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ABSTRACT Next-generation sequencing and the application of population genomic and association
approaches have made it possible to detect selection and unravel the genetic basis to variable phenotypic
traits. The use of these two approaches in parallel is especially attractive in nonmodel organisms that lack
a sequenced and annotated genome, but only works well when population structure is not confounded with
the phenotype of interest. Herein, we use population genomics in a nonmodel fish species, rainbow trout
(Oncorhynchus mykiss), to better understand adaptive divergence between migratory and nonmigratory
ecotypes and to further our understanding about the genetic basis of migration. Restriction site-associated
DNA (RAD) tag sequencing was used to identify single-nucleotide polymorphisms (SNPs) in migrant and
resident O. mykiss from two systems, one in Alaska and the other in Oregon. A total of 7920 and 6755 SNPs
met filtering criteria in the Alaska and Oregon data sets, respectively. Population genetic tests determined
that 1423 SNPs were candidates for selection when loci were compared between resident and migrant
samples. Previous linkage mapping studies that used RAD DNA tag SNPs were available to determine the
position of 1990 markers. Several significant SNPs are located in genome regions that contain quantitative
trait loci for migratory-related traits, reinforcing the importance of these regions in the genetic basis of
migration/residency. Annotation of genome regions linked to significant SNPs revealed genes involved in
processes known to be important in migration (such as osmoregulatory function). This study adds to our
growing knowledge on adaptive divergence between migratory and nonmigratory ecotypes of this species;
across studies, this complex trait appears to be controlled by many loci of small effect, with some in
common, but many loci not shared between populations studied.
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Migration, the long-distance movement of organisms to take advan-
tage of seasonal resources, has long interested both scientists and lay
people alike. The cues that initiate the cascade of physiological, be-
havioral, and morphological changes that prepare an individual for
migration are varied and complex (Dingle 2006). These cues interact
with signals from the environment, such as temperature and food
availability, that in concert influence the decision of an individual to
migrate (Dingle 2006; Wilcove and Wikelski 2009). Heritability stud-
ies across taxonomic groups suggest that both propensity and timing
of migration have a genetic component (see Pulido and Berthold 2003
for review), but we have limited insight into the genes and molecular
mechanisms involved (Dingle 1991; Liedvogel et al. 2011). This
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paucity of information limits our understanding of the evolution of
migration and prevents us from asking such questions as: are the same
genetic mechanisms involved in migration conserved across different
taxonomic groups? Do the genes that predispose an individual to
migrate get inherited as a migratory gene package? And what patterns
do we see in genes associated with migration in closely related species
that differ in their migratory strategies (Pulido and Berthold 2003;
reviewed in Liedvogel et al. 2011)?

The salmonid fishes (salmon, trout and charr) are an exemplary
taxonomic group to study the genetic basis of migration. Multiple
species have both migratory, ocean-going forms and resident
individuals that stay in fresh water throughout their life cycle. Onco-
rhynchus mykiss is an especially attractive taxon as it exhibits both life
history types, often within the same river. Previous studies in con-
trolled breeding designs have identified quantitative trait loci (QTL)
for migration-related traits in this species (Nichols et al. 2008; Hecht
et al. 2012; Le Bras et al. 2011) and other salmonids (Norman et al.
2011) confirming a genetic basis to migratory related traits. In addi-
tion, genome-wide association approaches (GWAS) have been used
and, like QTL studies, have pointed to many different regions of the
genome being associated with migration (Hecht et al. 2013). However,
both approaches have their limitations, especially when applied in
natural systems. For example, QTL studies are limited to surveying
genotype-phenotype variation in progeny derived from a very small
subset of individuals sampled within or between population(s). Such
sampling captures a limited amount of the total genetic variation that
underlies the trait(s) of interest. Meanwhile, association analysis
approaches suffer from high false-positive rates due to underlying
population structure and/or kin relatedness (e.g., Price et al. 2006;
Ingvarsson and Street 2011). These false-positive results can be cor-
rected by accounting for population structure; however, such methods
can both induce false-negative results (where true small effect associ-
ations are removed) where population structure is highly correlated
with phenotype. The latter problem may be of special concern in
salmonids because resident populations can be land locked by physical
barriers that restrict gene flow with neighboring migratory popula-
tions (Limborg et al. 2012). Population genomic methods offer an
alternative approach in the identification of genes that have adaptive
significance. The basic premise of such methods is that allele frequen-
cies at selected sites will differ from neutral sites. Recently such meth-
ods have been used to highlight regions of the genome under selection
for specific traits (Dalziel et al. 2009; Nielsen et al. 2009; Hohenlohe
et al. 2010). For example, genomic scans in marine and freshwater
three-spined sticklebacks (Gasterosteus aculeatus) both confirmed,
and discovered new loci showing signatures of selection between the
two phenotypes (Hohenlohe et al. 2010). Popular approaches to find-
ing loci under selection can be broadly split into “empirical” and
“theoretical” approaches. Examples of empirical approaches include
Fsr outlier methods that aim to locate outlier loci among many neu-
tral loci (Beaumont and Nichols 1996; Luikart et al. 2003), whereas
examples of theoretical tests include statistics such as Tajima’s D (e.g.,
Nielsen 2005; Nielsen et al. 2007) that test for departures from
neutrality.

The advent of genotype-by-sequencing methods has made it
possible to identify a large number of polymorphisms throughout
a genome at a relatively low cost, and in doing so, has made genome-
wide population genomic and association tests possible in nonmodel
organisms (Baird et al. 2008; Miller et al. 2007; references in Seeb et al.
2011). The use of restriction site—associated DNA (RAD) tag se-
quencing is especially attractive because tens of thousands of SNPs
can be found relatively quickly and cheaply (reviewed in Rowe et al.
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2011 and Davey et al. 2011). For example, RAD tag sequencing has
made it possible to construct linkage maps (Amores et al. 2011; Baxter
et al. 2011), conduct population genomic studies (Hohenlohe et al.
2010), perform QTL analyses (Chutimanitsakun et al. 2011; Miller
et al. 2012; Pfender et al. 2011; Hecht et al. 2012), and perform GWAS
analysis (Hecht et al. 2013) in organisms that previously did not have
extensive SNP resources.

