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Abstract
Purpose: To analyze the role of six human epididymis protein 4 (HE4)- related mito-
chondrial ribosomal proteins (MRPs) in ovarian cancer and selected MRPL15, which 
is most closely related to the tumorigenesis and prognosis of ovarian cancer, for fur-
ther analyses.
Methods: Using STRING database and MCODE plugin in Cytoscape, six MRPs 
were identified among genes that are upregulated in response to HE4 overexpression 
in epithelial ovarian cancer cells. The Cancer Genome Atlas (TCGA) ovarian cancer, 
GTEX, Oncomine, and TISIDB were used to analyze the expression of the six MRPs. 
The prognostic impact and genetic variation of these six MRPs in ovarian cancer 
were evaluated using Kaplan- Meier Plotter and cBioPortal, respectively. MRPL15 
was selected for immunohistochemistry and GEO verification. TCGA ovarian cancer 
data, gene set enrichment analysis, and Enrichr were used to explore the mechanism 
of MRPL15 in ovarian cancer. Finally, the relationship between MRPL15 expression 
and immune subtype, tumor- infiltrating lymphocytes, and immune regulatory factors 
was analyzed using TCGA ovarian cancer data and TISIDB.
Results: Six MRPs (MRPL10, MRPL15, MRPL36, MRPL39, MRPS16, and 
MRPS31) related to HE4 in ovarian cancer were selected. MRPL15 was highly ex-
pressed and amplified in ovarian cancer and was related to the poor prognosis of 
patients. Mechanism analysis indicated that MRPL15 plays a role in ovarian cancer 
through pathways such as the cell cycle, DNA repair, and mTOR 1 signaling. High 
expression of MRPL15 in ovarian cancer may be associated with its amplification and 
hypomethylation. Additionally, MRPL15 showed the lowest expression in C3 ovar-
ian cancer and was correlated with proliferation of CD8+ T cells and dendritic cells as 
well as TGFβR1 and IDO1 expression.
Conclusion: MRPL15 may be a prognostic indicator and therapeutic target for ovar-
ian cancer. Because of its close correlation with HE4, this study provides insights into 
the mechanism of HE4 in ovarian cancer.
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1 |  BACKGROUND

Ovarian cancer is the seventh most common cancer and 
eighth most common cause of death due to cancer among 
women worldwide.1 Early diagnosis can enable appropriate 
treatment and is the main factor associated with improving 
the survival rate of patients with ovarian cancer. However, 
because of the lack of early typical symptoms and accurate 
diagnostic methods, 70% of patients with ovarian cancer 
are already at an advanced stage when they are diagnosed,2 
with their 5- year survival rate rapidly declining from 92% to 
29%.3 Surgery and chemotherapy are the main treatments for 
ovarian cancer. Clinically, approximately 80% of high- grade 
serous ovarian cancer and high- grade endometrioid ovarian 
cancer cases are sensitive to chemotherapy. However, only 
around 20% of patients experience no recurrence after initial 
treatment, whereas most patients show chronic recurrence, 
with 20%– 30% relapsing or progressing within six months 
after completing chemotherapy.4 In women with advanced 
ovarian cancer, around 75% of those who relapse are incur-
able.3 Therefore, exploring the development mechanism of 
ovarian cancer, searching for more sensitive biomarkers, and 
identifying new therapeutic targets have become research 
trends in ovarian cancer.

Human epididymis protein 4 (HE4), which is encoded by 
the WAP four- disulfide core domain 2 gene, was approved 
by the US Food and Drug Administration in 2008 for the 
early diagnosis, efficacy evaluation, and relapse monitor-
ing of patients with epithelial ovarian cancer. HE4 is widely 
used in clinics for ovarian cancer diagnosis. Compared to 
the detection of cancer antigen 125 alone, detection of HE4 
or combined detection of HE4 and cancer antigen 125 is 
more sensitive and specific for early diagnosis,5 differen-
tial diagnosis of pelvic tumors,6 postoperative recurrence,7 
and prognosis judgment.8 Several studies have shown that 
HE4 promotes the proliferation, invasion, metastasis, and 
drug resistance in ovarian cancer.9 However, the specific 
mechanism of HE4 in ovarian cancer remains unclear, and 
some controversy exists. In a previous study, we used human 
whole- genome microarray technology to screen complete 
differentially expressed genes (DEGs) after overexpression 
and silencing of HE4 in the epithelial ovarian cancer cell line 
ES- 2. In total, 717 upregulated DEGs were found by compar-
ing HE4- overexpressing cells and HE4- mock cells.10 Deep 
mining of these DEGs and comprehensive data analysis are 
expected to provide new ideas and potential applications for 
studying the mechanism of ovarian cancer development and 
HE4- interacting proteins.

The combination of bioinformatics and medicine is the 
main trend at present, and it plays an important role in the 
screening of biomarkers, the construction of protein- protein 
interaction networks, the enrichment of pathways, and the 
construction of predictive models.11 The application of 

bioinformatics tools, algorithms and databases allows re-
searchers to quickly obtain and analyze a variety of data 
(including genomics, transcriptomics, proteomics, and clin-
ical data, etc.) from multiple patients in large databases.12 
Compared with traditional biological experiments, it has the 
advantages of faster, more comprehensive and more cost- 
effective. In recent years, the use of bioinformatics meth-
ods to identify and predict cancer biomarkers has gradually 
emerged, providing a large number of candidate targets for 
subsequent biological experimental verification, which 
will help promote the development of cancer precision 
medicine.13,14

Therefore, in this study, via bioinformatics analysis, we 
examined the role of HE4- related proteins in promoting the 
malignant biological behavior of ovarian cancer and identi-
fied new candidate biomarkers and potential targets for the 
early diagnosis and therapy of ovarian cancer. As shown 
in Figure 1, we used the STRING online tool and MCODE 
plugin in Cytoscape to construct an interaction network of 
717 upregulated DEGs and analyze the key modules in this 
network diagram, revealing six mitochondrial ribosomal 
proteins (MRPs). After analyzing the expression and prog-
nostic impact of these MRPs in ovarian cancer, we selected 
MRPL15, which is the gene most closely correlated with the 
tumorigenesis and prognosis of ovarian cancer, for further 
verification and mechanism analysis.

2 |  MATERIAL AND METHODS

2.1 | Protein– protein interaction network 
construction and key module acquisition

STRING (http://strin g- db.org/) is an online database that 
integrates multichannel- determined and - predicted protein– 
protein interaction (PPI) data to reevaluate all functional 
interactions between proteins.15 Cytoscape (v.3.7.2) and its 
MCODE plugin can be used to visualize and identify the core 
module of large network diagrams.16 We used STRING to 
construct an interaction network of 717 upregulated genes 
related to HE4 and then used the MCODE plugin to detect 
the closely connected region of the network.

