the radiologist using conventional 
clinical approach (see Fig. S10). 

Results

Risk-adjusted screening

First we evaluated the feasibility of identifying individuals who can be safely screened at 
longer intervals on this retrospective cohort. We trained a risk prediction network to predict 
from the current cancer-free breast the outcome of the next scheduled screening (Fig. 3), i.e.
predict 167 future screen-detections among 9,350 breasts. On this test set, the network 
achieves an area under the receiver operating characteristic curve (ROC-AUC) of 0.67 (CI: 
0.63-0.70) (Fig. 4A). The next-year exams that could have been omitted are those below a 
low-risk threshold (Fig. 4B, square). As this threshold is increased, the number of omitted 
exams increases, while the negative predictive value (NPV) decreases (Fig. 4C). At an NPV 
of 100% (i.e., without missing a single future cancer), the network identified 3.44% 
(316/9,183) of breasts for which exams could have been omitted, corresponding to 316 next-
year exams from 276 unique breasts. At an NPV of 99.5% (1,496/1,503, Fig. 4C, square), 
16% (1,496/9,350, CI: 15.3-16.8%) of next-year exams could have been omitted (Fig. 4B, 
vertical arrow), with cancer in 7 of 9,350 breasts being missed. This corresponds to an 
interval cancer rate of 0.07%. In other words, 16% of next-year exams could be skipped 
while remaining below the interval cancer rate of 0.1% associated with the fixed, yearly 
screening schedule currently in use in the United States. Incidentally, had we omitted exams
at random we would have missed 27 tumors (16% of 167 tumors), which is significantly more
than with the AI recomendation (Z=3.4, p=0.0007).   

Early detection

Next, we addressed the question of early detection. Cases that the network places above 
the highest-risk threshold could be referred for immediate follow-up (Fig. 4B, circle). As this 
threshold is reduced, the number of cancers potentially detected early increases, while the 
positive predictive value (PPV) drops (Fig. 4D). At a PPV of 25%, which is the current PPV 
of radiologists at our clinical site, the network recommends taking another look at 16 highest-
risk cases. From these cases, 4 had a malignant exam in the following year. Compared to 
the total of 167 screen-detected cancers in the patient sample, this suggests that 2.4% 
(4/167, CI: 0.7-6.0%) of cancers might be detected one year earlier, at no additional cost 
compared to current clinical practice. If radiologists were to re-evaluate a larger fraction of 
high-risk cases for decision referral, the AI would have shown an enriched set with 1 tumor 
in every 20 cases (PPV=5%, Fig. 4D, circle) instead of 1 in 50 cases in the entire dataset. 
This would require reevaluation of 10% of all cases but it would flag 56 breasts that 
developed cancer within one year (Fig. 4D, vertical arrow), which is 33.5% (56/167, CI: 26.4-
41.2%) of the total number of screen-detected cancers. 



Figure 4: Prediction of developing breast cancer one year in advance from the current breast 
MRI in a clinical screening population.  A) Distribution of future benign (green) and malignant (red) 
screening outcomes in terms of the AI algorithm-predicted risk based on the current cancer-free 
exam. Thresholds indicate suggested operating points for lower (square, risk=0.15) and higher risk 
(circle, risk=0.67). B) Cross-validation ROC curve for 12 month risk prediction (cross-validation 
performance). Operating points for higher and lower risk determination (sensitivity and specificity for 
circle: 96%, 17% and for square: 33%, 86%). C) Precision in predicting absence of cancer in a year’s 
time versus fraction of exams that could have been omitted to reduce screening burden. D) Precision 
in predicting newly developed cancer in a year’s time versus fraction of exams to be re-evaluated for 
early detection.

Tumor localization

The segmentation network highlights regions of concern in the breast (Fig. 3A), which could 
be used to direct the radiologist during re-evaluation. The risk-prediction network uses the 
top 5 regions detected by the segmentation network (Fig. 3B). We show examples of these 



five suspicious regions for the 16 highest-risk cases (Fig. 5 for 4 future malignant cases, and
Fig. S5 to S8 for 12 healthy cases). A trained breast radiologist reviewed these 16 highest-
risk breasts and concurred that at least one of the regions selected by the network merits a 
biopsy.  Of 167 screen-detected cancers, radiologist segmentations were available for 115 
tumors of the next exam at time of diagnosis (For exclusion criteria, see Methods). We 
determined in this subset of cases whether one of the 5 regions of concern selected by the 
network overlapped with the radiologist segmentation. Examples of the regions for current 
breast and future malignancies are shown in Fig. 6. In 16% of cases (18/115, CI: 11.0-
27.1%) the correct location is flagged and the breast receives a higher risk prediction (Fig. 
6A). Remarkably, even when the predicted risk was lower, the location of the future cancer 
was correctly anticipated in about one third of all cancers (Fig. 6C). In total, the model 
correctly flagged the location of the future tumor in 52% (60/115, CI: 42.7-61.6%) of cases 
(Fig. 6A & C combined). There were a few cases where the regions of concern prompted a 
correct higher risk prediction (Fig. 6B) even though the future malignancy manifested 
elsewhere in the breast. Finally, there were a few cases with a lower risk estimate, and the 
region of concern did not match the location of the future tumor (Fig. 6D). These are 
genuinely hard cases with no obvious evidence of a future malignancy. 

Figure 5: Four patients whose exams the network could have provided an early finding. Each 
column shows one of the top five regions of concern, proposed by the segmenter network (red 
square), which was confirmed by a radiologist to highlight the location of a future tumor. 