In this study, we used Illumina RAD tag methods in two
populations of O. mykiss to identify genetic loci associated with mi-
gration and residency using population genomic approaches to ques-
tion whether the same markers are divergent between migratory and
resident ecotypes in each geographic location (i.e., common mecha-
nisms). In the absence of a fully sequenced and annotated genome,
this study illustrates the ability to conduct whole-genome studies on
an ecologically and evolutionarily important trait with the aid of high-
throughput genomic sequencing.

MATERIALS AND METHODS

Sampling and DNA extraction

Resident and migratory individuals were sampled from each of two
populations: Sashin Creek, Alaska and Little Sheep Creek, Oregon.
Hereafter, the migrant steelhead trout form of O. mykiss will be re-
ferred to as migrant trout and the resident rainbow trout form as
resident trout. Upon returning from the ocean to their natal streams
to spawn, all migrants were sampled at sexual maturity. Resident trout
from the Sashin Creek, Alaska population also were sampled at sexual
maturity (tested for the expression of gametes). The Sashin Creek
residents are separated from returning migrants by two barrier water-
falls. All migrants sampled were downstream of these waterfalls,
whereas all residents sampled were upstream (see Thrower et al
2004 for more details). The migrant and resident individuals in the
Little Sheep Creek population are not separated by barrier waterfalls
(see Berntson et al. 2011 for more details) and so samples of both
phenotypes were taken from the same area. Resident trout from the
Little Sheep Creek, Oregon, population were determined to be resident
as determined by size threshold (minimum fork length of 160 mm).
Both river catchments have active hatchery programs; to limit effects
of selection due to hatchery programs, only wild fish were sampled
(upon release, all hatchery fish have the adipose fin removed). At
sampling, the fork length (tip of snout to the fork of the caudal fin)
and sex of the fish was recorded, and a portion of the caudal fin was
removed and stored in ethanol for DNA extraction. The fish were
immediately released after processing. DNA was extracted for a total
of 386 fish (105 Sashin Creek migrants, 90 Sashin Creek residents, 100
Little Sheep Creek migrants, and 91 Little Sheep Creek residents)
using either standard phenol:chloroform procedures (Wasko et al
2003) or QIAGEN DNeasy Tissue Extraction kits (QIAGEN Inc,,
Valencia, CA). All Sashin Creek residents were sampled in 2008
and 2010, and Sashin Creek migrants were sampled in all years from
2006 to 2010. Little Sheep Creek samples for both migrants and
residents were collected in 2011.

RAD library construction

A total of 500 ng of DNA was used from each sample (n = 386 in
total) to construct RAD tag libraries for sequencing as described in
Miller et al. (2012). To summarize, DNA from each individual was
digested with SbfT and then barcoded with a unique 6-base sequence
3’ to the SbfI cut site. Barcoded DNA from 15 samples was pooled
and fragmented using the Sonic Ruptor 400 (Omni International,
Kennesaw, GA). Fragments were size selected between 300 and
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600 bp, blunt-ended, and an A nucleotide was added to the 3" end, to
which the Illumina P2 sequencing primer was ligated. The library was
amplified by polymerase chain reaction (PCR; 96° for 3 min then 14
cycles of 96° for 15 sec, 60° for 15 sec, and 72° for 30 sec followed by
5 min at 72°), and again size selected for fragment sizes 300—600 bp.
Libraries were quantified using the KAPA SYBR FAST qPCR kit
(KAPA Biosystems, Woburn, MA) on the StepOne Plus (Applied
Biosystems, Foster City, CA) real-time PCR platform.

Bioinformatics

Sequenced libraries were processed as described by Miller et al. (2012)
using Perl scripts and Novocraft software (scripts are available as
supplemental material in Miller et al. (2012)). To summarize, reads
were trimmed to 89 bp to remove barcodes and the Shfl overhang and
then quality filtered. Reads were assembled de novo to construct a da-
tabase for identifying SNPs. The SNP database was constructed from
20 individuals: 10 from Sashin Creek (5 migrants and 5 residents) and
10 from Little Sheep Creek (5 migrants and 5 residents). To find loci
variable both within and between populations, SNPs were found by
identifying polymorphisms in three separate comparisons of these
individuals: one constructed from all 20 fish, one from the 10 fish
from Little Sheep Creek, and one from the 10 fish from Sashin Creek.
Unique alignments of identical sequences with fewer than five reads
and more than 200 reads were discarded. Retained alignments were
compared for SNPs, which were tentatively separated into two alleles
at the same locus. Candidate SNP loci required a minimum depth of
coverage of five reads for both alleles. This procedure was repeated for
all three databases, and the resulting SNP files for each database were
combined to create a reference SNP database, removing redundant
loci.

Three genotype datasets were created: (1) all fish from both
populations (n = 386 individuals); (2) only fish from Sashin Creek,
Alaska (n = 195); and (3) only fish from Little Sheep Creek, Oregon
(n = 191). All individuals were genotyped against the database using
Bowtie and custom Perl scripts (Miller et al. 2012), which report the
number of reads for alleles A and B at each SNP. Genotypes were
scored only if a minimum total read count of 8 was met. The log;o
ratio of the number of reads aligning to allele A/ allele B was used to
separate homozygotes and heterozygotes. Heterozygotes were deter-
mined if the log;, ratio was between —0.61 and 0.61 (one SD around
the mean) with AA homozygotes scored if the ratio was greater than
0.9 and BB homozygotes if the ratio was less than —0.9 (as in Hecht
et al. 2012). Reads that fell outside these thresholds were removed.