2.2 | Data processing

From the UCSC Xena (https://xenab rowser.net) database, 
we obtained gene expression data (RNA- seq HTSeq- Counts, 
n = 379), survival data (n = 731), phenotype data (n = 758), 
and somatic mutation data (VarScan2, n  =  436) of The 
Cancer Genome Atlas (TCGA) ovarian cancer dataset. In ad-
dition, gene expression data from TCGA ovarian cancer data-
set (RNA- seq HTSeq- FPKM, n = 379) and Genotype- Tissue 

http://string-db.org/
https://xenabrowser.net
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Expression Portal (GTEX) dataset (RNA- seq TOIL RSEM 
FPKM, n = 88) were downloaded and normalized to compare 
the expression between ovarian cancer and normal samples. 
Immune subtype data were obtained from TCGA pan- cancer 
dataset, and data on ovarian cancer samples were extracted 
for further analysis.

We selected the expression profiles GSE5108817 and 
GSE1387618 from GEO database (https://www.ncbi.nlm.nih.
gov/geo/) to verify the expression and prognostic impact of 
MRPL15 in ovarian cancer. GSE51088, which is based on 
the GPL7264 platform, includes 140 epithelial ovarian can-
cer samples, 12 ovarian borderline tumor samples, 5 ovarian 
benign tumor samples, and 15 normal ovarian tissue sam-
ples. GSE13876, which is based on the GPL7759 platform, 
includes 157 serous ovarian cancer samples from patients at 
an advanced stage.

To explore the relationship between MRPL15 expression 
with gene- level copy number variation and DNA methyla-
tion, two studies were downloaded from the cBioPortal on-
line database: TCGA Ovarian Serous Cystadenocarcinoma 
(Firehose Legacy, n  =  606) and TCGA Ovarian Serous 
Cystadenocarcinoma (Nature 2011, n = 489).19 Additionally, 
MRPL15 expression- related genes were obtained from cBio-
Portal, and 791 genes with an average Spearman's correlation 

coefficient of 0.3 were screened for subsequent enrichment 
analysis.

2.3 | Oncomine

Oncomine (http://www.oncom ine.org) is a tumor microarray 
database that integrates transcriptome data from multiple can-
cers.20 We compared the mRNA expression levels of MRPs 
in different types of malignant and normal tissues. The search 
thresholds were set as fold- change =2, p- value = 0.01, and 
gene rank =top 10%.

2.4 | TISIDB

TISIDB (http://cis.hku.hk/TISIDB) is an online database 
for analyzing interactions between tumors and the immune 
system. This database contains 5 data sources, including 
4176 records in the PubMed literature database, 8 genome- 
wide high- throughput screening datasets, genome- wide 
atlas data of all patients with cancer administered immu-
notherapy, multiple groups data based on TCGA database, 
and annotation information from 7 public databases.21 We 

F I G U R E  1  Flowchart presenting 
the analysis of six HE4- related MRPs in 
ovarian cancer. First, as shown in the yellow 
box, through STRING, MCODE, and 
KEGG enrichment analysis of HE4- related 
genes, we screened six MRPs. Second, 
as shown in the blue box, we performed 
a comprehensive analysis of mRNA 
expression, gene variation, and prognosis 
for these six MRPs. Finally, as shown 
in the green box, we chose MRPL15 for 
further verification and mechanism analysis. 
CNV, copy number variation; GSEA, 
Gene Set Enrichment Analysis; GTEX, 
Genotype- Tissue Expression Portal; HE4, 
human epididymis protein 4; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; O, 
HE4- High; OV, HE4- High- vector; SNV, 
single- nucleotide variants; TCGA, The 
Cancer Genome Atlas

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51088
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13876
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51088
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13876
http://www.oncomine.org
http://cis.hku.hk/TISIDB
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used TISIDB to analyze the expression levels of MRPs in 
patients with ovarian cancer at different clinical stages, as 
well as the relationship between MRPL15 and tumor im-
mune infiltration.

2.5 | cBioPortal analysis

cBio Cancer Genomics Portal (http://www.cbiop ortal.org), 
including data from more than 5000 tumor samples of 20 
studies, is mainly used to interactively analyze multidimen-
sional genomics data for cancer.22 In this study, we used cBi-
oPortal to analyze the types and ratios of variations in genes 
encoding MRPs in ovarian cancer.

2.6 | Kaplan– Meier Plotter analysis

Kaplan– Meier Plotter (http://kmplot.com) is an online plat-
form useful for evaluating the prognostic value of gene ex-
pression in various types of cancer. It includes 22,277 gene 
expression data points and survival information on 1287 pa-
tients with ovarian cancer.23 We used this site to access the 
impact of some members of the MRP family on the overall 
survival (OS) and progression- free survival (PFS) of patients 
with ovarian cancer. We compared the prognostic value of the 
high-  and low- expression groups according to the hazard ratio 
(HR), 95% confidence interval (CI), and log- rank p- value (p- 
values <0.05 were considered to have a significant difference).

2.7 | Functional and pathway 
enrichment analyses

Metascape (https://metas cape.org/), Database for Annotation, 
Visualization, and Integrated Discovery (DAVID; https://
davi.ncifc rf.gov), Gene set enrichment analysis (GSEA), 
and Enrichr (https://maaya nlab.cloud/ Enric hr/) were used 
for functional and pathway enrichment analyses. Metascape 
is an online tool integrating more than 40 independent data-
bases that aims to provide comprehensive resources for gene 
annotation, functional enrichment, and interaction analysis.24 
DAVID is a tool used for systematically extracting biological 
meaning from a large gene or protein list.25 GSEA consid-
ers experiments with genome- wide expression profiles from 
samples belonging to two classes.26 Enrichr is an online an-
notation tool that contains 180,184 annotated gene sets from 
102 gene set libraries.27

Metascape was used to perform KEGG pathway enrich-
ment analysis of genes in the top six modules. The following 
criteria in Metascape were used to obtain a significant differ-
ence: a p- value of <0.01, minimum count of 3, and enrich-
ment factor of >1.5. KEGG pathway enrichment analysis of 

the top 150 mutated genes in the high- MRPL15- expression 
group was performed using DAVID and visualized using R 
language.

To gain insight into the mechanism of MRPL15 in ovar-
ian cancer, GSEA and Enrichr were used. GSEA was per-
formed using the GSEA software (v.4.0.3), and the result was 
visualized using the R language. In total, 379 ovarian cancer 
samples obtained from TCGA database were grouped into 
two depending on the median expression of MRPL15. H.all.
v7.1.symbols.gmt of the Molecular Signatures Database 
(MSigDB) was downloaded and used as the reference gene 
set to explore the potential hallmark between the two groups. 
Gene set permutations were set to 1000. A nominal p- value 
of <0.05 and false discovery rate q- value of <0.25 were con-
sidered as significant. KEGG, Reactome, and BioCarta path-
way enrichment analyses were performed to MRPL15- related 
genes in ovarian cancer using the Enrichr online database.

