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Abstract: Personalized quality of service (QoS) prediction plays an important role in helping
users build high-quality service-oriented systems. To obtain accurate prediction results, many
approaches have been investigated in recent years. However, these approaches do not fully
address untrustworthy QoS values submitted by unreliable users, leading to inaccurate predictions.
To address this issue, inspired by blockchain with distributed ledger technology, distributed consensus
mechanisms, encryption algorithms, etc., we propose a personalized QoS prediction method for web
services that we call blockchain-based matrix factorization (BMF). We develop a user verification
approach based on homomorphic hash, and use the Byzantine agreement to remove unreliable
users. Then, matrix factorization is employed to improve the accuracy of predictions and we
evaluate the proposed BMF on a real-world web services dataset. Experimental results show that the
proposed method significantly outperforms existing approaches, making it much more effective than
traditional techniques.
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1. Introduction

Web services are becoming one of the most important interoperable technologies for
connecting heterogeneous applications across the Internet to realize cross-platform, cross-system,
and cross-language interaction [1]. According to the function of web services, users can find and invoke
a web service (e.g., a travel service) to build a high-quality service-oriented system, without concern
for its programming language, operating platform, or how it is implemented, among many other
advantages. As such, web services are quickly becoming an important way to deploy distributed
computing and collaboration, considerably facilitating the efficient use of network resources. Web
services have been widely used in e-Economies, e-Sciences, and e-Governments, among other fields.
However, with the increase in development and applications of web services, a key concern among
the academic community pertains to selecting the most suitable service to meet the needs of users
from a large number of services. Many researchers believe that when users select a service, they
should not only consider the functional requirements of users, but also non-functional indicators
provided by the service—namely, the quality of service (QoS) [2,3]. It is worth noting that QoS is a
set of non-functional attributes, such as availability, response time, execution time, and throughput
rate. From the perspective of the server, the QoS attributes are user-independent because the QoS on
the server-side presents the same attribute values to all users, such as price, attention, and availability.
From the perspective of the user, QoS attributes are user-related and present different attribute values
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to different users, such as response time, throughput, etc. Such QoS attributes from the user-side can
only be measured when the web service is called by the user, and these are called personalized QoS
attributes. Therefore, when users build a service-oriented application system, they need to choose the
web service with the best personalized QoS.

However, there are many web services on the internet that can meet the same functional
requirements for users. Even with the same functional requirements, however, many web services
have different QoS attributes, and users often need to filter the services to select the best one. In most
cases, it is not possible for a user to invoke all web services one-by-one to obtain their QoS attributes
before filtering, as this is expensive and time-consuming. In this case, to select a web service with
the best QoS, users must predict the QoS for those unused services in advance, to provide the basis
for final service optimization [4]. To ensure the objectivity and accuracy of service quality prediction,
a widely adopted strategy is to use the history of QoS values from other users who have invoked
the service [5,6]. This history is employed as the basis for service quality predictions. In recent years,
there have been a large number of such prediction methods [3,7–9] but, when applying this method
to predict service quality, an important premise is to ensure that the evaluation information for each
QoS value submitted by users is true and reliable. Indeed, in actual environments, due to the influence
of various factors, this cannot be effectively guaranteed. For example, some users may intentionally
reduce the quality evaluation of other related services in the feedback QoS values to improve the
utilization rate of the services they provide. Likewise, some users might be employed by service
providers to improve the quality of these services deliberately when submitting QoS values, thus
affecting the credibility of user feedback information and degrading the accuracy of predictions [10].
Under the circumstances, when making service selections with QoS predication, assuming that all
users are reliable is unreasonable [11]. Therefore, it is necessary to consider whether users are credible
when making service quality predictions.

In recent years, the development of blockchain has attracted many scholars. Blockchain has
been applied in many fields, including finance, the internet of things, public and social services,
and reputation systems. Inspired by the blockchain consensus algorithm, we adopt blockchain
technology for personalized QoS predictions to eliminate the influence of malicious users by using a
decentralized blockchain consensus mechanism. On this basis, a matrix factorization model based on
blockchain for QoS prediction is constructed to obtain accurate prediction results. It is worth noting
that the implementation of blockchain herein is based on improvements in existing methods.

The main contributions of this paper are summarized as follows:

1. We apply blockchain technology to web service QoS predictions, promoting blockchain in a
broader field of applicability.

2. We propose a blockchain-based matrix factorization prediction method that largely eliminates
the interference of unreliable users in QoS predictions, thus improving the accuracy of
QoS predictions.

3. We compared the proposed method to other methods and analyzed the influence of the prediction
model proposed in this paper under different parameters. The results demonstrate the superiority
of our method.