SNP filtering

Salmonids have experienced a relatively recent whole-genome du-
plication (between 25 and 100 million years ago; Allendorf and
Thorgaard 1984), which can lead to the erroneous identification of
candidate SNPs from the alignment of paralogs that are very nearly
identical (Everett et al. 2011; Miller et al. 2012). Paralogous sequence
variants (PSVs) are false SNPs that should be removed from the data-
set. As also described by Miller et al. (2012), we performed RAD tag
sequencing on two doubled haploid O. mykiss that should have no
heterozygous positions within any one individual genome; any se-
quence producing a heterozygous genotype in doubled haploid
O. mykiss is identified as a PSV and were removed. Candidate PSVs
have also been shown to produce an excess of heterozygous genotypes
(M. Everett, unpublished data; Hohenlohe et al. 2011). Therefore, any
SNP that produced an observed number of heterozygous geno-
types greater than 90% was removed. SNPs were further filtered
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by minimum minor allele frequency <2%, that were missing >50%
genotypes and were out of Hardy Weinberg Equilibrium (—logo
P = > 5.0) as measured in each dataset. The combined dataset also
was filtered to only include markers that were polymorphic in both
the Sashin Creek and Little Sheep Creek populations.

Genomic ordering and annotation of SNPs

To provide information on the genomic location of SNPs in this
study, polymorphic RAD tags were aligned to two recent O. mykiss
linkage maps produced from RAD tag SNPs (Miller et al. 2012; Hecht
et al. 2012) and a draft version of the O. mykiss genome, using Bowtie.
In both cases, RAD tags were considered matches if they only pro-
duced one significant hit (allowing 2 mismatches). The draft version
of the O. mykiss genome consists of sequenced scaffolds some of
which have been linked to the physical contigs sequenced at the
Clemson University Genomics Institute center (Palti et al. 2011). To
annotate the genomic regions linked to the top significant SNPs in this
study, each scaffold associated with a filtered RAD tag was annotated
using BLASTn (minimum e-value = 1 X 10729, minimum of 85 bp of
continuous alignment (tags are 89 bp after quality-filter). Identity was
confirmed if the tag only produced a significant hit (e-value < 1.072,
at least 85 bp of continuous alignment) to one scaffold. Scaffolds with
significant hits were then annotated using BLASTn against the nt
database and BLASTx against the nr database in Genbank, as well
as against the zebrafish genome (http://useast.ensembl.org/info/data/
ftp/index.html) and a compiled annotated salmonid EST database
[downloaded from cGRASP (web.uvic.ca/grasp/) and NAGRP
(www.csrees.usda.gov/nea/animals/in_focus/an_breeding_if.nagrp.html);
date of download March 27, 2012]. Minimum requirements for anno-
tation were a contiguous alignment of 300 bp, with 85% sequence
similarity and a minimum e-value of 1 X 1072, As only approximately
one quarter of the SNPs were mapped we will report both the number of
mapped SNPs and the total number of SNPs that were significant for
any statistical test.

Population genomic analyses

Individual global and pairwise (between residents and migrants) Fsr
was estimated for each locus in GenAlEx 6.4 (Peakall and Smouse
2006), as was mean expected (Hg) and observed (Hp) heterozygosity
and the number of private alleles. To identify outlier markers that may
be candidates for selection, LOSITAN (Beaumont and Nichols 1996;
Antao et al. 2008) was used with filtered loci from Sashin Creek and
Little Sheep Creek with the following parameters: 55,000 simulations,
confidence interval of 0.995, and a false discovery rate of 0.05. Simu-
lated Fst was 0.032 for Sashin Creek and 0.001 for Little Sheep Creek,
and estimated Fsr was 0.069 and 0.003 for the two populations, re-
spectively. We used loci with a probability greater than 0.995 to infer
candidates for positive selection and neutral loci were defined as
having a probability between 0.9 and 0.1.Tajima’s D was calculated
to estimate the allele frequency spectrum within each of the filtered
RAD tags. PoPoolations (version 2.1; Kofler et al. 2011) was used to
estimate within population Tajima’s D by pooling 50 samples from
each of the four subpopulations (Sashin Creek and Little Sheep Creek,
migrants and residents) and using a window size of 100 base pairs,
a minimum rare allele count of 2, a minimum depth of coverage of 4
and a population size estimate of 50, the same parameters were used
to estimate nucleotide diversity (Watterson’s theta; Watterson 1975).
To generate a smooth, genome-wide distribution of these statistics,
a kernel smoothing average using a Gaussian function as described in
Hohenlohe et al. (2010). This approach was used only on markers
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with mapping information. Linkage disequilibrium (LD) was calcu-
lated as D’ (Lewontin 1964) between all pairs of SNPs that were
matched to loci in Miller et al. (2012). The chromosome and distance
between markers was inferred from Miller et al. (2012). Tests were run
separately for each population, and average D' per chromosome was
calculated. A two-tailed t-test was used to test the hypothesis that
average chromosome-wide D’ was different between the two popula-
tions. D" calculations were performed in JMP Genomics (SAS Inc.,
Cary, NC).

RESULTS

SNP filtering

Twenty-six lanes of sequencing were conducted using various
Mumina instruments (see Supporting Information, File S1). The av-
erage number of quality-filtered reads per individual was 3.17 million
[ 1.26 million (SEM)]. Illumina reads for each individual (quality
filtered and trimmed reads) are deposited at Data Dryad (doi:10.5061/
dryad.c6fb2). A total of 30,642 unique candidate biallelic SNPs were
identified from 26,459 RAD tags (22,590 tags had a single SNP,
2796 tags had 2 SNPs, and 820 tags had 3 SNPs). Removing SNPs
that were heterozygous in either of the sequenced doubled haploids
or that showed an observed heterozygosity =90% reduced the total
number of SNPs to 28,863. Removing SNPs with >50% missing
genotypes, minor allele frequency <0.02, and markers out of
Hardy-Weinberg equilibrium (and only including markers that
were polymorphic in both populations for the combined dataset)
further reduced the number of SNPs to 7920, 6755, and 5185 for
the Sashin Creek, Little Sheep Creek, and the combined datasets,
respectively. RAD tags were compared with Miller et al. (2012) and
Hecht et al. (2012a), and positive matches were named the same
with new SNPs following the same nomenclature (see File S2).

Genomic ordering and annotation of SNPs

A total of 1990 (25% of total) filtered SNPs were matched to two RAD
tag—based genetic linkage maps (Miller et al. 2012; Hecht et al. 2012).
This number does not include SNPs that matched multiple tags in
Miller et al. (2012). In this way, synteny between this study and pre-
vious linkage and QTL mapping studies in O. mykiss could be inferred
from shared microsatellite and SNP markers. In O. mykiss, linkage
groups have further been matched to physical chromosomes by fluo-
rescence in situ hybridization (Phillips et al. 2006).