2.8 | Sample sources and clinical data

Paraffin samples and clinical data of patients with epithelial 
ovarian tumors admitted from December 2008 to November 
2019 were collected. All samples were histopathologically 
diagnosed as ovarian tumors, and no patients had been ad-
ministered any treatment (such as chemotherapy, radio-
therapy, or hormone therapy) before surgery. In total, 118 
samples, containing 81 cases of epithelial ovarian cancer, 15 
cases of epithelial borderline ovarian tumor, 12 cases of epi-
thelial benign ovarian tumor, and 10 cases of normal ovarian 
tissues, were included. The median ages in these four groups 
were 52 (19– 79 years), 46 (28– 71 years), 47 (28– 66 years), 
and 43  years (32– 62  years), respectively, with no signifi-
cant differences between age groups (p > 0.05). Among the 
81 patients with malignant tumors, the numbers of samples 
with good/moderate and poor differentiation were 37 and 44, 
respectively. According to the International Federation of 
Gynecology and Obstetrics (FIGO) 2009, 38 patients were 
in stage I/II and 43 patients were in stage III/IV. In addition, 
the number of samples with pelvic lymph node metastasis, 
without lymph node metastasis, and without lymph node de-
tection were 20, 52, and 9, respectively.

2.9 | Immunohistochemical (IHC) assay

The paraffin block of ovarian tissues was prepared in 
5- μm- thick sections. The streptavidin peroxidase method was 
performed to detect the expression of MRPL15. Polyclonal 
antibodies against MRPL15 were purchased from Altas 
Antibodies (Stockholm, Sweden) and used at a dilution ratio 
of 1:150. Positive and negative controls were set for each 
batch of sections, and parallel analysis was conducted. The 

http://www.cbioportal.org
http://kmplot.com
https://metascape.org/
https://davi.ncifcrf.gov
https://davi.ncifcrf.gov
https://maayanlab.cloud/Enrichr/
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positive control was a slice of rectal tissue showing MRPL15 
expression, and the negative control was a slice of ovarian 
tissue stained with phosphate buffer rather than with anti-
body. Staining of the cytoplasm with brown- yellow particles 
was judged as MRPL15- positive. Scores of 0, 1, 2, and 3 
represented no stain, light- yellow stain, brown- yellow stain, 
and dark- brown stain, respectively. The average percentage 
of positive cells in five randomly selected high- power micro-
scope fields was calculated and divided into five levels: <5%, 
5%– 25%, 26%– 50%, 51%– 75%, and >75%, which were re-
spectively counted as 0, 1, 2, 3, and 4 points. Finally, the two 
abovementioned scores were multiplied, and the final score 
was determined comprehensively: 0– 2 points (negative, −), 
3– 4 points (weak positive, +), 5– 8 points (positive, ++), and 
9– 12 points (strongly positive, +++). Among these, 3– 12 and 
5– 12 points were defined as positive and strongly positive 
expression, respectively. To eliminate scoring error, each tis-
sue section was reviewed independently by two researchers.

2.10 | Statistical analysis

SPSS Statistics (v.22.0; SPSS, Inc., Chicago, IL, USA) and R 
language (v.3.6.1) were used to statistically analyze the data, 
chi- squared test or Fisher's exact probability test was used to 
process the count data, and t- test was used to process the meas-
urement data using the “ggpubr” R package. Kaplan– Meier 
analysis and log- rank test were used for survival analysis using 
the “survival” and “survminer” R packages. A Cox regres-
sion model was used to explore the expression of MRPL15 
and clinical pathological index via univariate and multivariate 
analysis. A p- value of <0.05 was considered as significant. 
GraphPad Prism v.7.0 (GraphPad, Inc., San Diego, CA, USA) 
and R package, including “corrplot,” “ggplot2,” “ggstatsplot,” 
“plotly,” “reshape2,” “ComplexHeatmap,” and “circlize”, 
were used to visualize the analysis results.

3 |  RESULTS

3.1 | Hub gene exploration in upregulated 
DEGs in response to HE4 in epithelial ovarian 
cancer cells

STRING was used to construct the PPI network of 717 HE4- 
related upregulated genes in ovarian cancer cells; 19 densely 
connected modules were obtained using the MCODE pl-
ugin. Table S1 shows an overview of these 19 modules. The 
genes in each module are listed in Table S2 according to the 
MCODE score. We performed visualization and KEGG en-
richment analysis of the first 6 modules with MCODE scores 
greater than 3.00. As shown in Figure S1, modules 2, 3, 5, 
and 6 were significantly enriched in some cancer- related 

pathways. Among the genes in these four modules, there were 
six members of the MRP family (i.e., MRPL10, MRPL15, 
MRPL36, MRPL39, MRPS16, and MRPS31) in the core part 
of module 3 (Figure 2A). Numerous studies have examined 
the role of this gene family in cancer, but analysis of these six 
genes in ovarian cancer remains insufficient.28 Therefore, we 
included these six genes in subsequent analysis.

As shown in Figure  2B, the enrichment results indicated 
that genes in module 3 were mainly involved in aminoacyl- 
tRNA biosynthesis, ribosome, spliceosome, and pathways in 
cancer. Next, we explored Pearson's correlations between these 
six MRP family members and their relationship with HE4 using 
gene expression data from TCGA ovarian cancer dataset. As 
shown in Figure 2C, the expression of all six MRPs in ovarian 
cancer was positively correlated, with the strongest correlation 
being between MRPS16 and MRPL39 (r  =  0.56, p  <  2.2e- 
16). As shown in Figure 2D, all MRPs except for MRPL10 
were positively correlated with HE4, among which MRPL36 
(r = 0.35, p < 0.001) and MRPL15 (r = 0.24, p < 0.001) ex-
hibited the strongest correlation with HE4. The results for these 
six MRPs in our previous human whole- genome microarrays 
in the human epithelial ovarian cancer cell line ES- 2 follow-
ing overexpression and silencing of HE4 are shown in Table 1. 
These MRPs were significantly upregulated in response to 
HE4, with a log2 (fold- change) greater than 1.00. This result is 
supported by our analysis of TCGA.

3.2 | mRNA expression of the six MRPs in 
ovarian cancer

3.2.1 | Differential expression 
levels of the six MRPs between 
malignant and normal ovarian tissues

Oncomine was used to explore the mRNA expression lev-
els of the six MRPs in various types of tumors. Four studies 
suggested that the expression of MRPL15 was significantly 
increased in ovarian cancer, whereas one study concluded 
that the expression of MRPS31 was significantly decreased in 
ovarian cancer (Table 2, Figure 3A). Using TCGA Ovarian 
Statistics to compare 586 cases of serous ovarian cancer with 
eight cases of normal ovarian tissues, MRPL15 was found to 
be significantly overexpressed in ovarian cancer (p = 2.13e- 
8, fold- change =2.485). Yoshihara et al. analyzed 43 cases 
of serous ovarian cancer and 10 cases of peritoneal tissue and 
concluded that MRPL15 is overexpressed in ovarian serous 
cancer (p = 1.42e- 9, fold- change =2.444).28 Moreover, Lu 
et al. found that compared with normal ovarian surface epi-
thelium, MRPL15 is significantly overexpressed in ovarian 
endometrioid carcinoma (p = 6.14e- 4, fold- change =2.334) 
and ovarian serous carcinoma (p  =  2.13e- 4, fold- change 
=2.620).29 In addition, after analyzing 10 epithelial ovarian 
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surfaces and 185 cases of ovarian cancer, Bonome et al. con-
cluded that MRPS31 is significantly downregulated in ovar-
ian cancer (p = 5.47e- 6, fold- change =−2.069).30 However, 
no significant difference was observed in Oncomine in the 

expression of the four remaining MRPs between malignant 
and normal ovarian tissues.