Figure 6: Localization of regions of concern and risk prediction in future tumors. Colored 
square indicates a region of concern flagged by the segmentation network (red) in the current MRI, 
and confirmed by a radiologist (yellow) in next year’s MRI. All breasts here developed cancer within a 
year and had a radiologist segmentation (N=115), with “malignancy predicted” if the risk predicted by 
the AI for the whole breast was above the threshold that prompts re-evaluation (Fig. 4C, circle). N 
indicates the number of screen detected cancer in each category. 

Characteristics of detected tumors

Next we asked how the regions highlighted by the network appeared to a human observer. 
To this end, a breast radiologist performed a retrospective directed review of all tumor cases 
(N=115; see exclusion criteria in Methods). The radiologist identified a visible correlate on 
the MRI prior to diagnosis in 71.3% of lesions (82/115, CI: 62.1-79.4%). 65% of these were 
also highlighted by the AI algorithm (53/82, CI: 53.3-74.9%). The radiologist confirmed no 
visible correlate in 28.7% of cases (33/115, CI: 20.6-37.9%) of cases, and the algorithm 
highlighted 21.2% of these cases (7/33, CI: 9.0-38.9%). Of the lesions identified on directed 
review 77.4% (89/115, CI: 68.7-84.7%) were less than 0.5 cm, and in average they were 
significantly smaller than at time of diagnosis (0.56±0.0.25 cm vs 1.02±0.56cm, t(156)=-5.5, 
p=1e-7). The radiologist also provided BI-RADS features for all visible lesions on MRI 
performed prior to and at diagnosis. Table S3 separates this based on the risk determined 
by the AI. The pathology findings separated by risk category are shown in Fig. S9. 

Finally, we noted that age on its own was not predictive of cancer in this patient sample (age
did not differ between cases that developed a tumor and those that remained healthy (rank-
sum test, p = 0.09, W = 1.71), nor was family history of cancer (Chi-square test statistic = 
0.43, p = 0.51, df = 1). Indeed, AUC-ROC is no different when demographic information is 
held constant (Fig. S9).  This indicates that within our high-risk cohort, demographic 
information did not further stratify risk. 



Figure 7: Summary of results on risk-adjusted screening, early detection and tumor 
localization. Areas are scaled in size to reflect fraction of cases - Left: After radiologist evaluation, BI-
RADS 1-3 cases are read again by the AI algorithm (green). Center: The AI algorithm recommends 
omitting the next year’s exam in lower-risk cases (blue), and re-evaluate higher risk cases (purple). 
Right: Fraction of future tumors potentially detected early (purple) assuming 10% of high-risk exams 
can be re-evaluated by a radiologist. AI flagged regions of concern that contained the location where 
the tumor was later detected (black rectangle).

Discussion
We proposed a new framework to determine an individual’s probability of developing breast 
cancer within one year based on their current cancer-free MRI. The overall results are 
summarized in Fig. 7. In 1 of 2 screen-detected cancers the AI algorithm found a region of 
concern that matched the location of the tumor on the next scheduled MRI. Re-evaluation by
a radiologist focusing on these high-risk areas may yield a meaningful number of early 
detections. Re-evaluating only 1 in 20 cases would place one third of future malignancies in 
front of the radiologists. These could be abbreviated readings as the AI algorithm already 
highlights the regions of concern within the breast. Re-evaluations might prompt, for 
instance, a shorter term follow-up, or a biopsy. On the other hand, the network identified 
lower-risk cases (16% of all cases) for which one could have recommended extending the 
screening interval without compromising the existing rate of interval cancers (0.1%). Overall, 
we suggest that instead of a fixed one-size-fits all schedule, the radiologist could adjust the 
time for the next follow-up, using a numerical risk score estimated by the AI algorithm based 
on the current cancer-free MRI exam.

Upon directed review, the radiologist identified a visible correlate on the MRI performed prior
to diagnosis in 71.3% percent cases, with 77.4% of these measuring less than 0.5 cm. 
However, these should not be definitively considered "misses'' or "false negatives" MRIs 
since a critical part of screening for early detection is diagnosing an interval change. Such 
interval change is considered suspicious and guides management for all of these cases.

The need for adaptive screening is likely to increase in the future given the recent 
recommendation to enroll women with extremely dense breasts into supplemental MRI 
screening.3 In these women risk of developing cancer is elevated, while chances of detecting
it with mammography are reduced. The DENSE and ECOG-ACRIN clinical trials 
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demonstrated the benefit of supplemental4,5 and abbreviated MRI screening6. The size of this
population with dencense breasts is substantial, making the need for adaptive screening 
even more urgent.  

A common problem of artificial intelligence research is its focus on algorithm performance 
instead of clinically relevant outcomes.33 For instance, most studies on cancer diagnosis only
report the ROC-AUC. More recent studies on risk prediction report the concordance index 
(c-index).34 These metrics quantify the performance of the AI algorithm, but do not directly 
quantify screening burden or address early detection. Studies focusing on risk prediction on 
MRI also often report AUC-ROC15 and have not considered the effect on the clinical 
workflow. We suggest that the objectives of reducing screening burden and increasing early 
detection are best evaluated in terms of the desired NPV and PPV, which results in 
precision-effort curves for predicting health and disease respectively. Similar to precision-
recall curves, precision-effort curves are preferable over receiver operating characteristic 
curves in the context of rare events.35 Here, they allow an obvious choice for the operating 
point in terms of NPV and PPV. At those points, our risk prediction network identified a 
fraction of cases that remained healthy for at least one year, without compromising detection
of future malignancies. Perhaps more importantly, the network found a handful of cases that 
were higher-risk and could have been referred to an immediate biopsy, without incurring a 
burden beyond current clinical practice. While the numbers of cases are small, they are 
important to the women involved.  