The rest of this paper is organized as follows. Section 2 introduces related work and background
knowledge. Section 3 describes our QoS prediction framework and provides a detailed workflow of
the prediction process. In Section 4, we propose a blockchain-based matrix factorization prediction
method. Then, Section 5 presents the experiments and results. Finally, we summarize this study and
describe our future plans for improvement.
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2. Related Work

This section introduces related work, including personalized QoS prediction approaches and
blockchain technology as a solution.

2.1. Personalized QoS Prediction

As a key technology of web service selection, QoS prediction has been widely studied in the past
decade. Collaborative filtering (CF) methods are the most common techniques for personalized QoS
predictions. The main idea of CF is to determine a group of similar users or services based on the
Pearson Correlation Coefficient (PCC). Predictions are then made based on past QoS values contributed
by different users. Generally, CF can be divided into neighborhood-based (or memory-based) CF
and model-based CF. Memory-based CF is itself divided into user-based CF [12] and item-based
CF [13]. User-based CF finds a set of nearest neighboring users with similar interests using the
PCC, and item-based CF calculates the similarity of the items. To improve the accuracy of QoS
predictions, Zheng et al. [14] proposed a neighborhood-based hybrid model that combines user-based
and item-based CF approaches. However, neighborhood-based approaches are susceptible to data
sparsity, leading to inaccuracies in similarity calculations. Moreover, neighborhood-based approaches
are ineffective when faced with big datasets because the time complexity of similarity calculations
increases with the scale of the web services.

Model-based CF employs a learning model from a training dataset to build a predefined
model. Examples of model-based approaches include CF based on a clustering model [15] and
CF based on a latent semantic model [16]. Matrix factorization is a model-based CF method that
decomposes the user-item scoring matrix into a combination of several parts [17,18]. Owing to its
accuracy and resistance to sparsity, many scholars apply matrix factorization to QoS predictions.
For example, Zheng et al. [19] adopt a probability matrix factorization (PMF)-based approach for
reliable, personalized predictions.

There are also hybrid approaches that combine neighborhood- and model-based approaches.
Lo et al. [20] proposed an extended matrix decomposition framework to predict QoS using correlation
regularization. In recent years, for further accuracy, many CF-based prediction models have considered
contextual information as well (e.g., location and temporal context). The model proposed by
He et al. [21] considers location information and employs a hierarchical matrix factorization model
for QoS value prediction. Zhang et al. [22] integrated time information into a QoS prediction model
for web services. Fan et al. [23] considered spatial-temporal information and proposed context-aware
service recommendations based on spatial-temporal effectiveness. Some researchers consider the user’s
reputation. For example, Qiu et al. [24] proposed a reputation-aware QoS value prediction approach.
Xu et al. [5] proposed a reputation-based matrix factorization (RMF) approach to personalized QoS
prediction. Based on [5], Li et al. [6,25] proposed a location and reputation-aware matrix factorization
(LRMF) prediction model, which considers both the user’s reputation and location information. For the
sake of comparing these methods with our BMF model, we detail their properties in Section 3.

2.2. Blockchain Technology

A blockchain can be regarded as a public ledger composed of blocks, with each block representing
a set of transactions. A blockchain employs a decentralized infrastructure and distributed storage
consensus technologies. Compared to a traditional distributed system, the key features of blockchain
are its decentralization, persistency, anonymity, and auditability [26,27]. Furthermore, blockchains are
scalable and secure. Based on the blockchain consensus algorithm, the nodes of the blockchain system
can participate in an open and free way, constituting an autonomous system.

In recent years, blockchain has been applied in many fields, such as finance, public and social
services, reputation systems, and security and privacy [26,28,29]. The growing momentum from the
distributed consensus mechanism of Bitcoin beyond encrypted currencies is particularly noteworthy.
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For instance, blockchain technology can solve the responsibility problem in service contract execution
and dispute resolution [30–32]. Garay et al. analyzed the Bitcoin protocol in detail in [33], and proved
that the two attributes that constitute the backbone of the Bitcoin protocol are the “common prefix”
and “chain quality”. Specifically, in our Qos prediction problem, commonpre f ixes refer to users
who are considered honest. Chainquality denotes to the percentage of these blocks contributed by
different honest users in the blockchain. These two attributes are used as the basis for devising
Byzantine agreement and robust transaction ledger agreements. Participating reliable users want to
reach agreement on a common output (i.e., whether the user is a trusted user) in the case of judging
others’ potential to be malicious users that require new entries. Essentially, the BA is an agreement in
which trusted users can reach consensus on a peer-to-peer network and remove unreliable opponents
(especially other users who are applying to join a credible user team). In addition, for a service-oriented
environment, Dennis et al. [34] presented a generalized reputation system that can be applied to
multiple networks based on blockchain. Zhou et al. [35] presented a witness model to enforce level
agreement credibly in cloud services. For their model, they proposed a verifiable consensus sortition
algorithm that selects independent witnesses to form a witness committee.