Population genomics between phenotypes

Fsr between migrants and residents revealed different patterns of
variation in the two populations. In Sashin Creek, mean Fsr between
migrants and residents was 0.062 with a range from 0 to 0.459. Mean
Fsr between migrants and residents was much lower in the Little
Sheep Creek population (0.003) and ranged from 0 to 0.218. The
global comparison between migrants and residents (using both pop-
ulations) produced a mean Fgr of 0.075, with values ranging from 0 to
0.510. In Fgsr outlier analyses from LOSITAN, candidates for balanc-
ing selection could not be distinguished from loci with an Fgsr of zero
and so were not considered further. LOSITAN identified 772, 61, and
55 loci (P > 0.995) as candidates for positive selection between res-
idents and migrants in the Sashin Creek, Little Sheep Creek, and
global datasets, respectively. Fourteen loci were significant in both
the Sashin Creek and Little Sheep Creek samples, and four loci were
in common between the global and Sashin Creek datasets. LOSITAN
also was used to identify neutral loci, which were defined as those with
probabilities between 0.9 and 0.1 (as in Hess et al. 2013). We found
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5752, 6047, and 3801 loci that fell within this range in the Sashin
Creek, Little Sheep Creek, and global populations, respectively. Map-
ping information was obtained for 178 outlier loci in the Sashin Creek
dataset, with at least one significant outlier locus on every chro-
mosome (see Figure 1A). Kernel smoothing showed an increase in
the pairwise Fsr on Omy2, Omy7, and Omy8. A total of 11 loci
mapped to eight chromosomes in the Little Sheep Creek analysis of
which Omy4 (4) and Omy23 (2) contained multiple outliers. How-
ever, kernel smoothing failed to find any chromosomes that
seemed to show a significant enrichment for outlier loci (Figure
1B).

The average Tajima’s D statistics for the Sashin Creek migrant
population was —0.417 (ranging from —4.003 to 3.902) with 742 loci
that differed significantly from neutral expectations. Of these, 109
showed a positive departure from neutrality, or loci that showed an
excess of common polymorphisms compared with neutral expecta-
tions, whereas 633 loci showed a negative departure from neutrality.
These results strongly suggest an excess of low-frequency polymor-
phisms suggesting population expansion and/or strong effects of pu-
rifying selection. Mapping information was obtained for 169 loci that
different from neutrality. Of these, 28 had a significant positive value,
and 141 had a significantly negative value. Loci with positive Tajima’s
D values were distributed on 16 chromosomes, whereas all chro-
mosomes had at least one locus with a significant negative D value.
Kernel smoothing approaches in Sashin Creek migrants suggest
Omy2, Omy7, Omy22, and the sex chromosome contain peaks of
negative D values, whereas Omy20 and Omy22 contain peaks of
positive D values; note, however, that the magnitude of the positive
peaks is smaller than the negative peaks (see Figure 2A). Also
note that the majority of the distribution is toward a negative Tajima’s
D. The Sashin Creek resident population produced an average
Tajima’s D of —0.003 and ranged from —3.294 to 0.798. Only five
loci departed from neutrality, all of which produced a negative D
value and all of which mapped. The kernel smoothing approach
showed the distribution of Tajima’s D values was roughly around
0, suggesting neutrality (data not shown) in the resident Sashin
Creek population. We combined data from both the migrant and
resident individuals within the Little Sheep Creek population as
Tajima’s D is most powerful at the population level (Tajima 1989)
and principle component analysis suggested strongly that both
phenotypes form one population (see below). Average Tajima’s
D was —0.145 with values ranging from —3.36 to 4.13 with 296
markers departing from neutrality (269 negative Tajima’s D and 27
positive Tajima’s D). Mapping information was obtained for 54
loci with a significant Tajima’s D value. Of these, 52 mapped loci
had a significant negative value and two a significant positive value.
The negative markers were distributed on every chromosome ex-
cept Omy13, Omy21, Omy10, Omy24, and Omy26. The two pos-
itive loci were on Omy2 and Omy16. Kernel smoothing suggested
that Omyl2 contained a peak of negative loci with Omy8 and
Omy23 smaller peaks. Only Omy2 seemed to show a positive peak
(Figure 2B). For details of all significant loci from population ge-
nomic analyses see File S3.

Patterns of observed heterozygosity varied across the genome. The
Sashin Creek migrants showed an average observed heterozygosity of
0.229, with peaks of heterozygosity on Omy6, Omy8 and Omy24 and
lows on Omy3 and Omy5 (Figure 3A). The Sashin Creek residents
had an average observed heterozygosity of 0.246, and appeared to
show more variation between chromosomes with peaks of heterozy-
gosity on Omy12, Omyl13, and Omy2 and chromosomes with a re-
duction in heterozygosity on Omy2, Omy8, Omyl2, Omy20, and
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Figure 1 Fsy for markers that were mapped to two linkage maps of the O. mykiss genome (Miller et al. 2012; Hecht et al. 2012). Markers in red
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Omy?22 (Figure 3B). The Little Sheep Creek samples has an average
observed heterozygosity of 0.252 and showed little variation between
chromosomes with only Omy27 showing an increase in the observed
heterozygosity and no chromosomes showing a large reduction in
heterozygosity (see Figure 3C). The Sashin Creek migrants produced
an average nucleotide diversity (Watterson’s theta) of 0.008, the
Sashin Creek residents 0.0001 and the Little Sheep Creek samples
0.003. Kernel smoothing methods showed that the Sashin Creek
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migrants have greater-than-average nucleotide diversity on Omy4,
Omy6, and Omyl0 and reduced levels on Omy2, Omy5, Omy7,
Omy12, and Omy24 (Figure 4A). The Sashin Creek residents showed
a near 0 nucleotide diversity that did not show much variation be-
tween chromosomes (data not shown). The Little Sheep Creek sam-
ples showed a generally higher diversity on Omy8, Omyl3, and
Omy23 and a reduction on Omy10, Omy5 and the sex chromosome
(Figure 4B).
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Figure 3 The kernel-smoothed
average observed heterozygosity
in markers, which mapped to two
linkage maps of the O. mykiss ge-
nome (Miller et al. 2012; Hecht
et al. 2012). The kernel-smoothed
average for all markers that map-
ped is presented for the (A) Sashin
migrants, (B) Sashin residents, and
(C) Little Sheep Creek samples.
Chromosomes are altemately shaded.
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Figure 4 Nucleotide diversity as calculated by Watterson’s theta in markers that mapped to two linkage maps of the O. mykiss genome (Miller
et al. 2012; Hecht et al. 2012). The kernel-smoothed average for all markers that mapped is presented for (A) Sashin Creek migrants and (B) Little
Sheep Creek samples. Chromosomes are alternately shaded with some chromosomes labeled.
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We compared the private allele density (alleles that are unique to
one population) between the resident and migrant populations in
Sashin Creek. A total of 988 loci had private alleles of which 981 had
alleles that were unique to the migrant population and 7 loci had
alleles that were unique to the resident population. For Tajima’s D
estimates in the Little Sheep Creek population the migrant and resi-
dent phenotypes were combined as they are one population. A total of
52 loci had private alleles of which 23 were unique to the migrant
phenotype and 19 were unique to the resident phenotype.

