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Abstract

Background: The TolC outer membrane channel is a key component of several multidrug resistance (MDR) efflux pumps
driven by H+ transport in Escherichia coli. While tolC expression is under the regulation of the EvgA-Gad acid resistance
regulon, the role of TolC in growth at low pH and extreme-acid survival is unknown.

Methods and Principal Findings: TolC was required for extreme-acid survival (pH 2) of strain W3110 grown aerobically to
stationary phase. A tolC deletion decreased extreme-acid survival (acid resistance) of aerated pH 7.0-grown cells by 105-fold
and of pH 5.5-grown cells by 10-fold. The requirement was specific for acid resistance since a tolC defect had no effect on
aerobic survival in extreme base (pH 10). TolC was required for expression of glutamate decarboxylase (GadA, GadB), a key
component of glutamate-dependent acid resistance (Gad). TolC was also required for maximal exponential growth of E. coli
K-12 W3110, in LBK medium buffered at pH 4.5–6.0, but not at pH 6.5–8.5. The TolC growth requirement in moderate acid
was independent of Gad. TolC-associated pump components EmrB and MdtB contributed to survival in extreme acid (pH 2),
but were not required for growth at pH 5. A mutant lacking the known TolC-associated efflux pumps (acrB, acrD, emrB,
emrY, macB, mdtC, mdtF, acrEF) showed no growth defect at acidic pH and a relatively small decrease in extreme-acid
survival when pre-grown at pH 5.5.

Conclusions: TolC and proton-driven MDR efflux pump components EmrB and MdtB contribute to E. coli survival in extreme
acid and TolC is required for maximal growth rates below pH 6.5. The TolC enhancement of extreme-acid survival includes
Gad induction, but TolC-dependent growth rates below pH 6.5 do not involve Gad. That MDR resistance can enhance
growth and survival in acid is an important consideration for enteric organisms passing through the acidic stomach.
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Introduction

Escherichia coli expresses a large number of multi-drug resistance

(MDR) efflux pumps for the expulsion of antibiotics and metabolic

wastes. An important group of inner membrane efflux pumps

interacts with the outer membrane channel TolC proteins to form

complexes that traverse the inner membrane, periplasm, and outer

membrane. These complexes efficiently pump the materials

outside of the cell [1–5]. The other components of these TolC-

dependent tripartite efflux systems consist of an inner membrane

bound transporter such as the ‘‘resistance nodulation division’’

(RND) family transporter AcrB or the major facilitator superfamily

(MFS) transporter EmrB, both driven by H+ influx, or the ABC-

superfamily transporter MacB driven by ATP hydrolysis [6].

Stabilizing the transporter-channel interaction is a cognate

periplasmic membrane fusion protein (MFP) such as AcrA, EmrA

and MacA. Homologs of the E. coli tolC are important in virulence

for pathogens such as Salmonella typhimurium [7], Legionella

pneumophila [8], Francisella tularensis [9], and Xylella fastidiosa [10].

The TolC-dependent efflux system is responsible not only for

expulsion of toxic compounds but also for export of intracellular

metabolites, such as enterobactin, porphyrin, and excess cysteine

[4,11,12].

Several pieces of evidence link tolC expression to acid pH

resistance. TolC shows acid-enhanced expression in the E. coli

proteome [13]. In E. coli, tolC is a member of the EvgA acid

resistance regulon [14,15] and, in F. tularensis, the tolC homolog is

expressed in the same operon with gad (glutamate decarboxylase)

[9], an important acid resistance factor (reviewed by [16,17]). The

Gad acid resistance system (AR2) is active in stationary-phase cells

grown at pH 7 or pH 5.5, in contrast to the glucose-repressed

CRP system (AR1) which requires induction in acid, pH 5.5 [16].

Furthermore, assembly of TolC into efflux complexes requires low

pH [18]. The acid-dependent expression and MDR assembly have

been suggested to explain the increased sensitivity of bacteria to

many antibiotics above pH 7 [18].
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Nevertheless, the role of MDR pumps in E. coli acid growth and

survival has not been tested. For comparison, at high pH,

overexpression of the drug resistance pump MdfA has been shown

to increase survival, and actually extends the E. coli growth range

to pH 10 [19]. Since enteric pathogens must pass through the

stomach, it is important to know whether MDR pumps have a role

in growth or survival in acid. Here we report the contributions of

tolC, emrB, and mdtB to extreme-acid survival (viability of cells

following exposure to pH 2), the requirement of TolC for normal

exponential growth at moderately low external pH (pH 4.5–6.0),

and the requirement of TolC for Gad expression and induction at

low pH.