Thus, we designed a concrete method for evaluating whether the new users of a predictive
system are untrusted users, and explored the application of blockchain technology to personalized
QoS prediction.

3. Prediction Framework

Traditional web service QoS prediction models usually neglect the impact that malicious users
can have on their systems. In recent years, Xu [5] abandoned prediction methods based on QoS values
collected directly from users, and reconsidered the accuracy of results affected by unreliable QoS
values. However, Xu’s approach, which calculates user reputation values, does not completely address
the impact of unreliable users on results. By contrast, we use a blockchain as an authenticator and
to record evidence, solving this problem completely. Table 1 describes the differences between our
method and other methods. “Easy to build” indicates whether the method is easy to implement.
“Missing data” denotes that some users have not invoked the target service at the target time interval.
The “Algorithm” describes the concrete implementation of each method. The “Unreliable users aware”
and “Unreliable users eliminate” represent the consideration of unreliable users in the method and the
elimination of the influence of unreliable users, respectively. The table lists all relevant methods, and,
as we can see, only our method eliminates the impact of unreliable users, which is why our method is
more accurate.

Table 1. Comparison of our approach with other approaches.

Easy to
Build

Missing
Data Algorithms Unreliable Users-

Aware
Unreliable Users-

Eliminate

UPCC [36] Yes No user-based collaborative filtering No No
IPCC [37] Yes No item-based collaborative filtering No No
WSRec [14] Yes No neighborhood-based collaborative filtering No No
UIPCC [38] Yes No combing both UPCC and IPCC No No
PMF [39] No No probability-based matrix factorization No No
RMF [5] No Yes L1AVG-based matrix factorization Yes No
LRMF [6] No Yes location and L1AVG-based matrix factorization Yes No
BMF No Yes blockchain-based matrix factorization Yes Yes

UPCC: user-based collaborative filtering method using person correlation coefficient;IPCC: item-based collaborative
filtering method using person correlation coefficient; WSRec: collaborative filtering based web service recommender
system; UIPCC: integrate UPCC and IPCC; PMF: probabilistic matrix factorization; RMF: reputation-based matrix
factorization; LRMF: location and reputation aware matrix factorization approach.

Figure 1 shows a detailed workflow of the web service QoS prediction process in our method.
There are three entities: the user, web service, and arbitration node, which is a privileged node
combined from trusted users in the blockchain to maintain the distributed ledger and execute smart
contracts. In our model, we authenticate participating users before making predictions, by giving these
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entities account addresses in the blockchain network. This approach has users initiate transactions and
trigger smart contracts to eliminate unreliable users. In this way, trusted users selected publicly by all
users participate in the prediction of QoS values. The detailed steps are as follows.

Figure 1. Blockchain-based QoS prediction framework.

• Step 1: Collecting observed QoS data.

When users invoke working services, we can collect their QoS values by providing them from
users, and keep this data in reserve in our prediction server. It is worth noting that some users
(e.g., service providers) can submit better QoS values for their own services and worse ones for
rival services. Other users, such as those who like to play pranks, can also submit random or
constant QoS values.

• Step 2: User requests.

To receive services normally, user Ui must request adding their own QoS values. This invokes
service Si to the prediction system as a basis for obtaining unknown results.

• Step 3: Confirming Hash(Ui) and verifying the user.

User Ui obtains the homomorphic hash value received from the blockchain account Pui and
compares its record on the blockchain stored in the service. If the hash values match, Ui sends the
corresponding confirmation transaction to the blockchain account of Pui . Otherwise, it applies to
rejoin its own information and match the Qos data values, which is already stored in the server
and belongs to it.

After receiving Ui’s confirmation, the account of Pui is added in the model’s arbitration node,
which is combined with the other’s trusted user beforehand. The smart contract for arbitration
decides whether user Ui can be included in the QoS forecast. In other words, the blockchain is a
public ledger for all interactions involved in the execution of a service contract. Our approach can
solve the arbitration process problem, which is described in Algorithm 1. In addition, to describe
the blockchain architecture in more detail, we use a timing diagram to explain it. Figure 2 shows
the interaction sequence if a dispute is raised by either the new user or the proven reliable user,
and we would describe it in the next section. In short, if the blockchain account of an arbitration
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node Pui agrees to trade with other trusted users, it is considered a reliable user. Otherwise,
Pui will invoke the smart contract to terminate user Ui and add their own QoS values in the
prediction system.