Recent studies on predicting outcomes 1-5 years in advance using mammography34,36,37 
report ROC-AUC values slightly higher than the 0.67 we report here with MRI. We believe 
that this is due to the different populations involved. For reference, an influential study38 
reported an AUC of 0.68 for predicting malignancy at any time within 5 years when using 
mammography alone. In that study, the Tyrer-Cuzick model, which relies mostly on 
demographic data, had an AUC of  0.67. This is well in line with risk models based on 
demographic and genetic information which have AUCs in the range of 0.6-0.71.39 Similar 
results of AUC in the range of 0.68-0.73 have been obtained in a multi-institutional validation
study with the same publicly available network.40 In contrast, in our high-risk patient sample, 
family history and age had no additional predictive value within the high-risk sample. Thus, 
stratifying risk within the high-risk population may be more challenging because this 
population is already being screened with MRI, which is highly sensitive,41 and tumors have 
already been removed earlier from this population as compared to the broader 
mammographic screening population. Indeed, a previous study focusing on risk prediction 
using MRI in a high-risk population15 reports an AUC of 0.49 for the Tyrer-Cuzick model and 
0.63 for the MRI-based predictor, reinforcing the notion that this is a difficult population 
compared to the broader mammography screening population.

Limitations of this study were a relatively small number of screen-detected cancers, which 
included only sagittal scans from a single clinical site. AI performance and robustness is 
likely to improve in the future with higher resolution axial exams that are now routine in 
clinical practice; with the use of the prior year’s exam to determine changes in the 
appearance of individual lesions; and with increasing datasets from multiple sites, which are 
required for robust deep-learning. Nevertheless, the present work provided proof-of-principle
and baseline performance on early detection and adaptive screening. 
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The precision-effort analysis we have presented here also applies to the concept of triage. In
that case, the classification network is trained to predict the outcome of the breast in the 
current exam. Those breasts with low probability of a malignant finding (at 100% NPV) could
be omitted from the radiologist's workload (in the present dataset, that would be 4.6% of all 
breasts). This type of triage has been suggested for mammography42,43 as well as breast 
MRI.44,45 However, triage is controversial, because it is hard to justify the risk of not reading 
an exam when the patient has already been burdened, and the cost of scanning has already
been incurred. Ultimately, it is important to realize that all current screening policies have 
implicitly selected a balance in terms of cost vs benefit. Dedicating screening to those that 
need it most while sparing those that need it less can only be an improvement over the 
current clinical practice of a fixed schedule. 

Acknowledgement
This work was supported by a grant from NIH with grant number R01CA247910 and  
R01EB028157. We want to thank Joanne Chin for extensive and thorough proofreading of 
this manuscript.

Author contribution
LH designed the computational methods, analyzed the data, programmed the network, 
generated figures and wrote the manuscript. YH performed all the image preprocessing. HM 
edited the paper. MH segmented images. DM provided imaging and clinical data. LP 
designed the overall approach and analysis methods and wrote the manuscript. ES 
conceived the approach of image-based risk-adjusted screening, provided imaging and 
clinical data, evaluated the predictions of the network and edited the manuscript. SEW and 
KP provided extensive input to the manuscript. EM contributions include formulating overall 
study design, data anonymization and curation, result interpretation and manuscript review

Competing Interests
All authors declare no financial or non-financial competing interests.

Data availability
The datasets analyzed during the current study are not publicly available due to patient 
confidentiality. However, risk prediction and outcome information for statistical evaluation of 
the results are available together with the code. 

Code availability
The underlying code for the network, trained parameters, and code and data needed for 
statistical analysis of results are available on GitHub and can be accessed via this link [insert
persistent URL to code].

https://www.zotero.org/google-docs/?8OFOxH
https://www.zotero.org/google-docs/?HvBRed


References
1. Wernli, K. J. et al. Patterns of Breast Magnetic Resonance Imaging Use in Community 

Practice. JAMA Intern. Med. 174, 125–132 (2014).

2. Bevers, T. B. et al. Breast Cancer Screening and Diagnosis, Version 3.2018, NCCN 

Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. JNCCN 16, 

1362–1389 (2018).

3. Mann, R. M. et al. Breast cancer screening in women with extremely dense breasts 

recommendations of the European Society of Breast Imaging (EUSOBI). Eur. Radiol. 32,

4036–4045 (2022).

4. Bakker, M. F. et al. Supplemental MRI Screening for Women with Extremely Dense 

Breast Tissue. N. Engl. J. Med. 381, 2091–2102 (2019).

5. Veenhuizen, S. G. A. et al. Supplemental Breast MRI for Women with Extremely Dense 

Breasts:                     Results of the Second Screening Round of the DENSE Trial. 

Radiology 299, 278–286 (2021).

6. Comstock, C. E. et al. Comparison of Abbreviated Breast MRI vs Digital Breast 

Tomosynthesis for Breast Cancer Detection Among Women With Dense Breasts 

Undergoing Screening. JAMA 323, 746–756 (2020).

7. Schmutzler, R. K. et al. Risk-Adjusted Cancer Screening and Prevention (RiskAP): 

Complementing Screening for Early Disease Detection by a Learning Screening Based 

on Risk Factors. Breast Care 17, 208–223 (2022).

8. Pharoah, P. D. P., Day, N. E., Duffy, S., Easton, D. F. & Ponder, B. A. J. Family history 

and the risk of breast cancer: A systematic review and meta-analysis. Int. J. Cancer 71, 

800–809 (1997).

9. Kuhl, C. K. & Baltzer, P. You Get What You Pay For: Breast MRI Screening of Women 

With Dense Breasts Is Cost-effective. JNCI J. Natl. Cancer Inst. 113, 1439–1441 (2021).