Next, we further compared the mRNA expression differ-
ence of MRPs between 379 cases of ovarian cancer samples 
from TCGA and 88 cases of normal ovarian samples from 
GTEX database. As shown in (Figure  3B) and C, the ex-
pression of all six MRPs differed between cancer and nor-
mal samples. MRPL10, MRPL15, MRPL36, MRPL39, and 
MRPS16 were highly expressed in ovarian cancer, whereas 
MRPS31 showed the opposite tendency. In addition, MRPL15 
exhibited the highest expression in ovarian cancer.

3.2.2 | Correlation between mRNA expression 
levels of MRPs and FIGO stages of ovarian cancer

TISIDB was used to further explore the expression ten-
dency of MRPs in ovarian cancer at different clinical stages 

F I G U R E  2  Overview of module 3 and correlation analysis between the six MRPs and their relationship with HE4. (A) PPI network of module 
3 (STRING and Cytoscape). Label size and color: MCODE score in the PPI network; width and color of edges: combined score between nodes. (B) 
KEGG pathway enrichment analysis of module 3 using Metascape. (C) Pearson's correlation between the six MRPs in ovarian cancer in TCGA- 
OV database. Red bubble: positive correlation; bubble size and color intensity: Pearson's correlation coefficient value. (D) Correlation between 
HE4 and the six MRPs in TCGA- OV database. MRPs, mitochondrial ribosomal proteins; HE4, human epididymis protein 4; PPI, protein– protein 
interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes; TCGA, The Cancer Genome Atlas; OV, ovarian cancer

(A)

(B)

(D)

(C)

T A B L E  1  Six MRPs in response to HE4 in ovarian cancer cells

Gene Symbol RefSeq O versus OV

Log2 (Fold 
Change) p- value

MRPL10 NM_148887.2 1.065127 2.75E- 02

MRPL15 NM_014175.3 1.003717 7.03E- 09

MRPL36 NM_032479.3 1.409939 2.81E- 06

MRPL39 NM_080794.3 1.439083 1.34E- 05

MRPS16 NM_016065.3 1.319883 4.62E- 06

MRPS31 NM_005830.3 1.733649 1.79E- 13

Abbreviations: HE4, human epididymis protein 4; O, HE4- H; OV, 
HE4- H- vector.
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(Figure 3C). The mRNA expression level of MRPL39 was sig-
nificantly increased in advanced clinical stages (Spearman's 
correlation: 0.144, p = 0.0125). In addition, the expression 

of MRPL15 in ovarian cancer was increased in advanced 
stages but not significantly (Spearman's correlation: 0.111, 
p = 0.054). However, no significant correlations were found 

T A B L E  2  Datasets of mitochondrial ribosomal proteins (MRPs) in ovarian cancer (Oncomine)

Gene Cancer (cases) Normal (cases)
Fold 
change t- Test p- value Dataset

MRPL15 Ovarian Serous 
Cystadenocarcinoma (586)

Ovary (8) 2.485 17.331 2.13E- 08 TCGA

Ovarian Serous Adenocarcinoma 
(43)

Peritoneum (10) 2.444 7.988 1.42E- 09 Yoshihara 
et al.24

Ovarian Endometrioid 
Adenocarcinoma (9)

Ovarian Surface 
Epithelium (5)

2.334 4.327 6.14E- 04 Lu et al.25

Ovarian Serous Adenocarcinoma 
(20)

Ovarian Surface 
Epithelium (5)

2.620 5.392 1.23E- 04 Lu et al.25

MRPS31 Ovarian Carcinoma (185) Ovarian Surface 
Epithelium (10)

−2.069 −8.004 5.47E- 06 Bonome et al.26

F I G U R E  3  mRNA expression levels of the six MRPs in ovarian cancer. (A) mRNA expression levels of the six MRPs in different types of 
tumor (Oncomine). Red and blue cells represent increased and decreased gene expression, respectively. Color intensity represents the significance 
level of the gene expression difference. Numbers in the cells represent the number of datasets meeting the threshold. (B– C) Heatmap and boxplot 
of mRNA expression difference of the six MRPs between malignant and normal ovarian tissues (TCGA- OV and GTEX). (C) MRP expression 
tendency in ovarian cancer at different clinical stages (TISIDB). MRPs, mitochondrial ribosomal proteins, TCGA, The Cancer Genome Atlas. OV, 
ovarian cancer, *p < 0.05, **p < 0.01, ***p < 0.001

(A)

(D)

(B)

(C)
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between expression of the four remaining MRPs and clinical 
stages in ovarian cancer.

In conclusion, analysis of the Oncomine and TCGA da-
tabases showed that MRPL15 is overexpressed in ovarian 
cancer, showing the most significant expression difference 
among the six MRPs. Notably, TISIDB showed that MRPL15 
may also be associated with ovarian cancer progression.

3.3 | Genetic variations of MRPs in 
ovarian cancer

cBioPortal was used to analyze the genetic variations in the 
six MRPs in three studies in 1680 cases of ovarian cancer 
(489 cases in TCGA, Nature 2011; 585 cases in TCGA, Pan- 
Cancer Atlas; and 606 cases in TCGA, Firehose Legacy). 
As shown in Figure 4A, the genetic variation types of these 
genes in all 1680 samples from the three studies were muta-
tion, amplification, and deletion. MRPL36 (9%) and MRPL15 
(7%) had the highest variation rates among samples in these 
three studies. Figure 4B presents the overall variation rates 
of the six MRPs in the three different studies. The total in-
cidence rate of genetic variation in these studies was greater 
than 15%, with the variation rate in the study of TCGA, 
Firehose Legacy reaching as high as 28.64% (amplification, 
mutation, and deletion rates were 26.07%, 0.34%, and 2.23%, 
respectively).

Figure  4C shows the variation types and rates of each 
MRP in the three studies. In TCGA, Firehose Legacy study, 
MRPL36 showed the highest incidence rate of genetic varia-
tion of 13.38% (with all cases being amplification), followed 
by MRPL15, whose amplification rate was 10.63%. In ad-
dition, other MRPs, including MRPS16 (whose amplifica-
tion and deletion rates were 2.74% and 0.34%, respectively), 
MRPL10 (whose amplification, mutation, and deletion rates 
were 1.72%, 0.17%, and 0.69%, respectively), and MRPL39 
(whose amplification, mutation, and deletion rates were 
1.37%, 0.17%, and 0.34%, respectively), exhibited high 
amplification rates. Hence, except for MRPS31 (whose am-
plification and deletion rates were 0.51% and 1.72%, respec-
tively), amplification is the type of genetic variation with the 
highest incidence rate in these ovarian cancer- related genes.