• Step 4: Predicting the QoS value in the system.

Currently, matrix factorizing is the most commonly used method for predicting QoS values.
However, researchers have not been completely able to eliminate the interference of unreliable
users before predictions. In our approach, a user invoking a service’s QoS value can only be
added to the dataset used for prediction if it is verified by the blockchain arbitration mechanism.
Finally, we make a personalized QoS prediction via the trusted users’ values in the database and
return prediction results to the target user.

• Step 5: Application of results.

Users use the corresponding results predicted by the system to select the best web service
to invoke.

Algorithm 1 Dispute arbitration algorithm.

Input: user’s number m; the confirmed Hash(Ui); the standard Hash(Pui ) from the blockchain; and

arbitration nodes PU;

Output: user’s verdict Bui ;

1: create array Arb[], Decision[], Msg[];

2: Verdict = 0;

3: Hash(Ui) = ∏m
t=1 gbt,1

t mod p;

4: Hash(Ui + Pui ) = Hash(Ui)× Hash(Pui ) mod p;

5: While Verdict = 0 do

6: for (i = 1; i <= m; i++) do

7: Arb[i] = getVoluntaryArbiter();

8: Decision[i] = makeArbDecision(Arb[i], PU, Ui, Hash(Pui ));

9: Msg[i] = arbEncrypt(Decision[i], pubkArb[i]);

10: if Hash(Ui + Pui ) == Hash(Ui) then

11: Return Bui = 1;

12: Broadcast(Msg[i]);

13: else

14: Return Bui = 0;

15: end while
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Figure 2. The timing diagram of arbitration process.

4. Blockchain-Based Matrix Factorization

In this section, we first introduce the mechanism for QoS prediction with the MF model. Then, we
describe our BMF model in detail, including the arbitration process for users and the blockchain-based
matrix factorization algorithm.

4.1. QoS Prediction with the MF Model

Generally speaking, to predict missing QoS values, it is necessary to fit the user–item matrix
into the factorization model, and then use the factorization model for subsequent predictions. Matrix
factorization is a typical latent factor analysis model, which decomposes a high-dimensional call matrix
into two low-dimensional feature matrices in the same feature space. In these two feature matrices,
each column represents potential feature vectors of users or services that need to be learned according
to the known QoS records in the user-item matrix. Using statistical learning theory, all eigenvectors
are constructed separately. Once the stop condition is satisfied, these feature spaces can repair all
the missing values in the original user term matrix. The most important step of the MF model is to
establish an objective function with two independent feature spaces, which can be reconstructed to
improve the prediction accuracy.

In the prediction system for web services, there is a set of m users U = {u1, u2, . . . , um} and a set
of n web services S = {s1, s2, . . . , sn}. The user–server matrix is an m× n matrix Q. Each entry in this
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matrix qij (i ≤ m , j ≤ n ) expresses the value of a certain user-side QoS property (e.g., the response
time) of web service j invoked by service user i. If user i did not invoke web service j before, then
qij = null. Specifically, we construct latent user factors and latent service factors as U ∈ Qk×n and
S ∈ Qk×m, respectively, to fit the QoS matrix Q. In order to avoid over-fitting, the regularization term
is added to punish the specification of the solution. Therefore, our goal is to minimize the following
loss functions:

ζ =
1
2

n

∑
i=1

m

∑
j=1

Iij(qij −UT
i Sj)

2 +
λU
2
‖U‖2

F +
λS
2
‖S‖2

F, (1)

where Iij is an indicator that equals 1 if qij is observed and equals 0 if qij is unknown. λS and λU are
both small positive decimal numbers to control the extent of regularization, and ‖.‖F represents the
Frobenius norm. To minimize the loss function, the gradients of the reconstructed feature space U and
S are computed as

∂ζ

∂Ui
= ∑

j∈Si

Iij(UT
i Sj − qij)Sj + λUUi, (2)

∂ζ

∂Sj
= ∑

i∈Ui

Iij(UT
i Sj − qij)Sj + λSSj, (3)

by iterating in the following formulas to alternatively update Ui and Sj until convergence:

Ui ← Ui − η
∂ζ

∂Ui
, (4)

Sj ← Sj − η
∂ζ

∂Sj
, (5)

where η is the learning rate to control each iteration’s change. In the end, the unknown QoS value Qij
can be predicted by the dot product after obtaining the latent factors Ui and Sj:

Q ≈ Q̃ = UT
i Sj. (6)

4.2. Arbitration Process

Figure 2 not only shows interaction sequence among various roles, but also describes the whole
sequence when the dispute occurs by the arbitration nodes (i.e., trusted users in the blockchain).
Based on the typical contract management interactions in a service network, we employ the dispute
arbitration protocol to eliminate unreliable users. Specifically, when arbitrating over whether a new
user can enter the trusted user queue, any trusted user in the blockchain can declare a user as unreliable,
by broadcasting a dispute message with this verdict. After the disputed message is publicized, the other
trusted users can either report the violation of this new user to the smart contract or remain silent.