10. Geuzinge, H. A. et al. Cost-Effectiveness of Magnetic Resonance Imaging Screening for 

Women With Extremely Dense Breast Tissue. JNCI J. Natl. Cancer Inst. 113, 1476–

https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h


1483 (2021).

11. Gail, M. H. et al. Projecting individualized probabilities of developing breast cancer for 

white females who are being examined annually. J. Natl. Cancer Inst. 81, 1879–1886 

(1989).

12. Boyd, N. F., Martin, L. J., Yaffe, M. J. & Minkin, S. Mammographic density and breast 

cancer risk: current understanding and future prospects. Breast Cancer Res. 13, 223 

(2011).

13. Brentnall, A. R. & Cuzick, J. Risk Models for Breast Cancer and Their Validation. Stat. 

Sci. 35, 14–30 (2020).

14. Brentnall, A. R. et al. A Case-Control Study to Add Volumetric or Clinical Mammographic

Density into the Tyrer-Cuzick Breast Cancer Risk Model. J. Breast Imaging 1, 99–106 

(2019).

15. Portnoi, T. et al. Deep Learning Model to Assess Cancer Risk on the Basis of a Breast 

MR Image Alone. Am. J. Roentgenol. 213, 227–233 (2019).

16. Chiarelli, A. M. et al. Effectiveness of screening with annual magnetic resonance 

imaging and mammography: results of the initial screen from the ontario high risk breast 

screening program. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 32, 2224–2230 (2014).

17. Roganovic, D., Djilas, D., Vujnovic, S., Pavic, D. & Stojanov, D. Breast MRI, digital 

mammography and breast tomosynthesis: Comparison of three methods for early 

detection of breast cancer. Bosn. J. Basic Med. Sci. 15, 64–68 (2015).

18. Zhang, Y. & Ren, H. Meta-analysis of diagnostic accuracy of magnetic resonance 

imaging and mammography for breast cancer. J. Cancer Res. Ther. 13, 862–868 (2017).

19. Vreemann, S. et al. The frequency of missed breast cancers in women participating in a 

high-risk MRI screening program. Breast Cancer Res. Treat. 169, 323–331 (2018).

20. Yamaguchi, K. et al. Breast Cancer Detected on an Incident (Second or Subsequent) 

Round of Screening MRI: MRI Features of False-Negative Cases. AJR Am. J. 

Roentgenol. 201, 1155–63 (2013).

21. Pages, E. B., Millet, I., Hoa, D., Doyon, F. C. & Taourel, P. Undiagnosed Breast Cancer 

https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h


at MR Imaging: Analysis of Causes. Radiology 264, 40–50 (2012).

22. Mammary Gland Mass and Breast Cancer Risk on JSTOR. 

https://www.jstor.org/stable/3702346#metadata_info_tab_contents.

23. Wengert, G. J. et al. Inter- and intra-observer agreement of BI-RADS-based subjective 

visual estimation of amount of fibroglandular breast tissue with magnetic resonance 

imaging: comparison to automated quantitative assessment. Eur. Radiol. 26, 3917–3922

(2016).

24. King, V. et al. Background parenchymal enhancement at breast MR imaging and breast 

cancer risk. Radiology 260, 50–60 (2011).

25. Pike, M. C. & Pearce, C. L. Mammographic density, MRI background parenchymal 

enhancement and breast cancer risk. Ann. Oncol. 24, viii37–viii41 (2013).

26. Dontchos, B. N. et al. Are Qualitative Assessments of Background Parenchymal 

Enhancement, Amount of Fibroglandular Tissue on MR Images, and Mammographic 

Density Associated with Breast Cancer Risk? Radiology 276, 371–380 (2015).

27. Hu, X., Jiang, L., You, C. & Gu, Y. Fibroglandular Tissue and Background Parenchymal 

Enhancement on Breast MR Imaging Correlates With Breast Cancer. Front. Oncol. 11, 

(2021).

28. Fazeli, S. et al. Patient-Reported Testing Burden of Breast Magnetic Resonance 

Imaging Among Women With Ductal Carcinoma In Situ: An Ancillary Study of the 

ECOG-ACRIN Cancer Research Group (E4112). JAMA Netw. Open 4, e2129697 

(2021).

29. Laws, A. et al. Baseline Screening MRI Uptake and Findings in Women with ≥ 20% 

Lifetime Risk of Breast Cancer. Ann. Surg. Oncol. 27, 3595–3602 (2020).

30. Ghoncheh, M., Pournamdar, Z. & Salehiniya, H. Incidence and Mortality and 

Epidemiology of Breast Cancer in the World. Asian Pac. J. Cancer Prev. APJCP 17, 43–

46 (2016).

31. Hirsch, L. et al. Deep learning achieves radiologist-level performance of tumor 

segmentation in breast MRI. ArXiv200909827 Phys. Stat (2020).

https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h


32. Gao, Y. et al. Magnetic Resonance Imaging in Screening of Breast Cancer. Radiol. Clin. 

North Am. 59, 85–98 (2021).

33. Varoquaux, G. & Cheplygina, V. Machine learning for medical imaging: methodological 

failures and recommendations for the future. Npj Digit. Med. 5, 1–8 (2022).

34. Yala, A. et al. Toward robust mammography-based models for breast cancer risk. Sci. 

Transl. Med. 13, (2021).

35. Ozenne, B., Subtil, F. & Maucort-Boulch, D. The precision–recall curve overcame the 

optimism of the receiver operating characteristic curve in rare diseases. J. Clin. 

Epidemiol. 68, 855–859 (2015).

36. McKinney, S. M. et al. International evaluation of an AI system for breast cancer 

screening. Nature 577, 89–94 (2020).