Linkage disequilibrium

From the 1990 filtered SNPs that were confidently matched to
a previous linkage map (Miller et al. 2012), average chromosome-wide
D' ranged from 0.659 * 0.013 in the Sashin Creek fish to 0.603 =
0.009 in the Little Sheep Creek population. The greater LD observed in
the Sashin Creek is significantly different than that observed in Little
Sheep Creek (P < 0.001). Average chromosome-wide D' varied be-
tween 0.54 for Omy28 and 0.82 for Omy26 in samples from Sashin
Creek, and between 0.49 for Omy21 and 0.68 for Omy25 and Omy22
in Little Sheep Creek fish.

BLAST analysis
A total of 221 RAD tags that contained both SNPs that produced
a significant statistic from population genetic analyses, and mapping

information from previous linkage maps (Miller et al. 2012; Hecht
et al. 2012), were BLASTed to scaffolds from a draft version of the
O. mykiss genome. Of which, 101 RAD tags produced a unique match
to one scaffold (e = 1.0°2%; see File S4). Of these 64 scaffolds produced
significant matches to genes with annotation (see Table 1 for results of
BLASTn analysis and Table 2 for results of BLASTx analysis).

DISCUSSION

Migration is a central behavior in the ecology and evolution of many
organisms. Both migration and dispersal have a heritable component
in animals as diverse as crickets (Roff and Fairbairn 2007) and birds
(Hansson et al. 2003; Pasinelli et al. 2004). In salmonids, the herita-
bility of migratory-related traits appears to be high (e.g., proportion of
brood smolting in O. mykiss; h?= 0.726; Thrower ef al. 2004 and smolt
timing in Atlantic Salmon, Salmo salar; Péez et al. 2011), strongly
suggesting some level of underlying genetic control. To determine
the genetic basis to migration, the authors of previous studies have
either taken a “bottom-up” approach (i.e., investigating candidate
genes for variation associated with migration) or a “top-down” ap-
proach such as by constructing genetic crosses that vary in a phenotype
associated with migration. In this study, we used population genomics
methods to identify loci showing unique patterns of divergence be-
tween migratory and nonmigratory ecotypes in natural populations of
O. mykiss, supporting “top-down” approaches as a tractable way to
detect loci under selection in natural populations.

Table 1 BLASTn hits from scaffolds that contain a SNP that produced a significant Fsr outlier or significant departure from neutrality

in the Tajima's D statistic

SNP ID Chr Scaffold BLASTn Hit e-Value
R22186 1 MMSRTO09C_scaff_1734_1 LDA gene for MHC class | antigen, allele: 0
R33240 1 MMSRTO18H_scaff_1292_1 GH2 growth hormone 2 gene 0
R10206 1 MMSRTO43A _scaff_1632_1 Cytochrome P450 family 1 subfamily B polypeptide 1 (cyp1b1) 0
R51388 1 MMSRT138E_scaff_1568_1 Cyclin D1 (cend1) 0
R34273 2 MMSRTOO01A_scaff_1294_1 Malate dehydrogenase 1E-90
R41088 3 MMSRTO92A_scaff_2616_1 CD83 (Onmy-CD83) gene 0
R29125 5 MMSRTO037B_scaff_1504_1 Olfactory receptor family C subfamily 4 member 5 gene 0
R49596 5 MMSRTO081B_scaff_1813_1 Dax-1 (Dax1) gene, complete cds 0
R08400 7 MMSRTO085C_scaff_1375_1 Alpha-globin and beta-globin, clone 3 0
R19618 7 MMSRTO095B_scaff_2418_3 (ADP-ribose) polymerase family 0
R00563 7 MMSRT119G_scaff_1110_1 Adiponectin receptor protein 1 (adr1 0
R0O0141 9 MMSRTOO5H_scaff_1052_1 MHC class | a region 0
R13477 9 MMSRT043B_scaff 2167_1 MHC class | antigen (Sasa-UDA) gene 0
R17494 9 MMSRT043G_scaff_1780_1 Dnaj homolog subfamily C member 5 0
R15095 " MMSRTO043C_scaff_1956_1 Myosin regulatory light chain 2 3E-129
R21238 12 MMSRTO87F _scaff_1654_1 S toll-like receptor 8a2 (TLR8a2) 0
R35677 12 MMSRT107C_scaff_1855_1 ADP-ribosylation factor 1 0
R20262 13 MMSRTO13E_scaff_1784_1 Immunoglobulin heavy chain (igd-A) gene 0
R19667 14 MMSRTOO01A_scaff_1328_1 Delta-6 fatty acyl desaturase défad_a gene 0
R40426 14 MMSRTO056B_scaff_1710_1 MHC class | a region 0
R50712 14 MMSRTO84F _scaff_1265_2 Tapasin-B (TAPBP) 0
R0O7628 17 MMSRTO033D_scaff_1722_1 Inhibitor of differentiation 1C (ID1C) gene 0
R14298 17 MMSRT108H_scaff_1570_1 GH1 interferon alpha 1-like gene 0
R50966 18 MMSRTO045C_scaff_1546_1 Myostatin 2b (MSTN2) 0
R32416 18 MMSRT049G_scaff_1774_1 Na,K-atpase alpha subunit isoform 1b/i (ATP1A1B/i) 0
R28876 19 MMSRTOO9E _scaff_1603_1 Steroidogenic acute regulatory protein (star) gene 0
R30814 20 MMSRTO031B_scaff_1485_1 GH1 interferon alpha 1-like gene 0
R30448 20 MMSRT098B_scaff_1661_1 Gonadotropin subunit beta-2 (gthb2) 0
R27417 21 MMSRTO083G_scaff_1866_1 Chaperonin gene, complete cds 0
R40451 23 MMSRTO01B_scaff_1711_1 Homeobox protein hoxd13aa (hoxd13aa) 0
R0O0446 23 MMSRTO58G_scaff _1786_1 Growth hormone 2 gene, complete cds 0
R51852 25 MMSRT097D_scaff_1534_1 Potassium-transporting atpase subunit beta-m (at1b4) 0
R04223 sex MMSRTO14E_scaff_2046_1 Carbonyl reductase/20beta-hydroxysteroid dehydrogenase B 0
R37330 sex MMSRT118G_scaff_1390_1 Polyunsaturated fatty acid elongase (elvol5a) gene 0
£ G3-Genes | Genomes | Genetics Volume 3 August 2013 |  Population Genomics of Migration | 1281
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Table 2 BLASTx hits for scaffolds that contain SNPs that produced an outlier locus in Fsr analysis or a significant departure