Results

Extreme-acid survival of tolC, emrB, and mdtB
TolC associates with at least nine different inner-membrane

protein complexes (such as EmrAB or MdtABC) to form a

connected efflux pump system [6]; several of these in the RND

and MFS families, are driven by H+ influx. The growth and

survival phenotypes of tolC defect strains may result directly from

the absence of TolC or from the combined inactivation of several

inner-membrane efflux pumps. Therefore, we investigated wheth-

er these RND and MFS transporter pump components played a

role in extreme acid survival. Of the strains tested, only tolC, emrB,

and mdtB deletions showed a significant effect on extreme-acid

survival of aerobic cultures (Fig. 1). MDR deletion strains acrB,

emrY, and mdtF showed survival levels comparable to the wild-type

(data not shown). Survival was tested first for overnight cultures

grown at external pH 7, where the Gad system is available but not

the acid-inducible CRP system [16]. Extreme-acid survival

(exposure at pH 2 for 2 hrs) was over 105-fold lower for tolC,

104-fold lower for mdtB, and 100-fold lower for emrB compared to

wild-type strain W3110 (Fig. 1A). There was no increase or

decrease in survival for a marR defective strain in which TolC

expression is upregulated (data not shown) [20].

Acid survival was also tested for bacteria cultured overnight at

pH 5.5, where RpoS- and CRP-dependent acid resistance systems

are expressed [16]. Cultures grown at external pH 5.5 showed a

13-fold decrease in survival of tolC compared to W3110 (Fig. 1B).

Thus, the TolC requirement was much greater for cells grown at

pH 7 than for cells grown at pH 5.5. Complementation of tolC

with plasmid pMX, which produces a functional TolC, grown at

pH 5.5 and challenged at pH 2 restored the strain’s acid survival

comparable to that of the wild-type (data not shown). Strains

defective for mdtB and emrB showed only a 6-fold and 2-fold

decrease in survival under these conditions, respectively.

In extreme base (pH 10), the tolC strain (cultured aerobically to

stationary phase at pH 8) showed comparable survival to the wild-

type (data not shown). Thus, the pH sensitivity of tolC mutants was

limited to acidic pH.

TolC is required for expression of the
glutamate-dependent acid resistance system

A major contribution to acid resistance can result from the

glutamate decarboxylase (Gad) system encoded by gadA and

gadBC. The gadA and gadB genes encode isoforms of glutamate

decarboxylase and gadC encodes the glutamate/c-aminobutyric

acid antiporter [16]. Survival of strains MG1655 (wild-type) and

MG1655T (tolC::Tn10) grown in LBK at pH 5.5 (100 mM MES)

overnight and exposed to low external pH (pH 2.5) was tested in

M9-glucose medium supplemented with 1.5 mM L-glutamic acid.

After 30 min, survival of the tolC strain was decreased 10-fold

relative to the wild type; and after 60 min, survival of the tolC

strain dropped to nearly 20-fold below the wild-type (data not

shown). This is comparable to the acid-survival seen in complex

LB medium (Fig. 1B) and suggests that the tolC strain is unable to

utilize the glutamate-dependent acid resistance system, which is

expressed during the overnight growth before exposure to pH 2.