3.4 | Effects of MRPs on prognosis of 
patients with ovarian cancer

Kaplan– Meier Plotter was used to analyze the effects of 
the mRNA expression levels of the six MRPs on the OS 
and PFS of patients with ovarian cancer (Figure  5). The 
results suggest that overexpression of MRPL15, MRPL36, 
MRPL39, MRPS16, and MRPS31 is significantly associ-
ated with poor OS (Figure 5A). Moreover, overexpression of 
MRPL15, MRPL36, and MRPS31 is significantly correlated 

F I G U R E  4  Genetic variations of MRPs in ovarian cancer (cBioPortal). (A) Summary of genetic variation rates and types of each MRP in all 
samples in three ovarian cancer studies. (B) Overall genetic variation rates and types of all six MRPs in each study. (C) Genetic variation of each 
MRP in three different studies. MRPs, mitochondrial ribosomal proteins; TCGA, The Cancer Genome Atlas

(A)

(B) (C)
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with poor PFS, whereas overexpression of MRPL10 is cor-
related with better PFS (Figure 5B). Comparison of the re-
lationship between these genes and the prognosis of ovarian 
cancer showed that overexpression of MRPL15, MRPL36, 
and MRPS31 may lead to poor OS and PFS in patients with 
ovarian cancer, among which MRPL36 showed the greatest 
prognostic significance.

3.5 | MRPL15- related signaling pathway

Only MRPL15 was highly expressed in ovarian cancer in both 
Oncomine analyses and the combined analyses of TCGA and 
GTEX. In addition, MRPL15 had a high variation rate and 
was significantly related to the OS and PFS of patients with 
ovarian cancer. To further analyze the potential function of 

F I G U R E  5  Effects of the six MRPs on the survival of patients with ovarian cancer (Kaplan Meier- Plotter). (A) Effects of each MRP on OS 
shown as a forest map. (B) Effects of each MRP on the PFS shown as a forest map. CI, confidence interval; HR, hazard ratio; MRPs, mitochondrial 
ribosomal proteins; OS, overall survival; PFS, progression- free survival. *p < 0.05

(A)

(B)
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MRPL15 in ovarian cancer, GSEA was performed between 
high-  and low- MRPL15- expression groups in TCGA ovarian 
cancer database. Table 3 shows the top 10 gene sets enriched 
in the MRPL15- high- expression group (n = 190), for which 
the nominal p- value <0.05 and FDR q- value <0.25 were 
considered significant. Figure 6A shows the nine significant 
gene sets: “OXIDATIVE PHOSPHORYLATION,” “DNA 
REPAIR,” “FATTY ACID METABOLISM,” “MTORC1 
SIGNALING,” “PEROXISOME,” “UV RESPONSE UP,” 

“E2F TARGETS,” “MYC TARGETS V2,” and “MYC 
TARGETS V1.”

To gain comprehensive insight into the mechanism of 
MRPL15 in ovarian cancer, we performed KEGG, BioCarta, 
and Reactome pathway enrichment analyses for 791 genes 
correlated with MRPL15 screened from the cBioPortal data-
base. Enrichment analysis of the KEGG and Reactome path-
ways showed that MRPL15 mainly participates in oxidative 
phosphorylation, electron transport in the respiratory chain, 

T A B L E  3  Gene sets enriched in the high- MRPL15- expression group

MSigDB collection Gene set NES
NOM
p- value

FDR
q- value

H. all v7.1
symbols gmt
[Hallmarks]

HALLMARK OXIDATIVE PHOSPHORYLATION 2.13 0.004* 0.004

HALLMARK DNA REPAIR 1.94 0.002* 0.054

HALLMARK FATTY ACID METABOLISM 1.83 0.008* 0.098

HALLMARK MTORC1 SIGNALING 1.79 0.019* 0.106

HALLMARK PEROXISOME 1.76 0.006* 0.109

HALLMARK UV RESPONSE UP 1.69 0.010* 0.151

HALLMARK ADIPOGENESIS 1.68 0.051 0.132

HALLMARK E2F TARGETS 1.66 0.047* 0.130

HALLMARK MYC TARGETS V2 1.62 0.024* 0.151

HALLMARK MYC TARGETS V1 1.61 0.036* 0.146

Abbreviations: FDR, false discovery rate; NES, normalized enrichment score; nominal p- value, nominal p- value.
*NOM p- value <0.05.

F I G U R E  6  Pathway enrichment analysis of MRPL15 in ovarian cancer. (A) Hallmark gene set enrichment pathways of high- MRPL15- 
expression group in TCGA ovarian cancer database. (B) KEGG pathways enriched by MRPL15- related genes in ovarian cancer. (C) Pathways 
enriched by MRPL15- related genes in the Reactome database. (D) Pathways enriched by MRPL15- related genes in the BioCarta database. TCGA, 
The Cancer Genome Atlas, KEGG, Kyoto Encyclopedia of Genes and Genomes

(A) (B)

(C) (D)
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and the citrate cycle. Additionally, BioCarta pathway analysis 
indicated that MRPL15 is also involved in regulation of p27 
phosphorylation during cell cycle progression, CDK regula-
tion of DNA replication, and ubiquitin proteasome pathway.

3.6 | IHC staining and GEO database 
verification of MRPL15 expression in 
ovarian cancer

3.6.1 | MRPL15 is overexpressed in epithelial 
ovarian cancer

IHC staining of MRPL15 was performed in 118 cases of epi-
thelial ovarian tissues, including 81 cases of malignant tumor 
tissues, 15 cases of borderline tumor tissues, 12 cases of benign 
tumor tissues, and 10 normal tissues. As shown in Figure 7A, 
MRPL15 was mainly detected in the cytoplasm. The positive 
rate (96.30%) and high positive rate (85.19%) of MRPL15 
expression in epithelial ovarian cancer tissues were signifi-
cantly higher than those in epithelial borderline tumor tissues 
(55.33% and 40.00%, respectively), epithelial benign tumor 
tissues (41.67% and 16.67%, respectively), and normal ovar-
ian tissues (30.00% and 00.00%, respectively) (all p < 0.05; 
Table 4). However, no significant difference was observed be-
tween other pairwise comparisons among epithelial borderline 
ovarian tumor tissues, epithelial benign ovarian tumor tissues, 
and normal ovarian tissues (p > 0.05; Table 4).