from neutrality

SNPID  Chr Scaff GB

R24286 1 MMSRTO43A_scaff_1632_1 NP_001167620.1
R39129 2 MMSRTO81F_scaff_1690_1 ACQ58433.1
R44099 5 MMSRT068D_scaff_2079_1 NP_001167113.1
R27510 5 MMSRTO74G_scaff_1637_1 NP_001104690.1
R41103 5 MMSRT133E_scaff_1870_1 NP_001177233.1
R10656 8 MMSRT111H_scaff_1511_1 NP_001007455.1
RO0710 9 MMSRTO30E _scaff_2197_1 ACN10547.1
R35771 10 MMSRTO55B_scaff_1860_1 XP_003455229.1
R18859 10 MMSRT122H_scaff_1570_1 ACO09612.1
R0O8544 11 MMSRTO57C_scaff_1604_1 XP_003451939.1
R03392 12 MMSRTO97H_scaff_1700_1 ABC43375.1
R19667 14 MMSRTOO1A _scaff_1328_1 XP_001920036.2
R28018 15 MMSRTO79E _scaff_1499_1 XP_003448843.1
R15666 16 MMSRT106A_scaff_1950_1 XP_003977854.1
R05928 17 MMSRTO61F_scaff_1802_1 XP_004070492.1
R24186 17 MMSRT125C_scaff_1898_1 CBN80811.1
R0O3565 18 MMSRT049G_scaff_1774_1  ADD60471.1
R41273 18 MMSRT141G_scaff_1929_1 NP_001018411.1
R0O1482 19 MMSRTOS50F_scaff_1759_1 ACS35075.1
RO8761 19 MMSRTO062C_scaff_2490_1 XP_004084735.1
R0O3286 20 MMSRT124H_scaff_1869_1 XP_003404464.1
R40464 23 MMSRTO038D_scaff_2090_1 NP_571024.1
RO0544 25 MMSRT062C_scaff_2440_1 XP_003448092.1
R14689 25 MMSRT110B_scaff_3626_2  ADV57118.1
R50870 26 MMSRTO065C _scaff_1820_1 XP_003222987.1
R20892 28 MMSRTO29H_scaff_2020_1 XP_003763770.1
R50730 sex  MMSRTO14A_scaff_2077_2  AAI63316.1
R34426 sex  MMSRT022B_scaff_1619_1 XP_003452446.1
R0O3937 sex  MMSRT041G_scaff_1450_1 NP_001121839.1
R46658 sex  MMSRTO72E_scaff_1452_1 EKC18115.1

Hit e-Value
Cytochrome P450, family 1, subfamily B, polypeptide 1 0
C-C chemokine receptor type 9 1E-123
Sulfate transporter 0
Growth arrest-specific 1a precursor 9E-79
Hemicentin-1 4E-68
Fucosyltransferase 9 3E-146
Leucine-rich repeat-containing protein 8D 0
Alpha-2 adrenergic receptor 0
ATP-sensitive inward rectifier potassium channel 15 1E-163
Olfactory receptor 51B2 4E-84
Odorant receptor 1E-73
Netrin-1-like 1E-82
Potassium voltage-gated channel subfamily D 0
Olfactomedin-like protein 3B 4E-94
Neurogenic differentiation factor 4 3E-63
Potassium voltage-gated channel 0
Na*/K+ atpase alpha 6E-135
Fidgetin 5E-146
Thrombospondin-1a 1E-117
Metabotropic glutamate receptor 1 5E-109
Dystonin-like isoform 2 2E-148
Forkhead box protein A2 1E-153
Protocadherin-18 0
Ryanodine receptor 3 [Opsariichthys bidens] 1E-134
Cadherin-8 3E-71
Transcription factor SOX-14 4E-79
Adrenergic, alpha-2D-, receptor b 8E-173
Sodium/calcium exchanger 1 9E-173
Prostaglandin E2 receptor EP4 subtype 1E-100
Sperm-associated antigen 16 0

By using an unassembled scaffold version of the O. mykiss genome,
we used kernel smoothing average methods to identify regions
enriched for markers that deviated from the rest of the genome.
The Sashin Creek population produced a large number of markers
that suggest differentiation between migrants and residents in both
population genetic and association approaches. The Sashin Creek Fsr
comparisons suggest loci on Omy2 and Omy7 show the greatest
amount of differentiation between residents and migrants. A negative
peak on Omy?2 is also found in the Tajima’s D analysis within the
Sashin Creek migrants, suggesting either the effects purifying selection
or rapid population expansion after a bottleneck. The historical pop-
ulation size of the Sashin Creek migrants is unknown and of late the
number of returning fish is decreasing (F. P. Thrower, unpublished
data), suggesting negative departures from neutrality in the Sashin
Creek migrants are caused by purifying selection. A reduction in
the nucleotide diversity is also found in the Sashin Creek migrants
on Omy?2, suggesting reduced variation in this region of the genome,
possibly due to purifying selection for alleles involved in anadromy.