Cultures of MG1655 and MG1655T (tolC::Tn10) were also

assayed for activity and expression of the Gad system. Glutamate

decarboxylase activity was assessed using the pH indicator dye

bromocresol green; the dye changes from yellow to blue upon pH

increase in the reaction mixture, following decarboxylation of L-

glutamate (Fig. 2A). The wild-type strain behaved as expected with

no decarboxylation at pH 7.5 and very clear evidence of

glutamate decarboxylation at pH 5.5. The tolC strain, however,

showed almost no Gad activity at pH 5.5. The gadA mRNA

transcription was observed in wild-type but not in tolC cultures at

pH 5.5, whereas the mRNA transcript of the lysine-dependent

acid resistance system (cadA) was present in both wild-type and tolC

strains (Fig. 2B). In the tolC strain at pH 5.5, the cadA mRNA

transcript showed decreased expression compared to the wild-type,

which may result from decreased regulation by GadE [21]. Both

Figure 1. TolC, EmrB, and MdtB are required for extreme-acid survival. Strains W3110 (K-12 parent strain), JLS1015 (W3110 tolC::kan),
JLS1027 (W3110 emrB::kan), and JLS1024 (mdtB::kan) were diluted into LBK pH 2 and exposed with rotation for 2 hours at 37uC after overnight
growth to stationary phase in buffered LBK at A) pH 7.0 for non-acid-adapted cells and B) pH 5.5 for acid-adapted cells. Error bars = SEM, n = 6.
*Below the level of detection.
doi:10.1371/journal.pone.0018960.g001
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GadA and GadB proteins were absent in the tolC strain at pH 5.5

(Fig. 2C). Without TolC, no gadA or gadB expression could be

detected.

Gad expression was restored by the pMX plasmid carrying the

wild-type tolC gene (data not shown). Thus, TolC is required for

expression of gadA mRNA and GadA and GadB proteins, as well

as for activity of glutamate decarboxylases. Furthermore, in a tolC

defective strain, plasmids expressing either GadB-C (pMF565) or

the positive regulator GadE (pQEgadE) each restored extreme-

acid survival at pH 2. This complementation confirms the role for

Gad in the TolC requirement for extreme-acid survival.

Extreme-acid survival in a multiple-MDR efflux pump
mutant

TolC acts as the outer-membrane conduit for export by several

inner-membrane efflux pump complexes [5]. We investigated

whether loss of several TolC-dependent pump complexes would

affect acid resistance in a manner comparable to loss of TolC.

Extreme-acid survival was tested for strain M6293, which is

defective for the inner-membrane pumps of eight known TolC-

dependent MDR efflux complexes (AcrAB, AcrAD, AcrEF,

EmrAB, EmrKY, MacAB, MdtABC, MdtEF). Acid survival of

the multi-pump defective strain was compared to its parent strain

N7829, and to strains deleted for tolC grown to stationary phase at

pH 5.5 (Fig. 3). The parent strain N7829 survived the acid

challenge as well as other wild-type E. coli K-12 strains. M6293,

the strain lacking the TolC-associated efflux pumps, including

EmrB and MdtC, showed a 6-fold decrease in survival versus the

parent strain N7829. This result is comparable to the survival

percentages seen with strains lacking MdtB (6-fold) or EmrB (2-

fold) in Fig. 1B. When tolC was also disrupted in these two strains,

survival was decreased to below 1%. A strain with defects in both

the EmrAB and MdtABC complexes (W3110 emrB::frt mdtB::kan)

showed 4- to 10-fold decrease in survival (data not shown).

pH-dependent growth of tolC defective strains
While numerous genes are known to affect survival at pH 2,

relatively few affect exponential growth at moderately low pH.

The best studied case is the triple potassium transport deletion

which results in K+-dependent growth at low pH [22]. To

determine the role of TolC in acidic growth, we assessed the ability

of a strain defective for tolC to grow in LBK with an external pH

range of 4.5–9.0 (Fig. 4A). At pH 4.5, the growth rate of tolC was

near zero. Over the range of pH 4.5–6.0, the tolC strain grew at a

slower rate than the parent. Over the range of external pH 6.5–

9.0, there was no significant difference in growth; thus, the effect of

the deletion of tolC on growth rate was limited to the range of acid

stress. Wild-type growth at pH 4.5 was restored by complemen-

tation of the tolC strain with the tolC-carrying plasmid pMX

(Fig. 4B). The tolC defect had no effect on cytoplasmic pH when

cultures were suspended at pH 4.5 to pH 6.0 (data not shown),

using GFPmut3b fluorimetry as described previously [22,23].

The pH-dependent growth of the tolC strain could be caused by

a defect in the channel connection to one or more of its associated

inner-membrane efflux complexes [24]. Growth at pH 5 was

tested for a mutant deleted for the known TolC-dependent efflux

porters (N7829 acrB::frt acrD::frt emrB::frt emrY::frt macB::frt mdtC::frt

mdtF::frt acrEF::spc). No difference was seen between the growth of

mutant and parent (data not shown).