37. Lotter, W. et al. Robust breast cancer detection in mammography and digital breast 

tomosynthesis using an annotation-efficient deep learning approach. Nat. Med. 27, 244–

249 (2021).

38. Yala, A., Lehman, C., Schuster, T., Portnoi, T. & Barzilay, R. A Deep Learning 

Mammography-based Model for Improved Breast Cancer Risk Prediction. Radiology 

292, 60–66 (2019).

39. Louro, J. et al. A systematic review and quality assessment of individualised breast 

cancer risk prediction models. Br. J. Cancer 121, 76–85 (2019).

40. Yala, A. et al. Multi-Institutional Validation of a Mammography-Based Breast Cancer 

Risk Model. J. Clin. Oncol. 40, 1732–1740 (2022).

41. Kriege, M. et al. Efficacy of MRI and Mammography for Breast-Cancer Screening in 

Women with a Familial or Genetic Predisposition. N. Engl. J. Med. 351, 427–437 (2004).

42. Rodriguez-Ruiz, A. et al. Can we reduce the workload of mammographic screening by 

automatic identification of normal exams with artificial intelligence? A feasibility study. 

Eur. Radiol. 29, 4825–4832 (2019).

43. Dembrower, K. et al. Effect of artificial intelligence-based triaging of breast cancer 

screening mammograms on cancer detection and radiologist workload: a retrospective 

https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h


simulation study. Lancet Digit. Health 2, e468–e474 (2020).

44. Verburg, E. et al. Deep Learning for Automated Triaging of 4581 Breast MRI 

Examinations                     from the DENSE Trial. Radiology 302, 29–36 (2022).

45. Bhowmik, A. et al. Automated Triage of Screening Breast MRI Examinations in High-

Risk Women Using an Ensemble Deep Learning Model. Invest. Radiol. 

10.1097/RLI.0000000000000976 doi:10.1097/RLI.0000000000000976.

46. Kim, G. R., Cho, N., Kim, S.-Y., Han, W. & Moon, W. K. Interval Cancers after Negative 

Supplemental Screening Breast MRI Results in Women with a Personal History of 

Breast Cancer. Radiology 300, 314–323 (2021).

47. Modat, M. et al. Fast free-form deformation using graphics processing units. Comput. 

Methods Programs Biomed. 98, 278–284 (2010).

https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h
https://www.zotero.org/google-docs/?YXAe6h


Supplement

Metrics for evaluating reduction of screening burden and improved early detection
The objective of reducing screening burden and the objective of early detection of the 
proposed risk-adjusted screening are not in opposition. To see this, let's assume the AI-
algorithm estimates the risk of developing cancer in the following year based on the current 
MRI exam as shown schematically in Fig. S1A. In this illustration we can clearly distinguish 
lower, medium and higher risk cases. What is important to note is that the two thresholds in 
this diagram can be selected independently from one another. In this view, the objectives of 
saving lives vs reducing screening burden are independent and not in competition. 

Figure S1: Schematic of possible 12-month outcomes as a function of machine-predicted risk. 

The AI-algorithm predicts the risk of developing cancer next year, based on the current exam. (A) All 
exams are currently cancer-free, and remain cancer-free (green) or will have a newly detected cancer 
(red) at the next yearly screening. Cases with a predicted risk below the lower threshold (square) are 
considered lower risk and can have an extended follow-up, while cases above the high threshold 
(circle) are higher risk and may be recalled early for immediate assessment.  (B) Precision in finding 
healthy/lower-risk scans as a function of the fraction of exams that would be omitted due to extended 
follow-up. (C) Precision in finding scans that will develop cancer as a function of the fraction of exams 
that are re-evaluated, i.e., potential early detections relative to the total number of screen-detected 
cancers. 

  
In the proposed risk-adjusted screening approach, medium-risk cases would continue to be 
screened according to current practice and having the higher-risk cases referred to the 
radiologist for immediate review should not be controversial. However, the lower-risk cases 
should be handled with care. To allow the recommendation that the next yearly screening 
interval can be extended and thus meet the objective of reducing screening burden, there 
must be absolute confidence that a low-risk prediction by the AI-algorithm would in fact result
in a negative exam in 12 months’ time. This confidence can be quantified as the “negative 
predictive value” (NPV, i.e. the number of true negatives over all negative predictions, see 
Eq. S1 in the Supplement). To avoid unnecessary risk, the low-risk threshold in Fig. S1A 
(square) can be set so that NPV=100%, i.e. there is 100% confidence that no cancer will 
occur within one year. As the low-risk threshold is moved rightward, the number of negative 
predictions that would omit the next yearly exam increases. Fig. S1B shows the tradeoff 
between confidence (NPV) and reduced screening burden (fraction of omitted exams relative
to total number of exams, Eq. S2). The benefit of risk-adjusted screening can be read from 
this graph as the point of highest savings that still has 100% confidence (square). In this 
illustrative example, 25% of exams can potentially be omitted (vertical blue arrow) without 



missing a single malignant exam. More realistically, in the current clinical practice, the 
number of tumors that are detected in the interval between two yearly screenings is 
exceedingly small. The number of such “interval cancers” is as low as 0.1-1.5% of the total 
number of yearly screening exams.41,46 This corresponds to an NPV of 98.5-99.9%. 