By contrast the Little Sheep Creek samples did not show strong
differentiation between the migrants and the residents on Omy2.
There was a departure from neutrality in the positive direction on
Omy?2 (the opposite from the general trend) in the Tajima’s D results,
suggesting positive selection or population contraction. However, it is
likely that selection on this locus is not connected to migration be-
cause, first, there was no such peak in the Fgr analysis, and second,
both resident and migrant samples were combined for the Little Sheep
Creek Tajima’s D analysis. The kernel smoothing Fsr outlier analysis
also suggested that Omy7 contains markers divergent between the
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resident and migrant populations in Sashin Creek, and like Omy2
these associations are coupled with a decrease in the Tajima’s D value
within the Sashin Creek migrants and a reduction in nucleotide di-
versity. The Little Sheep Creek samples, by contrast, did not show any
regions of the genome suggestive of the effects of selection (or asso-
ciations between genotype and phenotype; see File S5). Several other
peaks of differentiation were noted from the Sashin Creek Fgr outlier
analysis, namely Omy4, Omy8, Omyl2, Omyl4, and Omy22. Al-
though these peaks are lower than those associated with Omy2 and
Omy?7, they also exhibit a negative departure from neutrality in the
Sashin Creek migrants and a neutral distribution in the Sashin Creek
residents, suggesting there are loci on these chromosomes that also
contribute to the genetic differentiation between migrants and resi-
dents. However, we were only able to map 1990 (25%) SNPs. It is
therefore possible that we have missed regions of the genome that
show signatures of selection.

Comparing our results with other studies is difficult, especially
because there appear to be population-specific genetic effects
associated with migration/residency. For example neither Nichols
et al. (2008) nor Hecht et al. (2012a) found QTL for migratory-related
traits (during the juvenile phase) on Omy2. However, Hecht et al.
(2012a) did find QTL for shape differences on Omy7. Comparisons
between our results and Hecht et al. (2012a) are more applicable
because they used a QTL scan between markers segregating between
an F, cross in Sashin Creek. Of the other regions of the genome with
elevated differentiation in Sashin Creek, Hecht et al. (2012a) found
QTL on Omy4, Omy8, Omy12, and Omy14 but not Omy22. Omy12
and Omyl4 were found to be “hotspot QTL regions” (i.e., multiple
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QTL for different traits), and further support for the importance of
these regions comes from QTL for growth (Wringe et al. 2010) and
osmoregulation (Le Bras et al. 2011). Similarly, Nichols et al. (2008)
found Omy5 and Omy10 being “hotspot QTL regions,” and additional
studies have found loci on Omy5 to be associated with migratory
related traits (O’Malley et al. 2007; Martinez et al. 2011) and timing
of sexual maturity and development rate (Danzmann et al. 2005;
Leder et al. 2006; Nichols et al. 2007; Miller et al. 2012). Although
both Omy10 and Omy5 contain outlier Fsr loci and a largely negative
Tajima’s D distribution in the Sashin Creek migrants, kernel smooth-
ing suggests none of these chromosomes are enriched for such loci.
However, it is important to keep in mind that only 25% of the total
SNPs were matched to the O. mykiss genome. The relatively small
number of loci confidently ordered in the genome is a prevailing issue
that will be important in this and other nonmodel organisms. It is
clear, not only that migration/residency is a complex trait involving
many genes scattered through the genome, but also that there are
striking differences in the number and location of such loci between
populations. However, undoubtedly not all outlier loci are connected
with the evolution of migration/residency. The separation of migrant
and resident samples in the Sashin Creek dataset means other factors
could also (due to different selection pressures, patterns of linkage
disequilibrium or drift) cause segregation that overlaps with phenotype.

The evolution of marine and freshwater adaptation has probably
been best studied in the three-spined stickleback (Gasterosteus aculeatus)
and currently this is the only current comparative model for our
study. Ecological genomic studies in sticklebacks have shown very
convincingly that the evolution of multiple independent freshwater
populations from a marine ancestor have involved parallel genetic
changes (Colosimo et al. 2004; Cresko et al. 2004; Hohenlohe et al.
2010). However, the situation in freshwater rainbow trout is more
complex. In this study, the population history of the two study sites
is very different and demography has important implications for find-
ing signatures of selection, but perhaps more importantly in the ability
to reliably test for true associations between genotypes and pheno-
types using GWAS (see Price et al. 2006; Nielsen et al. 2007). The
Sashin Creek system includes barriers to migration that separate the
two forms (Thrower et al. 2004). Although migrants from the upper
watershed may migrate out to the ocean, large waterfalls prevent
return migration to the upper sections of the Creek and Lake (Masuda
et al. 2009). Similar patterns of strong differentiation (high Fsr and
a greater proportion of outliers) between migrants and residents above
and below barriers have been found in other populations of O. mykiss
(Narum et al. 2011; Limborg et al. 2012; Pearse et al. 2009; Martinez
et al. 2011). In such systems there could be selection for above barrier
fish to not produce migrant offspring as these would be lost from the
population. Over time, this could result in purging of any alleles
associated with anadromy. Such a scenario could produce patterns
of genome variation similar to what we found in Sashin Creek with
many loci associated with migration/residency, many outlier loci from
Fsr analysis, high LD, a largely negative departure from neutrality in the
source population, and many private alleles being present in the migrants.