Given that a tolC strain does not appear to express the

glutamate-dependent acid resistance system, we assessed the

contribution of the Gad system to the pH-sensitive growth of a

tolC mutant. The antiporter GadC imports glutamate in exchange

for the decarboxylation product [16]. When a gadC tolC double

Figure 2. TolC is required for expression of the glutamate-
dependent acid resistance system. E. coli wild-type MG1655 and its
TolC-deficient derivative MG1655T (tolC::Tn10) were assayed for
glutamate decarboxylase activity, gadA mRNA expression, and GadA/B
expression. A) Both strains were tested for glutamate decarboxylase
activity at pH 7.5 and pH 5.5 using the GAD reagent as described in
Materials and Methods. The pH indicator dye bromocresol green
changes from yellow to blue when L-glutamic acid is decarboxylated.
There was almost no change in color with the tolC::Tn10 strain at
pH 5.5. B) Northern analysis of gadA and cadA mRNA at pH 7.5 and
pH 5.5 with the wild-type and tolC::Tn10 strains; 16S rRNA bands are
provided as a control. C) A 53 kDa protein band (indicated by an arrow)
was observed by SDS-PAGE only in wild-type cultures at pH 5.5; this
band was identified as a mixture of GadA and GadB proteins by mass
spectrometry analysis (MALDI-TOF).
doi:10.1371/journal.pone.0018960.g002

Figure 3. TolC is required for extreme-acid survival in a strain
defective for eight MDR efflux inner membrane pumps. Strains
N7829 (K-12 derivative), M5567 (N7829 tolC::kan), M6293 (N7829
acrB::frt acrD::frt emrB::frt emrY::frt macB::frt mdtC::frt mdtF::frt acrEF::spc),
and JLS1042 (M6293 tolC::kan) were grown overnight to stationary
phase in LBK buffered at pH 5.5 (100 mM MES), diluted into LBK pH 2,
and exposed for 2 hours at 37uC. Grey bars represent the parent strain
listed with the additional kanamycin resistance insertion in tolC. Error
bars = SEM, n = 6.
doi:10.1371/journal.pone.0018960.g003
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mutant (JLS1048) was grown in early log-phase at pH 5, growth

rates similar to the tolC strain were observed, while the wild-type

W3110 and a strain lacking gadC had comparable growth rates

that were higher than the tolC strains (data not shown). No growth

defect was seen in a gadC strain at pH 5.0; this finding is consistent

with previous studies showing that the Gad regulon is needed only

for extreme acid survival, not for growth in moderate acid [16].

Furthermore, growth rates in tolC cultures grown at pH 5 were

unaffected by expression of GadE or GadB-C produced by

plasmids pQEgadE and pMF565, respectively (data not shown),

indicating that even over-expression of Gad system components on

a low-copy plasmid could not restore wild-type growth rates. Thus,

the poor growth at moderately low pH in tolC strains must involve

a mechanism other than TolC-mediated induction of the

glutamate-dependent acid resistance system.

Discussion

TolC is a component of several MDR efflux complexes that

enable E. coli to expel both toxins and metabolic wastes across the

periplasm and outer membrane, driven by H+ antiport [5].

Expression of TolC is regulated by MarA, SoxS and Rob [20]

and by the EvgA acid resistance regulon [14], which suggests that

TolC may function in acid adaptation. Consistent with acid

adaptation, TolC-associated drug efflux of toxins is more active at

low pH [25]. Our finding that TolC contributes to acid resistance is

the first report of an MDR pump component that enhances acid

adaptation. For comparison, at high pH over-expression of MDR

pump MdfA confers alkali-tolerance and extends the upper pH

range for growth [19]. Our results suggest a general possibility that

when antibiotics select for gain of MDR pumps by enteric bacteria,

the bacteria may show increased resistance to stomach acid.

Additionally, two TolC-associated inner-membrane MDR

efflux pump components, EmrB and MdtB, contributed to

extreme-acid survival. MdtABC comprises RND-family efflux

pumps and a membrane fusion protein which, along with tolC, is

under the regulation of the BaeR regulon [26–28]. The BaeSR

two-component regulatory system is an envelope stress signaling

pathway that responds to extracytoplasmic stress, which may

include acidic pH [27,29]. EmrB is a major facilitator superfamily

MDR efflux pump that is induced by permeant weak acids, such

as salicylate [30]. Other TolC-associated inner membrane pumps

that were tested for extreme-acid survival, such as AcrB, EmrY,

and MdtF, showed comparable survival to that of the wild-type.