Meanwhile, the second objective of early detection can be evaluated in terms of the “positive
predictive value” (PPV, Eq. S3), namely, the likelihood that a predicted cancer is in fact 
detected with an immediate assessment, e.g. with a biopsy. With PPV, we can be more 
permissive than with NPV, as it should not be controversial to send a few extra cases for 
immediate assessment, provided a few tumors may be detected earlier than under the 
current screening regime. At present, radiologists at our clinical tertiary cancer care center 
have a PPV of 25% (i.e., three in four biopsies are benign) when they recommend biopsy, 
and this is an acceptable “cost” of screening under current practice. Fig. S1C shows the 
tradeoff between the "cost" of extra biopsies (1-PPV) and the benefit of further increasing the
sensitivity of a radiologist (tumors potentially detected one year earlier). A reasonable 
operating point therefore would be to set the high-risk threshold such that PPV=25% to 
match the performance of the radiologist under the current clinical practice. In the illustrative 
example of Fig. S1C the fraction of potential early detections (over total number of screen-
detected cancer, Eq. S4) at this operating point is 45% (vertical blue arrow). In practice, 
radiologists would be asked to perform a supplementary reading of the higher-risk exams, 
which is a lower burden than performing a biopsy. Radiologists may be willing to perform a 
supplemental reading if they can catch, say, one extra tumor in 20 supplemental readings, 
i.e., PPV=5%, provided it is a small number of cases and the AI-algorithm can pinpoint 
where exactly to take a second look.  

The following section explains that both the above mentioned trade-offs constitute precision-
effort curves. In the case of Fig. S1B (Eq. S1 vs S2) the curve evaluates the “cost/benefit” of 
predicting health, and in the case of Fig. S1C (Eq. S3 vs S4), the curve evaluates the 
“cost/benefit” of predicting disease. We suggest that adaptive screening should be evaluated
with these precision-effort curves, rather than ROC curves.  

Positive Predictive Value, Negative Predictive Value, Sensitivity and Specificity
A variety of measures are used to quantify failure and success in binary classification 
problems. This variety can be confusing at times, and so we reproduce here the definitions 
relevant for the present work. All measures are defined based on the four possible outcomes
of a binary classification, namely, the number of classifications that are true positives (TP), 
true negatives (TN), false positives (FP) and false negatives (FN). In our work, “positive” 
means that cancer is present and “negative” means that cancer is not present. One 
important criterion is the number of true negatives, which also can be quantified relative to 
the total number of negative classifications, or relative to the total number of actual negative 
cases:

Negative predictive value = TN/(TN+FN) (1)
Specificity = True negative rate = TN/(TN+FP) (2)
Fraction omitted = (TN+FN)/(TN+FN+TP+FP) (3)

The other important criterion is the number of true positives, which can be quantified relative 
to the total number of positive classifications, or relative to the total number of actual positive
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cases. These two quantities go by different names:

Positive predictive value  = TP/(TP+FP) (4)
Sensitivity = True positive rate = TP/(TP+FN) (5)
Fraction re-evaluated = (TP+FP)/(TN+FN+TP+FP) (6)

 
We  use sensitivity and specificity when referring to the current diagnosis, with the trade-off 
between these two captured by the conventional ROC curve (Fig. S1). On the other hand, 
we use positive predictive value (PPV) vs fraction omitted from reading for anticipating 
cancer at one year, and negative predictive value (NPV) vs fraction re-evaluated for 
anticipating health at one year. Note that these pairs represent precision and effort; they 
capture the trade-off between precision of predicting health and the corresponding effort 
saved (Fig. S1B) or the precision in predicting cancer and the effort exerted (Fig. S1C). We 
refer to them as precision-effort curves and suggest that they constitute the preferred way of 
evaluating triage, risk-adjusted screening and early detection. 

MRI Acquisition, Preprocessing, and Harmonization
The acquisition, preprocessing and harmonization of the MRIs used in this evaluation have 
been detailed in a previous publication.31 Briefly, exams were acquired in the sagittal plane 
at varying in-plane resolutions, 2–4 mm slice thickness, and varying repetition times and 
echo times. The sequences used here included pre-contrast, fat-saturated T1-weighted 
images, and a variable number (n = 3–8) of post-contrast fat-saturated T1-weighted images 
to capture dynamic contrast enhancement. In-plane sagittal resolution was harmonized by 
upsampling low-resolution images. Image intensity from different scanners were harmonized
by dividing with the 95th percentile of pre-contrast T1 intensity. To summarize the variable 
number of dynamic contrast-enhanced images, we measured the volume transfer constant 
for the initial uptake and subsequent washout, DCE-in and DCE-out, respectively (example 
of a T1-weighted image and DCE-in in Fig. 3A). 

Figure S2: The patient sample included patients that have been followed in the screening program for
a varying amount of time. Here is the time period of data available with sagittal MRI exams. 
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Figure S3: Chart of data used for training and testing. Numbers here refer to individual breasts, 
and we did not always have data for two breasts for each exam date. The segmentation and 
diagnostic network were trained with partially overlapping data. The risk-reduction network did not 
overlap with the other two, and only included screening exams. 

Number of breasts
(benign/malignant)

Segmentation Diagnosis Risk

Train 31053 
(29,933/1120*)

6773
(4909/1864)

7,351**
(7,206/145)**

Validation 200
(100/100)

818
(718/100)

****

Test *** 1415
(1048/367)

1986**
(1977/22)**

Total 31,253
(30,033/1,220)

9,006
(6,675/2,331)

9,350 
(9,183/167)

Table S1: Numbers of breasts used for training, validation and testing. *Each malignant case 
had a 2D segmentation for one of the slices in the MRI volume. **This was the size of data for each 
fold in 5-fold cross validation, for a total of 9,350 exams. ***We did not evaluate test set performance 
of segmentation in the present work.  **** we did not perform model selection for the risk prediction 
network, so no validation set was needed



Segmentation Diagnosis Risk

Family History 14% 10% 15%

Mean Age [min - max] 52 [17 - 93] 52 [18 - 93] 52 [18 - 88]

Ethnicity: 
Hispanic or Latino

5% 5% 4%

Ethnicity:
Not Hispanic

71% 71% 71%

Ethnicity:
Unknown

23% 23% 24%

Race:
Asian East/Indian 
Subcontinental

3% 3% 3%

Race:
Black or African 
American

5% 5% 5%

Race:
White

24% 24% 24%

Race:
Unknown / Other

67% 67% 68%

Table S2: Summary statistics of demographics per partition.