If the final arbitration result is that the user is unreliable, the first user who opted to broadcast the
dispute message will get more of a reward than those who reported the violation. The implementation
of our blockchain inspired the service contract management scheme, which is based on the concept of
blockchain in Bitcoin. As a tool to make the QoS predication more accury, the block format, transactions,
consensus algorithm, transaction time, among others, are similar to the application of blockchain in
other areas. In the web service QoS predication, the arbitration process is described as follows:

1. After confirming that the arbitration process has begun, every user in the blockchain acts as a
node. Those who believe that a user violates an obligation (i.e, the standard for a trusted user)
can opt to broadcast a dispute message. Meanwhile, the message will produce a fee attached for
arbitration in this prediction system.

2. The node, which requests as arbitration node, obtains the homomorphic hash value received from
the existed blockchain account and compares its record on the blockchain stored in the service.
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3. The arbitration node, which is mined to the POW block, began examining the service transactions
recorded in the blockchain against the service contract in the service registry, and determines the
party at fault.

4. The result of the arbitration will be encrypted (hidden) by the miner’s public key, so that no one
can see the decision, which will be included in the block as a transaction and is broadcast to
the system. After adding a certain number of blocks (m), the arbitrator will publish the signed
explicit text decision on the blockchain. Each node can verify that the hidden decision is the same
as the plaintext decision.

5. According to public ledger ΠPL—namely, the protocol proposed by Garay et al. [33] called Public
Transaction Ledger and BA for Honest Majority—to ensure so-called persistence and liveness,
we hold an honest majority that participates during the arbitration process. That is, the hashing
power of the unreliable users in the blockchain is strictly less than 50%. Essentially, the unanimity
of arbitrators composed of an honest majority determines that the arbitral award is impartial and
accurate in most cases.

6. To identify unreliable users more accurately, we use blockchain and bottom BAs as tools to build
consensus among honest parties, while combining most functions to achieve reasonably accurate
final judgments.

The methodology of the arbitration process is provided in Algorithm 1. The parameters we need
to input are as follows: the block number m (e.g., the user’s number), the Hash(Ui), the standard
Hash(Pui ) from the blockchain, and arbitration nodes PU. Let the verdict of users be represented as
B = {u1, u2, u3 . . . um}. First, we need to create and initialize the parameters Arb, Decision, and Msg,
which are used to accommodate the user’s query, the decision on the application for user Ui, and the
message posted by users during the arbitration process, respectively. The users’ verdict Bui denotes
the final arbitration outcome, which equals 1 when the user is judged to be a trusted user, and 0 when
the user is judged to be unreliable. In addition, we compare the user’s hash value with the value
it stores in the blockchain, which can validate the user before arbitration. In other words, the user
applying to join the prediction system records its QoS value in the server, and the new user cannot
enter the arbitration stage. After entering the arbitration network, the nodes form a distributed ledger
to determine whether the user is regarded as credible, and its QoS value is entered into the prediction
system as the dataset. With the dataset, which elimates the unreliable users, we can now construst our
blockchain-based matrix factorization(BMF) model for QoS value prediction.

4.3. Blockchain-Based Matrix Factorization Algorithm

When factoring the value of the QoS, many researchers do not consider the impact of unreliable
users. (In other words, all users can participate in QoS prediction.) In our prediction system, some
users may not be able to participate in the prediction process because they are judged to be unreliable
users. We adopt the user-service matrix, an m × n matrix Q̃, which is predicted by two low-rank
matrices U and S, whose sizes are k×m and k× n, respectively. For each QoS value observed by user
ui for invoking service sj, we can obtain the following pairwise loss function:

ζ =
1
2

n

∑
i=1

Bui

m

∑
j=1

Iij(qij −UT
i Sj)

2 +
λU
2
‖U‖2

F +
λS
2
‖S‖2

F. (7)

Unlike Formula (1), Formula (7) adds an extra parameter Bui , which can serve as the arbitration
result of user ui, to affect the accuracy of the prediction. Unlike the RMF algorithm, which uses
reputation to classify user weights, it is divided into two states. If Bui is equal to 1, the user is
considered a reliable user, and its value can greatly influence the prediction results. By contrast,
if Bui is equal to 0, this user will be considered unreliable and will not affect the prediction at all.
Indeed, prediction results based on unreliable users can lead to large deviations. Thus, the gradient
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descent algorithm is applied iteratively to restore the potential space of users and services. The specific
calculation is as follows:

∂ζ

∂Ui
= Bui ∑

j∈Si

Iij(UT
i Sj − qij)Sj + λUUi, (8)

∂ζ

∂Sj
= Bui ∑

i∈Ui

Iij(UT
i Sj − qij)Sj + λSSj. (9)

Algorithm 2 summarizes the process of constructing QoS prediction based on BMF. First, we
initialize matrices U and S with small random values, and update these matrices iteratively using
the gradient descent algorithm. MaxT is the largest iteration in the gradient descent algorithm.
The parameter t is the iteration number in the gradient descent algorithm. Then, we use η as the
learning rate to control each iteration’s change. Finally, the algorithm outputs the approximate
predicted matrix Q̃ obtained by Formula (6).

Algorithm 2 BMF-based QoS prediction construction.

Input: training matrix Q; and all the model parameters.

Output: predicted matrix Q̃.

1: initialize U and S with small random numbers; t = 0;

2: determine whether the user is eligible to enter the forecast (i.e., BUi ) from Algorithm 1;

3: update
∂ζ

∂Ui
;

4: update
∂ζ

∂Sj
;

5: While t < MaxT do

6: for (i = 1; i <= m; i++) do

7: Ui ← Ui − η
∂ζ

∂Ui
;

8: end for

9: for (j = 1; j <= n; j++) do

10: Sj ← Sj − η
∂ζ

∂Sj
;

11: end for

12: end while

13: update Q̃ by Q̃ij ← (Ui, Sj);

5. Experiments and Results

In this section, we describe our experiments to verify our BMF model, and we discuss the most
important parameters, including dimensionality and the effect of the regularization parameter λ in
the model. By comparing the results with those from other methods and different parameters, we
determine our BMF model’s accuracy and the impact of its parameters. We implement a prototype
system based on Ethereum’s intelligent contract. Solidity 2, the language used for building Ethereum,
is used to write smart contracts. All of the experiments were conducted on an Intel(R) Core(TM) i7-4790
CPU @ 3.40 GHz (Santa Clara, CA, USA), with 8 GB RAM, using Windows 8.1 (64 bit) (Microsoft
Corporation, WA, USA) and MATLAB 2017b (The MathWorks, MA, USA).

5.1. Dataset Description

In our experiment, we used a real-world dataset released by Zheng et al. [40], comprising user
QoS values collected via monitoring. This dataset includes a 339 × 5825 matrix of 339 service users
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and 5825 actual web services. In the dataset, 1,974,675 response times and throughput records
were collected. Response time attributes range from 0 to 20 s, while throughput ranges from 0 to
1000 kbps. In our experiment, we used the response time dataset and added 40 unreliable service
users to the dataset. To make the experiment more realistic, QoS values from unreliable users were
pseudo-randomly generated.

5.2. Evaluation Metrics

In this study, the mean absolute error (MAE) and 90% relative error (NPRE) were used to measure
the difference between predicted and measured values. The MAE is widely used to evaluate the
average prediction accuracy of recommendation systems. Among all paired relative errors, NPRE
takes 90 percentiles. They are defined as:

MAE =

∑
Iij=0
|Q̃ij −Qij|

N
, (10)

NPRE = 90%× |Q̃ij −Qij|/Qij, (11)

where Qij is the training value, which denotes the known QoS value of service j observed by service
user i , and Q̃ij is the corresponding predicted value. N is the number of predicted values.

5.3. Performance Comparison

To show that our BMF model can achieve the most accurate prediction results, we conducted
several experiments on existing QoS prediction methods and compared them. We selected several
representative methods for comparison with our model, including the following methods:

1. UMean (user-mean): In this method, the average value of all known QoS values of users is
calculated to predict the value of QoS.

2. UPCC: This method is a collaborative filtering method [36] based on the user’s use of the
similarity between users to predict the QoS value, and the use of similar users’ PCC and call
history records.

3. IPCC: This method is similar to UPCC, but it does not use similar users. Rather, it focuses on
similar services and estimates missing QoS values using similar services’ QoS values.

4. UIPCC: This method integrates UPCC and IPCC into a unified model and aggregates their
prediction results, thus utilizing both similar users and similar services.

5. PMF: This is an implementation of a widely used matrix factorization model, which uses two
low-rank matrices to predict missing values in user service matrices.

6. RMF: This is a method that calculates the credibility of each user according to the contribution of
the QoS value. It quantifies the credibility of the user, and then considers the credibility of the
user, to achieve more accurate QoS predictions.