Of all MDR efflux pump components tested, TolC contributes the

most to extreme-acid survival at pH 2, even in a background strain

that lacks eight TolC-dependent inner membrane pumps (Fig. 3).

While the multiple MDR efflux pump mutant pre-grown at pH 5.5

showed 6-fold decreased survival at pH 2 compared to its wild-type,

a tolC deletion in either the parent strain or the MDR mutant showed

a much larger decrease (45- and 12-fold, respectively; Fig. 3). Thus,

either TolC itself plays a major role in extreme-acid survival

independent of its associated inner-membrane pumps, or else an

unidentified TolC-dependent pump is involved.

The mechanism of the TolC effect in acid survival was shown to

include regulation of the Gad system. The decarboxylation of

glutamate by GadA and GadB is one of the main pH homeostasis

mechanisms active at low external pH and in stationary phase;

cells lacking this system are unable to maintain cytoplasmic pH

and perform poorly when challenged in acidic media [16]. In a

strain lacking TolC grown at pH 5.5, we identified almost no

glutamate decarboxylase activity (Fig. 2A), observed no gadA

mRNA among total RNA isolated (Fig. 2B), and detected no

GadA and GadB protein expression (Fig. 2C). Thus, TolC is

required for induction of the glutamate-dependent acid-resistance

system. The restoration of pH 2 survival by GadB-C or by GadE

provided on a plasmid confirms that the TolC requirement

involved Gad regulation. This may explain why the TolC

requirement for acid survival was greatest for cells grown at

pH 7 (Fig. 1A) where the acid-induced AR1 system thatinvolves

CRP is unavailable, and thus Gad offers the main mechanism of

acid resistance [16].

On the other hand, the requirement for TolC for exponential

growth in moderate acid (pH 4.5–6.0) was shown to be

independent of Gad. Deletion of gadC significantly reduces

extreme-acid survival (pH 2.5) [31,32], verifying that a gadC

deletion inactivates Gad activity. Nevertheless, a gadC deletion

strain did not exhibit a growth defect during exponential growth in

Figure 4. TolC is required for acid growth. A) Strains were grown from pH 4.5–pH 9.0 using the appropriate buffer in half unit increments at
37uC. W3110 (blue) and tolC::kan (red) growth rates calculated in early log-phase (OD600 0.1 to 0.3) are depicted as a function of pH. B) Successful
complementation of the tolC strain with pMX, a low-copy plasmid that carries the functional tolC gene (green), in LBK at pH 4.5 (100 mM
HOMOPIPES) restored the acid growth capability to that of the wild type W3110 (blue). Cultures were maintained as described in the Materials and
Methods. Error bars = SEM (n = 3) and absent when smaller than the symbol.
doi:10.1371/journal.pone.0018960.g004
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moderate acid and expression of the positive regulator GadE or

GadB-C from plasmids did not restore wild-type growth rates in a

tolC mutant strain (LBK, pH 5.0; data not shown). Thus, while the

role of TolC in Gad regulation may be the reason TolC is required

for extreme-acid survival, the decreased growth rates of the tolC

strain only in acidic conditions are not the result of a lack of Gad

activity. TolC was needed for maximal growth below pH 6.5,

where cytoplasmic pH is less than optimal (pH 7.4–7.8) (Fig. 4).

The growth defect and the acid resistance defect of the tolC

strain were both complemented with a complete tolC gene on a low

copy plasmid. The complementing plasmid pMX does not carry

the ygiABC genes downstream from tolC that may be in the tolC

operon [33]. Thus, the low pH growth effect is not due to YgiABC

activity. Complementation confirms that tolC, and not adjacent

genes, contributes to acid resistance.

Our findings suggest a novel physiological role for TolC in pH

homeostasis in acidic conditions. Previous reports demonstrate no

growth defects in LB medium, but find impaired cell division and

growth in minimal glucose medium [33]. The requirement of

TolC for growth at low pH is surprising because TolC resides in

the outer membrane, mediating exchange of the external medium

with the periplasm; and the periplasmic pH generally equals the

external pH [23]. Thus it is hard to see why cytoplasmic pH

homeostasis would require an outer-membrane channel. A

possibility is that products excreted during metabolism at low

external pH accumulate in the periplasm, if they cannot be

removed without the TolC channel.