Extraction of candidate regions of concern using a 3D segmenter and training
The total dataset was partitioned for training and testing of the segmentation and diagnostic 
network on the one hand, and on the other hand, for training and testing of the risk 
prediction network (see Fig. S3). The latter only included screening exams.  These partitions
are disjointed at the image and exam level. 

To identify regions of concern and to extract image features, we used a U-Net that had been 
previously developed for 3D segmentations.31 This network computes for each pixel in the 
MRI volume the probability that the pixel is part of a malignant lesion (Fig. 4A). The network 
was trained on pixels drawn from tumor and non-tumor regions of 2D manual 
segmentations, but also on pixels drawn from anywhere on benign exams. As such, it was 
trained to distinguish pixels belonging to malignant lesions from that of normal breast tissue 
or benign lesions. Training and validation using the current data (Table S1) proceeded as in 
previous work.31 Candidate regions of concern (49 x 49 pixels in size) were sampled on a 
fixed grid with half overlap from all slices in the 3D volume. The mean probability of 
malignancy was computed over all pixels in each region, and the top 5 regions were 
selected for further analysis in the diagnostic network. 

Architecture and training of a diagnostic network
The diagnostic network is a convolutional neural network  as shown in Fig. 3B. It estimates 
the probability that the current breast MRI contains a malignant lesion, based on 5 regions of
concern. The inputs to the network for each region are 32 features from the last layer of the 
segmentation network (16 features computed separately for the ipsilateral and contralateral 
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breast). All five regions of concern are included as input to produce a single prediction of the 
outcome. The network contains 5 blocks of 2D convolutional layers with 3x3 kernels, 
followed by a ReLU non-linearity, batch-normalization layer and a max-pooling layer by a 
factor of 2. Prior to running through the segmentation network the contralateral breast was 
coregistered to the ipsilateral breast with NiftyReg,47 so that the 5 regions can serve as a 
reference in the corresponding locations. Demographic information used as input by the 
network included ethnicity, race, and history of breast cancer in the family. This network was 
trained and tested on a combination of diagnostic and screening exams (Table S1). A subset
of the training data (10%) was used for validation and model selection. The best validation-
set performance was obtained for a model using the top 5 ROIs instead of top 1 (ROC-AUC 
0.72 vs 0.76) and without extra penalty-weight on the low-prevalence class (AUC-ROC 0.74 
vs 0.76). Subsequent fine-tuning for risk prediction used this final model.

Fine-tuning for risk prediction
We fine-tuned the diagnostic network on the prediction of future malignancy in current 
cancer-free exams. The resulting risk-prediction network has the same architecture as the 
diagnostic network, but its parameters are optimized to predict future tumors.  Due to the 
small number of screen-detected cancer, we evaluated test-set performance using 5-fold 
cross validation.  The test set was selected to have a natural prevalence of screen-detected 
cancers versus healthy breasts of 2%. All cross-validation folds were trained with the same 
number of epochs (n = 5), otherwise we found that risk distributions varied between folds, 
potentially requiring individual risk thresholds.

ROC performance of diagnostic and risk prediction network. 
We tested the performance of the diagnostic network at detecting a malignant lesion in the 
current exam (Fig. S4A). The AUC-ROC on test data was 0.87 [CI: 0.86, 0.89] (n = 367 
malignant, n = 1,048 benign). A much harder task was predicting future malignancy, on all 
currently cancer-free exams, as radiologists have already identified malignancies with high 
sensitivity. On this task, the risk prediction network reached a test-set performance of AUC-
ROC of 0.67 [CI: 0.63, 0.70] (Fig. 4, 5-fold cross validation on n = 9,350).  
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Figure S4: Performance in diagnosing current exam outcome. Test-set performance of the 
diagnostic network at classifying the current exams as “benign” or “malignant”. 

To understand the increased difficulty between the conventional diagnostic task and the risk 
prediction task as we have formulated it here consider the following: Conventional diagnosis 
with AI uses all exams (only excluding BI-RADS 0 and 6) to predict outcome. Outcome is  
“benign” for all cases that remain cancer free for 2 years (including benign biopsy), and 
“malignant” for cases with an malignant biopsy. Importantly, difficult cases that are BI-RADS 
≤ 3 but end up developing cancer in 1-2 years, are simply excluded from the analysis in most
AI literature. The one-year risk prediction task here, instead only includes BI-RADS ≤ 3 
cases. It is much harder to find tumors in that subset, as all the likely or certain malignant 
tumors have already been removed. Then, the network has to predict what will happen at the
next screen, which might detect cancer with a mammogram, supplemental MRI, biopsy or 
any other approach. We are intentionally not excluding patients that present with cancer in 
clinical follow-up. In fact, it is those difficult cases we aim to anticipate. 

Threshold values for lower and higher risk determination
Thresholds for the lower and higher risk category were set at 20th and 90th percentile of risk
in the training data in each fold. Applying these thresholds to the left-out test data and 
aggregating across folds resulted in a NPV=99.5% and PPV=5% respectively, as reported in
the main text. Selecting the threshold on the percentile of the total data is statistically more 
robust than selecting it directly on PPV given the small number of malignant cases. For the 
PPV=25% we selected the threshold directly on the test data. This value should be regarded
with care as a large dataset would be required for a statistically robust choice of this higher 
threshold value. 