3.6.2 | Correlation between MRPL15 
expression and clinicopathologic features

Eighty- one patients with epithelial ovarian cancer were in-
cluded divided into two groups: a high- MRPL15- expression 
group (++/+++) and low- MRPL15- expression group (−/+). 
As shown in Table 5, the high positive rate of MRPL15 ex-
pression in patients with epithelial ovarian cancer at FIGO 
stage III/IV (93.02%) was significantly higher than in pa-
tients at FIGO stage I/II (76.32%; p = 0.035). However, al-
though the high positive rate of MRPL15 expression in the 
poorly differentiated tumor group and lymph node metastasis 
group was higher than that in the well/moderately differen-
tiated group and no lymph node metastasis group, respec-
tively, the differences were not significant (p  =  0.261 and 
0.099, respectively; Table 5).

The GEO database was used to further validate the ex-
pression of MRPL15 and its correlation with clinicopath-
ologic features. In GSE51088, the expression of MRPL15 
in epithelial ovarian cancer was significantly higher than 
that in ovarian borderline tumors (p  =  2.5e- 06), ovarian 
benign tumors (p  =  7.3e- 11), and normal ovarian tissues 
(p < 2.22e- 16; Figure 7B). Furthermore, the expression of 

MRPL15 in ovarian borderline tumors was significantly 
higher than in ovarian benign tumors (p  =  0.0035) and 
normal ovarian tissues (p = 0.0012; Figure 7B). In addi-
tion, poorly differentiated ovarian cancer samples showed 
higher expression of MRPL15 compared to well/moder-
ately differentiated ovarian cancer samples (p  =  0.019; 
Figure 7C). However, no significant difference was found 
between patients with ovarian cancer at different FIGO 
stages (p = 0.13; Figure 7D).

3.6.3 | Influence of MRPL15 expression on 
survival of patients with epithelial ovarian cancer

GSE13876, which includes 157 patients with serous ovarian 
cancer at an advanced stage, was selected to verify the prognos-
tic value of MRPL15 in ovarian cancer. The results indicate that 
high expression of MRPL15 leads to poor OS in patients with 
advanced serous ovarian cancer (p = 0.033; Figure 7E).

In addition, the prognostic value of MRPL15 was verified in 
epithelial ovarian cancer by analyzing our patient samples. We 
followed up on 81 patients with epithelial ovarian cancer (latest 
follow- up time was on November 30, 2019), among whom 18 
were lost to follow- up (22.22%). Kaplan– Meier and log- rank 
tests demonstrated that the low- MRPL15- expression group had 
significantly better prognosis compared to the high- MRPL15- 
expression group (p = 0.022; Figure 7F). Next, Cox regression 
analysis was performed on these 81 cases with ovarian cancer. 
According to univariate Cox regression analysis, MRPL15 ex-
pression (HR = 2.119, p = 0.039), FIGO stage (HR = 1.651, 
p = 0.004), and differentiation (HR = 1.411, p = 0.027) were 
significantly correlated with the OS of patients with epithelial 
ovarian cancer. Moreover, multivariate Cox regression analysis 
indicated that an advanced FIGO stage (HR = 2.037, p = 0.001) 
and the pathologic type of serous ovarian cancer (HR = 0.667, 
p = 0.031) are independent risk factors for epithelial ovarian 
cancer (Figure 7G).

3.7 | Molecular mechanism of MRPL15 in 
ovarian cancer

To further explore the mechanism of overexpression of 
MRPL15 in ovarian cancer, we explored the relationship 
between MRPL15 expression and copy number variation, 
methylation, and somatic mutation. We analyzed the corre-
lation between MRPL15 expression in ovarian cancer and 
four levels of copy number variation (single- copy deletion, 
diploid normal copy, low- level copy number amplifica-
tion, and high- level copy number amplification) using data 
from TCGA Ovarian Serous Cystadenocarcinoma (Firehose 
Legacy, n = 606). With an increasing copy number, MRPL15 
expression was increased significantly (Figure  8A). Using 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51088
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13876
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Oncomine for further analysis, we found that the copy num-
ber of MRPL15 in ovarian cancer was significantly higher 
than that in blood and normal ovaries in TCGA Ovarian2 
Statistics (Figure 8B). In addition, as shown in Figure 8C, 
MRPL15 expression was negatively correlated with methyla-
tion (Pearson's r  =  −0.1187, p  =  0.0086). Therefore, high 

expression of MRPL15 in ovarian cancer may occur partially 
because of copy number variation and hypomethylation.

To explore the relationship between overexpression of 
MRPL15 and somatic mutations in ovarian cancer, we an-
alyzed genes with somatic mutation in the high-  and low- 
MRPL15- expression groups. TP53 (96%), TTN (32%), 

F I G U R E  7  Expression of MRPL15 in epithelial ovarian tissues and its correlation with the prognosis of patients with ovarian cancer. (A) 
Typical immunohistochemical staining images of MRPL15 in epithelial ovarian cancer, epithelial borderline ovarian tumors, epithelial benign 
ovarian tumors, and normal ovarian tissues (upper: SP*200, lower: SP*400). (B– D) Expression of MRPL15 in different groups of patients and 
its relationship with differentiation and FIGO stages in the GSE51088 dataset. (E) Kaplan– Meier analysis of the correlation between MRPL15 
expression and OS in the GSE13876 dataset. (F) Kaplan– Meier analysis of the correlation between MRPL15 expression and OS in the 81 patients 
with ovarian cancer. (G) Forest map of Cox regression analysis of OS in the 81 patients with ovarian cancer. *p < 0.05. CI, confidence interval; 
FIGO, International Federation of Gynecology and Obstetrics; HR, hazard ratio; OS, overall survival

(A)

(B)

(F) (G)

(C) (D) (E)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51088
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13876
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MUC16 (10%), CSMD3 (10%), MUC17 (9%), HMCN1 
(8%), SYNE2 (8%), TOP2A (7%), RYR2 (7%), and MACF1 
(7%) were the top 10 genes with the highest mutation 
rate in the low- MRPL15- expression group (Figure  8D), 
whereas TP53 (95%), TTN (36%), CSMD3 (12%), USH2A 
(11%), MUC16 (10%), DST (9%), FAT3 (9%), APOB (8%), 
CSMD1 (8%), and MDN1 (8%) were the top 10 genes with 
the highest mutation rate in the high- MRPL15- expression 

group (Figure 8E). Hence, TP53 and TTN were common 
to both expression groups. Notably, the top 150 mutated 
genes in the high- MRPL15- expression group were col-
lected for KEGG pathway enrichment analysis. The genes 
were found to be mainly involved in the activation of pro-
tein digestion and absorption, PI3  K/Akt signaling path-
way, miRNA in cancer, and extracellular matrix– receptor 
interaction (Figure 8F).

T A B L E  4  MRPL15 expression in 118 cases of ovarian tissues

Groups Cases MRPL15 staining

(n = 118) Low High

(−) (+) (++) (+++)
Positive rates 
(%)

High positive 
rates (%)

Normal 10 7 3 0 0 30.00 0

Benign 12 7 3 2 0 41.67 16.67

Borderline 15 7 2 1 5 53.33 40.00

Malignant 81 3 9 31 38 96.30* 85.19*

*p < 0.05.