The mechanism of TolC may or may not involve its interactions

with the inner membrane efflux pumps [24]. The fact that deletion

of eight major inner-membrane efflux pumps has no effect on

growth and a relatively modest effect on extreme-acid survival of

pH 5.5-grown cultures (Fig. 3) suggests that the significant

reduction of extreme-acid survival in tolC deletion strains is

independent of the channel’s association with these pumps. The

proton motive force from the periplasm to the cytoplasm drives the

functioning of many multidrug efflux transporters [34]. In addition

to functioning as an outer membrane pore for many MDR pumps,

TolC may also play a physiological role in pH homeostasis

through an interaction with the proton motive force that drives

efflux. The original function of TolC may have been to provide

the cell with a pH homeostasis mechanism in acidic conditions

that later was co-opted to function as a common outer membrane

porin in multidrug resistance.

As we completed our manuscript, we became aware of an

unpublished plate screen showing that E. coli colony growth at low

pH requires several envelope and inner membrane components

besides TolC, such as TolB and TolR; the report has since been

published [35]. We have since confirmed with quantitative growth

curves and survival assays the low-pH specific growth require-

ments for TolB and TolR (G. Garduque and J. Slonczewski,

unpublished). It will be of interest to determine how all these

envelope components relate to pH homeostasis.

Materials and Methods

Bacterial strains, media, and growth conditions
The E. coli K-12 strains used here are described in Table 1.

W3110 [36] was used as the wild-type strain unless indicated

otherwise. Deletion strain M6293 (N7829 acrB::frt acrD::frt emrB::frt

emrY::frt macB::frt mdtC::frt mdtF::frt acrEF::spc) was compared to

parental strain N7829 (GC4468). Deletion alleles containing a

kanamycin resistance insertion (KmR) were transduced from the

Keio collection [37], obtained from the Coli Genetic Stock Center

(Yale University), into the wild-type strain by P1 phage transduc-

tion. ‘‘frt’’ is the designation for the ‘‘scar’’ sequence remaining at

the site of the cured Keio kan insertion. Deletion strains were

maintained with 50 mg/ml kanamycin. Plasmid pMX carrying the

wild-type tolC gene on a low-copy-number vector pMW119 (derived

from pSC101) was transformed into JLS1015 (W3110 tolC::kan) for

complementation experiments [4]. Strains containing plasmid pMX

were maintained with 50 mg/ml ampicillin in overnight cultures

and 20 mg/ml ampicillin in growth cultures.

Bacteria were cultured in LBK medium (10 g/l tryptone, 5 g/l

yeast extract, and 7.45 g/l KCl) supplemented with pH buffers as

needed [38]. Overnight cultures of deletion strains were maintained

with kanamycin (50 mg/ml). Media were buffered with 100 mM

Homopiperazine-N, N9-bis-2-(ethanesulfonic acid) (HOMOPIPES;

pKa = 4.55), 2-(N-morpholino) ethanesulfonic acid (MES; pKa =

5.96), 1,4-Piperazinebis(ethanesulfonic acid) (PIPES; pKa = 6.66), 3-

(N-morpholino)propanesulfonic acid (MOPS; pKa = 7.01), N-

Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid (TAPS;

pKa = 8.11), 3-[(1,1-Dimethyl-2-hydroxyethyl)amino]-2-hydroxypr-

opanesulfonic acid (AMPSO; pKa = 9.10), or 3-(Cyclohexylamino)-

1-propanesulfonic acid (CAPS; pKa = 10.08). At the end of the

experiments, the pH of the cultures was checked to ensure that it was

within 0.2 pH units of the original uninoculated medium.

Acid and base resistance assays
The conditions for testing acid resistance (survival in extreme

acid) of aerated cultures were based on those previously described,

with modifications [39,40]. Cells were cultured with rotary

aeration overnight (16–18 hr at 37uC) to stationary phase in

LBK pH 5.5 (100 mM MES) or LBK pH 7 (100 mM MOPS).