In practice, a recorded QoS matrix is typically sparse. Thus, we defined the matrix density as the
density of the training dataset. In this experiment, each QoS prediction method ran on six different
matrices with densities of 5%, 10%, 15%, 20%, 25%, and 30%, respectively. We randomly deleted entries
from the data matrix such that only a few historical values were available for each user. For example,
a matrix density of 15% means that 15% of the entries in the matrix were used to predict missing QoS
values, while the remaining 85% were predicted. In this way, the reserved data items were randomized
into QoS data streams for training. Then, the rejected items were used as test data to evaluate the
prediction accuracy. By contrast, our method is applicable to the prediction of QoS data in the presence
of unreliable user-provided QoS values. Thus, we set the percentage of unreliable users to 10.55% (40
unreliable users among all 379 users) for all methods.
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For the other parameters, the dimensionality was set to 10, the number of iterations was set to
20, and λU = λS = 30. These parameters were the optimal values obtained on the basis of previous
studies [5,41] and our experiments. Below, we discuss the two most important parameters. In the
following experiments, we used the same experimental settings. Note that each approach was
performed 20 times for each matrix density (with different random seeds), and the results show
the average prediction accuracy. To more clearly describe the parameters in the experiment, we detail
the simulation parameters in Table 2. With these experiments, Table 3 shows the MAE and NPRE
results of different methods with varying matrix density from 5% to 30% at a step increase of 5%.
From the results, we can draw the following important conclusions:

1. For the response time of different matrix densities, our BMF method obtained lower MAE and
NPRE values than other methods. This shows that our method is more accurate than existing
methods, and further verifies the effectiveness of our method.

Specifically, to more intuitively demonstrate the superiority of our algorithm in terms of accuracy,
we calculated the percentage improvement of our method over the best optimal results of other
methods. At different matrix densities, our method improved by 1.12–2.63% in terms of the
MAE and by 7.62–9.66% in terms of the NPRE. In addition, because our method improves as a
result of a PMF uniting blockchain, we also compared our model to the PMF model. At different
densities, the BMF achieved a 6.61–28.97% and 7.97–29.08% improvement in terms of the MAE
and NPRE, respectively.

Ultimately, the effective improvement in the accuracy of our method in comparison to the
RMF and PMF is on account of our perfect solution, which uses distributed ledger technology
and distributed consensus, greatly reducing the influence of potential unreliable users for
QoS predictions.

2. Compared to UMEAN, UPCC, IPCC, and UIPCC, BMF makes more accurate predictions.
The reason for this result is that BMF uses all available information in the user-service matrix for
the predictions, while the neighbor-based method exclusively uses information similar to that of
the neighbor (user or service).

3. Relative to other methods, as the matrix became more dense (e.g., from 5% to 30%), the accuracy
of the BMF predictions is more obvious. BMF was 1.16% more accurate than RMF in terms of the
MAE when the matrix density was MD = 5%, and 2.63% more accurate when the matrix density
was MD = 30%. Similarly, it was 7.89% more accurate than RMF in terms of the NPRE when the
matrix density was MD = 5%, and 9.66% more accurate when the matrix density was MD = 30%.

4. We also found that although UIPCC was more accurate than UPCC and IPCC in [38], PMF
and RMF were better than the first three methods reported in [5,39]. All of these methods had
considerable errors in terms of both the MAE and NPRE. Judging from the difference in accuracy
between these methods and BMF, unreliable users seriously affect the prediction of QoS values,
and the use of blockchain can indeed screen out trustworthy users.

Table 2. Detail simulation parameters in our experiments.

Parameter Value Means

dimensionality 10 the number of latent features used to factorize the user-service matrix
iterations 20 the number of iterations in the prediction process.

λU and λS 30 The parameters control the proportion of the two regularization terms
that are used to avoid overfitting in the final predicted value.

densities 5–30% the percentage of unremoved entries in the user-service matrix
unreliable users 40 users may submit unreliable QoS values to impact the prediction system
reliable users 339 users submit reliable QoS values to the prediction
services 5825 the services that users’ invoke
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Table 3. Accuracy comparison of response time.