T A B L E  5  Relationship between expression of MRPL15 and clinicopathological features of 81 patients with ovarian cancer

Variables Cases
MRPL15 
staining

(n = 81) Low High

(- ) (+) (++) (+++)
High positive rates 
(%)

p- 
value

Age 0.719

<50 30 2 3 12 13 83.33

≥50 51 1 6 18 26 86.27

FIGO stage 0.035*

I- II 38 1 10 14 13 76.32

III- IV 43 2 1 15 25 93.02

Differentiation 0.261

Well- moderate 37 1 6 14 16 81.08

Poor 44 2 3 17 22 88.64

Lymph node metastasis 0.099

No 52 2 9 25 16 78.85

Yes 20 1 0 3 16 95.00

No lymphadenectomy 9 0 0 3 6 100.00

Pathologic type 0.886

Serous 50 2 6 18 24 84.00

Mucinous 6 0 1 1 4 83.33

Endometrioid 7 0 1 5 1 85.71

Clear cell carcinoma 6 0 0 1 5 100.00

Poorly differentiated 
adenocarcinoma

12 1 1 6 4 83.33

Abbreviation: FIGO, International Federation of Gynecology and Obstetrics.
*p < 0.05.
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3.8 | Immune molecules regulated by 
MRPL15 in ovarian cancer

Next, we analyzed the relationship between the expression of 
MRPL15 and tumor immune infiltration in ovarian cancer. 
In TCGA ovarian cancer database, we found that MRPL15 
expression was significantly related to the difference in the 
immune subtype of ovarian cancer, and its expression in C3 
ovarian cancer was significantly lower than in the other three 

types (p < 0.0001, Figure 9A). Additionally, we analyzed the 
prognostic differences between these four immune subtypes 
of ovarian cancer in the patients. Patients with ovarian cancer 
with different immune subtypes exhibited significant prog-
nostic differences (p = 0.026), and those with type C3 had the 
best survival outcomes (Figure 9B).

Using TISIDB, we analyzed the relationship between MPL15 
expression, tumor- infiltrating lymphocytes (TILs), and immune 
regulatory factors (immune inhibitor and immune stimulator). 

F I G U R E  8  Molecular mechanisms of increased expression of MRPL15 in malignant ovarian tissues. (A) Correlation between the copy 
number and expression of MRPL15. (B) Difference in MRPL15 copy number between normal tissues and cancer cells in TCGA Ovarian2 Statistics 
(Oncomine). (C) Correlation between methylation and the expression of MRPL15. (D) Top 20 mutated genes in the low- MRPL15- expression 
group. Different types of somatic mutations are marked by different colors. (E) Top 20 mutated genes in the high- MRPL15- expression group. (F) 
KEGG pathway enrichment results of the top 150 mutated genes correlated with the overexpression of MRPL15. Bubble size: number of genes 
involved in a pathway; Bubble color; p- value

(A)

(E) (F)

(B)

(D)
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Figure 9C and D respectively show the first two TILs and first four 
immune inhibitors whose Spearman's correlation coefficient with 
MRPL15 expression was greater than 0.2. No strong correlation 
was found between MRPL15 and immune stimulators (Spearman's 
correlation coefficients were all <0.2). Activated CD8+ T cells 
(Spearman's rho = 0.315, p = 2.07e- 08) and activated dendritic 
cells (Spearman's rho = 0.207, p = 0.000272) showed the greatest 
correlation with MRPL15 (Figure 9C). As shown in Figure 9D, 
the most relevant immune inhibitors correlated with the expres-
sion of MRPL15 in ovarian cancer were TGF- β receptor type 1 

(TGFβR1; Spearman's rho = −0.284, p = 4.68e- 07), indoleamine 
2,3- dioxygenase 1 (IDO1; Spearman's rho =0.266, p  =  2.47e- 
06), VTCN1 (Spearman's rho =0.263, p = 3.27e- 06), and CD160 
(Spearman's rho = −0.232, p = 4.2e- 05).

4 |  DISCUSSION

MRPs are the main components of mitochondrial ribosomes 
and are mainly involved in the translation of oxidative 

F I G U R E  9  Immune analysis of MRPL15 in ovarian cancer. (A) Relationship between MRPL15 expression and immune subtype in TCGA 
ovarian cancer database. (B) Prognostic differences between the four immune subtypes in TCGA ovarian cancer database. (C) Correlation between 
MRPL15 expression and TILs (TISIDB). (D) Correlation between MRPL15 expression and immune inhibitors (TISIDB). In the heatmaps of C and 
D, the red and blue squares represent positive and negative correlations, respectively, and the color intensity represents the size of the Spearman 
correlation coefficient. The scatter plots show TILs or immune inhibitors with the strongest correlation with MRPL15 expression. TILs, tumor- 
infiltrating lymphocytes

(A)

(C) (D)

(B)
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phosphorylation complex subunits encoded by mitochon-
drial DNA. Studies have shown that dysregulated expression 
of MRPs can cause mitochondrial translation disorders and 
damage to the respiratory chain, which in turn can lead to 
cellular metabolic disorders. In addition, some MRPs can be 
used as apoptosis- inducing factors to participate in the intrin-
sic pathway of apoptosis, thus playing a fundamental role in 
regulating cell growth and apoptosis.28 Notably, most tumors 
are characterized by excessive proliferation and resistance to 
apoptosis. Although functional mitochondria are essential for 
cancer cells, the mitochondrial physiology differs between 
cancer and nonmalignant cells.29 Several studies have shown 
that the expression of nuclear genes encoding MRPs is al-
tered in various types of cancer. Additionally, MRPL38 and 
MRPL49, among other MRPs, were confirmed to be sig-
nificantly related to the invasion and prognosis of ovarian 
cancer.30,31 However, studies of the role of MRPs in ovar-
ian cancer are insufficient, and the underlying mechanism is 
unclear.

Our previous human whole- genome microarray- based 
study revealed that six MRPs were upregulated in response 
to HE4 overexpression in human ovarian cancer cells ES- 2. 
This is confirmed by the results of the TCGA database anal-
ysis in this research. In addition, we also found that these six 
MRPs play different roles in ovarian cancer. Among them, 
MRPL15,32 MRPL36,33 MRPL39,31 and MRPS3134,35 have 
been confirmed by some studies to play a role in the occur-
rence and development of different cancers. However, our 
research seems to be the first to explore the relevant role of 
these genes in ovarian cancer.

By combining the results obtained using TCGA ovarian 
cancer database, GTEX database, Oncomine, cBioPortal, 
and Kaplan Meier- Plotter, we found that MRPL15 plays a 
most significant role in ovarian cancer among the six MRPs. 
Further IHC and GEO validation results also showed that the 
expression of MRPL15 in ovarian cancer was significantly 
increased and was significantly related to advanced FIGO 
stage, poor differentiation, and poor OS in ovarian cancer pa-
tients. These results indicate that MRPL15 is not only related 
to the occurrence of ovarian cancer but also that it may be in-
volved in its progression. Notably, these expression and prog-
nosis verification results are highly consistent with our online 
database analysis results, indicating the potential of MRPL15 
as a diagnostic and prognostic marker for ovarian cancer. 
Previous studies demonstrated that MRPL15 is significantly 
associated with poor prognosis of patients with breast cancer 
and that it can be used with other MRPs to establish a model 
to predict the prognosis of and drug efficacy for patients 
with estrogen receptor- positive breast cancer.32 Other studies 
showed that MRPL15 plays an important role in maintaining 
the pluripotency and self- renewal of embryonic stem cells.36 
However, studies have not focused on MRPL15 in ovarian 
cancer.