Overnight cultures were diluted 200-fold into LBK pH 2 and

incubated with rotation at 37uC. Following a 2 hr exposure,

cultures were serially diluted and plated on LBK-agar. Overnight

cultures were also diluted 200-fold into LBK 100 mM MOPS,

pH 7 and immediately serially diluted and plated onto LBK-agar.

Plates were incubated overnight at 30uC.

Percent survival was calculated as follows: since acid survival

represents an exponential death curve, colony counts of surviving

cells and control plates were log10-transformed to provide a

normal distribution of the data. The mean of the unexposed

controls was then subtracted from the mean of exposed pH 2

colony counts, resulting in a log10 ratio that correlates to percent

survival. All errors stated are the standard error of the mean

(SEM). Each experimental condition consisted of six biological

replicates from the same overnight culture. Each entire experi-

ment was conducted at least twice.

For base resistance (survival in extreme base), bacteria were

cultured with aeration in LBK pH 8.0 (100 mM TAPS) and

diluted into LBK pH 10 (100 mM CAPS). Survival was measured

and calculated as for acid resistance.

Glutamic acid decarboxylase assays
E. coli K-12 derivative strains MG1655 and MG1655T

(tolC::Tn10), transduced by P1-phage from JA300T [41], were used

in the assessment of glutamic acid decarboxylase activity. Glutamic

acid decarboxylase activity was assessed using the GAD reagent

(1 g/l L-glutamic acid, 0.05 g/l bromocresol green, 90 g/l NaCl,

3 ml/l Triton X-100) with minor modifications [42]. MG1655 and

MG1655T cultures were grown for 1 hr in LB (pH 7.560.2) or LB

buffered with 100 mM MES (pH 5.5). Cells were harvested, washed

with saline (0.85% NaCl), and suspended in the same solution. An

aliquot of cell suspension (96108 cells) was transferred to a new tube,

and 1 ml of the GAD reagent was added. The reaction mixtures

were incubated for 1 hr at 35uC and then evaluated for

decarboxylase activity by a color change from yellow to blue.
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The presence of gadA and cadA mRNA in both MG1655 and

MG1655T at pH 7.5 and pH 5.5 was assessed using Northern

analysis. Total cellular RNA was isolated using the RNeasy kit

(Qiagen) and separated by formaldehyde-agarose gel electropho-

resis. Hybridization was done with the DIG luminescent detection

kit (Roche Dignostics).

To assess the presence of GadA and GadB proteins, cultures of

MG1655 and MG1655T were grown in LB medium at pH 5.5

(100 mM MES) and pH 7.5. Cells were harvested, suspended in a

50 mM sodium phosphate buffer (pH 7.0), and disrupted by

sonication. After unbroken cells were removed, lysate proteins

were separated by SDS-polyacrylamide gel electrophoresis (10%

acrylamide) and stained with Coomassie Brilliant Blue. The 53-

kDa protein band was cut out and analyzed by mass spectrometry

(MALDI-TOF/TOF ultrafleXtreme, Bruker Daltonics).

Glutamate-dependent extreme-acid resistance was tested with

overnight cultures grown in LB buffered with 100 mM MES

pH 5.5, then diluted into warmed M9 medium (6.8 g/l Na2HPO4,

3.0 g/l KH2PO4, 0.5 g/l NaCl, 1.0 g/l NH4Cl, 2 mM MgSO4,

0.1 mM CaCl2, and 0.4% glucose) supplemented with 1.5 mM L-

glutamic acid and adjusted to pH 2.5. Surviving cells were

counted after 30 and 60 min of acid challenge as previously

described [43].

Acid growth assays
To test acid growth, cells were cultured with aeration to

stationary phase (16–18 hr, 37uC) in unbuffered LBK. Overnight

cultures were diluted 100-fold into LBK pH 4.5–9.0 (in half unit

increments) including 100 mM of the pH-appropriate buffer, and

rotated at 37uC until cultures reached stationary phase. OD600

was measured at regular intervals after the initial dilution. Growth

rates were calculated as doublings per hour over the region of

exponential growth (approximately OD600 = 0.1 to 0.3). The wild-

type strain W3110 and its tolC derivative (JLS1015) were also

tested for loss of cytoplasmic pH homeostasis at low pH as

described previously [22,23].
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