Confidence intervals
All confidence intervals represent 95% confidence. For ratios they were computed using the 
Clopper-Pearson exact method. For AUC values they were computed using bootstrapping 
with resampling. 

Software and libraries
Model design, training and evaluation was done using the Python deep-learning library 
Tensorflow version 1.14 using as backend Keras version 2.3.1.   



Figure S5: Six out of the twelve benign breasts for which the model assigned highest risk of cancer 
development within one year. Each row shows three (out of five) regions of concern per breast as 
identified by the network (blue box).



Figure S6: Six out of the twelve benign breasts for which the model assigned highest risk of cancer 
development within one year. Each row shows three (out of five) regions of concern per breast as 
identified by the network (blue box).



Figure S7: Further six out of the twelve examples of benign breasts for which the model assigned 
highest risk of cancer development within one year. Each row shows three (out of five)regions of 
concern per breast as identified by the network (blue box).



Figure S8: Six out of the twelve benign breasts for which the model assigned highest risk of cancer 
development within one year. Each row shows three (out of five) regions of concern per breast as 
identified by the network (blue box).



Current Exam (n=115)
Future Exam 
(n=115)

High Risk (n=36)
Medium and Lower 
Risk (n=79)

Lesion Type

Focus 8 (22%) 22 (28%) 8 (7%)

Mass 6 (17%) 6 (8%) 57 (50%)

Non Mass 
Enhancement

10 (28%) 30 (38%) 50 (42%)

None 12 (33%) 21 (27%) 0

Size
Mean 0.62 cm 0.53 cm 1.02 cm

STD 0.20 cm 0.27 cm 0.56 cm

Focus/
Mass

Shape

Round 9 (64%) 17 (61%) 39 (60%)

Oval 1 (7%) 6 (21%) 4 (6%)

Irregular 4 (29%) 5 (17%) 22 (34%)

Margin

Circumscribed 5 (36%) 19 (67%) 16 (25%)

Irregular 9 (64%) 9 (32%) 49 (75%)

Spiculated 0 0 0

Internal 
Enhancem
ent

Homogeneous 12 (86%) 21 (75%) 50 (77%)

Heterogeneous 2 (14%) 7 (25%) 13 (20%)

Rim Enhancement 0 0 2 (3%)

Dark internal 
Septations

0 0 0

T2

Isointense 14 (100%) 26 (93%) 62 (95%)

Hyperintense 0 0 1 (2%)

Heterogeneous 0 0 1 (2%)

Non Mass
Enhance
ment

Distribution

Focal 7 (70%) 30 (100%) 43 (86%)

Linear 0 0 0

Segmental 2 (20%) 0 4 (8%)

Regional 1 (10%) 0 4 (8%)

Internal 
Enhancem
ent

Homogeneous 2 (20%) 19 (63%) 24 (48%)

Heterogeneous 8 (80%) 11 (37%) 27 (54%)

Rim Enhancement 0 0 0

T2
Isointense 10 (100%) 29 (97%) 48 (96%)

Hyperintense 0 1 (3%) 2 (4%)

Table S3: BI-RADS features for the 115 cancers before and after detection.



Significance of demographics

Figure S9: When replacing demographics and clinical information with the median value, we
observe a numerically higher AUC-ROC although this is not significant (Delong test, z=1.42, 
p = 0.15). This suggests that demographic information has little predictive values in this high-
risk population, and the network may have indeed overfitted on demographic data.



Figure S10: Automatic measuring of lesions in current and future breast. Four 
examples of lesion measuring in the current and following year examination where a cancer 
was detected. Automatic volumetric segmentation of both breasts was done with a pre-
trained machine segmenter. A radiologist segmentation of the index lesion was used to mark
the location of the developed cancer. A machine segmentation was used in the previous 
year exam, while keeping only the top 5 regions of interest. Spatial alignment of the 
subsequent exam was done to find the corresponding region in the breast, by evaluating if 
there is an overlap between the radiologist segmentation and one of the top 5 regions 
segmented by the machine. For measuring the size, the binarized segmented area was 
projected along its first component, and the range of the projection was measured and 
multiplied with the image resolution. In order to provide a robust estimate, the 95 percentile 
of the projection length was used. If there are multiple lesions present only the largest one is 
reported.



Figure S11: Cancer types in the higher (A) vs medium and lower risk groups (B) as 
stratified by the AI algorithm. 

Future Exam (n=5)

Lesion Type

Focus 0

Mass 2 (40%)

Non Mass Enhancement 3 (60%)

None 0

Size
Mean 1.01 cm

STD 0.82 cm

Focus/Mass

Shape

Round 1 (50%)

Oval

Irregular 1 (50%)

Margin

Circumscribed 1 (50%)

Irregular 1 (50%)

Spiculated 0

Internal Enhancement Homogeneous 1 (50%)



Heterogeneous 1 (50%)

Rim Enhancement 0

Dark internal Septations 0

T2

Isointense 1 (50%)

Hyperintense 0

Heterogeneous 1 (50%)

Non Mass 
Enhancement

Distribution

Focal 2 (66%)

Linear 0

Segmental 1 (33%)

Regional 0

Internal Enhancement

Homogeneous 0

Heterogeneous 3 (100%)

Rim Enhancement 0

T2

Isointense 3 (100%)

Hyperintense 0

Table S4: BI-RADS features for the 5 cancers that were assigned a lower-risk by the AI
algorithm. A total of 7 cancers were assigned a lower risk assessment by the AI algorithm. 
Two of these were excluded from analysis for BI-RADS features due to axillary recurrence 
and negative breast, and due to post-biopsy changes.