To explore the mechanism of MRPL15 in ovarian cancer, 
GSEA, KEGG pathway, Reactome pathway, and BioCarta 
pathway enrichment analyses were performed. In addition to 
participating in basic functions related to mitochondrial oxi-
dative phosphorylation, high expression of MRPL15 in ovar-
ian cancer may be related to cell cycle, DNA repair, DNA 
replication, and the mTOR signaling pathway.

We next examined the possible mechanism of MRPL15 
overexpression in ovarian cancer. The cBioPortal online da-
tabase was used to analyze the genetic variation of genes 
encoding MRPs in ovarian cancer. The results showed that 
MRPL36 and MRPL15 had the highest genetic variation 
rate in ovarian cancer, with gene amplification as the most 
common type. DNA copy number variation includes chro-
mosomal amplification and deletion, among which amplifi-
cation is a typical genetic variation in cancer and effective 
acceleration mechanism to promote tumorigenesis.37 Many 
studies previously identified oncogenes in the amplified re-
gion. Analysis of the Oncomine database showed that the 
copy number of MRPL15 in ovarian serous carcinoma is 
significantly higher than that in normal ovarian and blood 
samples. Further analysis of the copy number variation data 
in TCGA showed that with increasing gene copy number 
amplification, MRPL15 expression was significantly in-
creased in ovarian cancer (p < 0.05). This suggests that any 
increase in the MRPL15 copy number in ovarian cancer can 
partly result in high expression of MRPL15. As an epigen-
etic mechanism, DNA methylation can change the chroma-
tin structure to maintain the balance between transcription 
activation and repression. Defects in methylation may lead 
to the occurrence of various diseases, including cancer.38 
Many studies have shown that methylation of certain genes 
in cancer is significantly reduced. We found that MRPL15 
expression in ovarian cancer was significantly negatively 
correlated with its methylation (Pearson's r  =  −0.1187, 
p  =  0.0086), suggesting that abnormal expression of 
MRPL15 in ovarian cancer occurs because of the loss of 
methylation. However, studies are needed to confirm that 
hypomethylation of MRPL15 is related to the occurrence or 
development of cancer.

Somatic mutations associated with MRPL15 were ex-
plored using TCGA ovarian cancer data. Compared with the 
low- MRPL15- expression group, the mutation rates of USH2A, 
APOB, CSMD1, MDN1, and NF1 in the high- MRPL15- 
expression group were significantly increased. Studies have 
shown that the locus containing CSMD1 is the most common 
in the homozygous deletion spectrum of high- grade serous 
ovarian cancer, which may be a tumor suppressor gene for 
high- grade serous ovarian cancer.39 Additionally, NF1 is a 
common variant gene in high- grade serous ovarian cancer, 
and its mutation is correlated to platinum- based chemother-
apy resistance in this cancer.40,41 KEGG enrichment analysis 
of the top 150 mutant genes in the high- MRPL15- expression 
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group showed that these genes are mainly involved in pro-
tein digestion and absorption, PI3 K/Akt signaling pathway, 
miRNA in cancer, extracellular matrix– receptor interaction, 
and other pathways. Thus, these gene mutations may be re-
lated to the high expression of MRPL15 in ovarian cancer 
and promote the oncogenesis and progression of ovarian can-
cer through the abovementioned cancer- related pathways.

The immune response of tumors is an important process 
in the development and progression of tumors. After being 
separated from the body's immune monitoring, the tumor's 
malignant biological behavior is further accelerated, thereby 
promoting tumor proliferation, invasion, and metastasis. 
Although increasing evidence has demonstrated the role of 
the immune system in ovarian cancer, no approved immuno-
therapy exists for ovarian cancer for clinical use.42 In 2018, 
Vesteinn Thorsson et al.43 used TCGA database to classify 
tumors into six immune subtypes, including wound healing 
(C1), IFN- γ dominant (C2), inflammatory (C3), lymphocyte 
depleted (C4), immunologically quiet (C5), and TGF- β dom-
inant (C6). There were significant differences in lymphocyte 
infiltration, immunoregulatory gene expression, and progno-
sis among different subtypes, providing new ideas for tumor 
immunotherapy. Our results indicate that MRPL15 expression 
was significantly reduced in C3 ovarian cancer, which has the 
best prognosis. This indicates that MRPL15 can be used as a 
marker for immunophenotyping of patients with ovarian can-
cer and for predicting the prognosis of patients. The results ob-
tained using TISIDB indicated that MRPL15 is closely related 
to TILs (e.g., activated CD8+ T cells and activated dendritic 
cells) and immune inhibitors (e.g., TGFβR1, IDO1, VTCN1, 
and CD160). The accumulation of TILs in ovarian cancer is 
related to better patient prognosis. Adoptive TIL therapy is a 
promising immunotherapy for ovarian cancer.38 It has been 
shown that CD8+ T cells, natural killer cells, and dendritic 
cells are cytotoxic to ovarian cancer.38 TGFβR1,44 IDO1, 
VTCN1,45 and CD16046 are involved in tumor immune escape 
and are effective targets for tumor immunotherapy. Among 
these, IDO1 is highly expressed in most types of cancer and 
is associated with the poor prognosis of patients.47 Generally, 
three pathways exist downstream of IDO1 to transmit the ef-
fects of IDO1 activity47: activation of general control nondere-
pressible 2 pathway, inhibition of the mTOR pathway, and 
aromatic hydrocarbon receptor pathway. Interestingly, from 
previous enrichment analysis of the MRPL15 pathway, we 
predicted that MRPL15 promotes the development of ovarian 
cancer through the mTOR pathway. Therefore, MRPL15 may 
lead to immune tolerance of ovarian cancer by participating in 
the downstream mTOR pathway of IDO1, thereby promoting 
the progression of ovarian cancer. In summary, MRPL15 may 
play a role in the immune tolerance process of ovarian cancer 
by interacting with the above- mentioned TILs and immuno-
modulatory molecules and may be useful as a biomarker or 
target for ovarian cancer immunotherapy.

5 |  CONCLUSION

In summary, MRPL15 may be a candidate biomarker and 
novel therapeutic target for epithelial ovarian cancer. In ad-
dition, because of its close correlation with HE4, MRPL15 
may interact with HE4 to promote the oncogenesis and de-
velopment of ovarian cancer. Further detailed experimental 
research is needed to determine the underlying roles and 
mechanisms of MRPs in ovarian cancer.
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