What followed in such systems can be thought of as a hard
selection sweep in which alleles associated with residency were
selected to a much greater frequency than the same alleles in the
migrant population. Further support for selection against residents
producing migrants comes from Thrower and Joyce (2004), who
examined the survivability of migrant fish produced from crosses
between resident fish and migrant fish. They found that migrant off-
spring produced by migrant fish had a greater proportion of returns
than migrant offspring from resident fish, suggesting migrants are
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inheriting alleles that promote ocean survivability. In contrast, the
Little Sheep Creek samples were collected from an area where migra-
tory and resident life history types coexist providing greater opportu-
nity for mating between the life history types (Berntson et al. 2011) as
confirmed by the few loci associated with migration/residency, few Fsr
outliers, low levels of LD, largely neutral Tajima’s D values, and low
numbers of private alleles. Similar low levels of Fgr and few outliers
are found in other populations of O. mykiss where residents and
migrants co-occur (Limborg et al. 2012). This finding suggests either
an historic selective hard sweep that has been eroded by drift and
interbreeding between resident and migrant forms, or a soft sweep in
which selection pressure between forms is reduced.

Although migration/residency in O. mykiss is undoubtedly a com-
plex trait, the long-standing issue of how a “migration syndrome” is
quantified or identified can have important implications on our syn-
thesis of the results, especially when comparing between studies. In
the study herein, all migrant fish were sampled as sexually mature
adults returning to their natal streams, but the two resident popula-
tions were sampled at different time points during development. The
Sashin Creek resident fish were tested for gamete expression before
sampling; only fish that produced gametes were included (sexual ma-
turity precludes migration in salmonids, discussed below). In contrast,
the Little Sheep Creek residents were sampled after fish reached
a minimal size (fork length greater than 160 mm). Though the mi-
grant phenotype is fairly easily scored (by the act of migration in
downstream or upstream traps, distinctive body morphology and col-
oration), the resident phenotype may not always be definitively de-
termined until reaching sexual maturation. Moreover, it is possible
that some of the fish classified as residents in the Little Sheep Creek
fish would have subsequently migrated. Similar complications arise
when comparing our results with those from previous studies (Nichols
et al. 2008; Hecht et al. 2012, 2013). We sampled migrants that had
successfully returned from the ocean to spawn, whereas previous
studies determined phenotype at 2 years of age (the point of smolti-
fication, which occurs in the juvenile phase). This could be crucial, as
the migrant fish in this study would have experienced additional
selection and mortality in the ocean whereas previous studies did
not. Therefore we are essentially measuring two different traits, the
genetic basis of smoltification in the juvenile stage (Nichols et al. 2008;
Hecht et al. 2012, 2013) and the genetic basis of successful migration
(this study).

The annotation of genome scaffolds that are linked to candidate
loci for directional selection produced associations to genes connected
to development rate, osmoregulatory function, and reproductive
maturity (Tables 1 and 2). Our BLAST results show that growth
hormone 1 (GHI), a gene that is involved in growth and development
(Dickhoff et al. 1997), is on the same contig as a tag that contains
a marker that is associated with migration and certainly warrants
further study. There are two BLASTn and four BLASTx hits to genes
involved in ion exchange such as various potassium and calcium
voltage-gated channels. Presumably such genes are involved in effi-
cient osmoregulation and could be under heavy selection pressures in
migratory individuals. Olfaction is also important in the ability of
returning migrants to navigate to their natal streams, and an olfactory
receptor (family C) is linked to a significant SNP therein (R08544, R03392).

Intriguingly, several genes involved in sexual differentiation and
maturity were linked to significant SNPs in this study: gonadotropin-
subunit beta-2 (Gthb2), SOXI4, and sperm-associated antigen 16.
Receptors for gonadotropin have been shown to be associated with
return migration timing for spawning in chum salmon (Oncorhynchus
keta; Onuma et al. 2010), a trait that could be under selection in all
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migratory salmonids. Members of the SOX transcription factors have
been shown to be involved in sex differentiation in O. mykiss (Baron
et al. 2005) and other vertebrates. There appears to be a strong re-
lationship between age of sexual maturity and sex, with the vast
majority of sexual mature precocious fish being male in O. mykiss
(e.g., Sharpe et al. 2011) and other species of salmonid (e.g., Larsen
et al. 2010). This could have a direct effect on migratory behavior as
smoltification delays sexual maturity (Thorpe 1994). Confirming this,
the Sashin Creek samples show a strong sex bias with 76% of the
migrants being female compared to 29% of the residents. Of course,
BLAST approaches like this are tenuous without a reference genome. We
were only able to get BLAST information for a very small proportion
(12%) of the significant SNPs, however they do contain some genes with
functions connected to migration and warrant further analysis.

In this study, we have demonstrated the utility of RAD tag
sequencing to find and genotype thousands of SNPs to understand
possible adaptive divergence between migratory and resident ecotypes
in natural populations. Although combining population genomic and
association approaches is a powerful way to overcome some of the
limitations of associations studies, GWAS in populations where
phenotype is associated with strong population structure produces
problems in separating true positives from loci that diverged simply as
a function of demographic processes (see File S5). More generally,
studies to dissect the genetic architecture of complex traits in non-
model organisms will continue to be limited by: (1) confounding of
traits with population demography, (2) the availability of a linkage
map or genome sequence without which trends within and between
chromosomes cannot be examined, (3) the amount of linkage disequi-
librium within populations of study, (4) potentially confounding
effects of environment on an individual’s phenotype, (5) the trait itself,
and (6) the genetic architecture of the trait (simple, Mendelian or
complex involving epistasis). With respect to the genetic basis of
migration in O. mykiss, it is clear that many different regions of the
genome are associated with this complex trait, both from this and
other studies. Some of these regions seemed to be shared between
different populations of O. mykiss, and some seem to be unique to
individual populations, but note the differences in sampling returning
adults in our study vs. smolting juveniles in other studies. We are still
unsure whether this is a phenomenon unique to O. mykiss, salmonids
or whether it is found in many different taxa that have a genetic basis
to migration and only future studies in other species will allow us to
answer this question. In addition, more work needs to be done to
determine which genes are involved and to fully understand the func-
tion of such genes. With the genome for O. mykiss soon to be com-
pleted, this will hopefully soon become a possibility.
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