Method Density = 5% Density = 10% Density = 15% Density = 20% Density = 25% Density = 30%

MAE NPRE MAE NPRE MAE NPRE MAE NPRE MAE NPRE MAE NPRE

UMEAN 0.8654 9.0086 0.8643 8.9920 0.8636 8.9859 0.8633 8.9865 0.8631 8.9853 0.8631 8.9900

UPCC 0.6446 5.4047 0.5652 3.9627 0.5268 3.5008 0.4995 3.2041 0.4811 3.0026 0.4684 2.8556

IPCC 0.7806 6.7609 0.7167 6.3810 0.5841 3.7355 0.5218 2.8352 0.4997 2.6536 0.4814 2.2682

UIPCC 0.7550 6.5664 0.6914 6.1147 0.5686 3.7061 0.5098 2.5189 0.4878 2.3456 0.4699 2.2700

PMF 0.7448 2.7772 0.6741 2.8484 0.5690 2.6746 0.5044 2.4803 0.4638 2.3255 0.4402 2.2337

RMF 0.5427 2.1382 0.4842 2.4199 0.4579 2.4008 0.4410 2.3483 0.4298 2.3025 0.4222 2.2754

BMF 0.5364 1.9695 0.4788 2.2355 0.4494 2.2102 0.4318 2.1517 0.4200 2.0991 0.4111 2.0556

Impro.vs. RMF (%) 1.16% 7.89% 1.12% 7.62% 1.86% 7.94% 2.09% 7.92% 2.28% 8.83% 2.63% 9.66%

Impro.vs. PMF (%) 27.98% 29.08% 28.97% 21.52% 21.02% 17.36% 14.39% 13.25% 9.44% 9.74% 6.61% 7.97%

UMean: user mean; UPCC: user-based collaborative filtering method using person correlation coefficient; IPCC:
item-based collaborative filtering method using person correlation coefficient; UIPCC: integrate UPCC and IPCC;
PMF: probabilistic matrix factorization; RMF: reputation-based matrix factorization; BMF: blockchain-based
matrix factorization.

In the following experiments, we studied the influence of parameters on the performance of the
model, including λU and λS, dimensionality, and the matrix density.

5.4. Impact of λU and λS

λU and λS, which are used to adjust the accuracy and avoid overfitting, control the percentage
of regularization. In this experiment, with reference to [42], we set λU = λS = λ for our BMF model.
If λU and λS are too small, the accuracy of the reputation evaluation will be unsatisfactory. By contrast,
if the parameters are too large, the result will overfit. To demonstrate the impacts of λU and λS, we set
these parameters to vary from 10 to 50 with a step increase of 5. For the other parameters, we selected
a dimensionality of 10, and set the percentage of density to 5%, 10%, 15%, 20%, 25%, and 30%.

As shown in Figure 3, for either the MAE values or the NPRE values with different densities,
when the parameter λ gradually increases, the results become increasingly smaller until λ = 30. Indeed,
their values appear to be significantly smaller. After this point, the MAE value begins to increase
slowly or level off, and the NPRE values tend to stabilize gently. More importantly, the larger λ is,
the larger the risk of overfitting. Thus, we selected λU = λS = 30 in the experiments.

(a) (b)

Figure 3. Impact of λU and λS. (a) MAE; (b) NPRE.
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5.5. Impact of Dimensionality

The parameter of dimensionality refers to the number of latent features used to factorize the
user-item matrix. It is used to represent the rank of the low-rank assumption of MF. In short,
the difference in dimensions affects predictions of QoS values, and, in turn, the accuracy and efficiency
of our calculation of the user’s reputation. To demonstrate the impact of dimensionality, we set the
dimensions to 5, 10, 15, 20, 25, and 30. In addition, we set the other parameters as follows: λU = λS = 30,
and matrix density varying from 5% to 30% with a step size of 5%.

Figure 4 shows the impact of dimensionality on the MAE and NPRE of our model. As shown,
for either the MAE values or the NPRE values with different densities, as the parameter of
dimensionality gradually increases, the results first decrease, and then increase slowly or level off.
If we observe the NPRE values more carefully, we see that, before a dimensionality of 10, the error
values decrease rapidly. After this point, although it has also decreased slightly, it tends to stabilize.
Thus, we selected a dimensionality of 10 for all experiments.

(a) (b)

Figure 4. Impact of dimensionality. (a) MAE; (b) NPRE.

5.6. Impact of Matrix Density

As mentioned above, in web services, the available QoS data matrix is actually sparse because
each user usually uses only a small number of candidate services. It is conceivable that different
low-density data matrices will result in different prediction accuracies. Matrix density is the sum of
unremoved entries in the user-services matrix. We changed the density of the matrix from 5% to 30%
with a step value of 5% to study the impact of matrix density. For the other parameters, we again
selected λU = λS = 30 and set the dimensionality to 10. The experimental results are given in Figure 4.

Figure 5 shows that, in different ways, as the matrix density increases, the MAE values continue
to decrease. Although it tends to stabilize, this trend indicates that our method, like other methods,
effectively reduces the value of the MAE as the density decreases. However, as the matrix density
increases, the UPCC, IPCC, and UIPCC become dramatically smaller. This decrease then slows.
However, in terms of the NPRE values, the PMF, RMF, and our method did not change significantly
with an increase in matrix density. Rather, they always stayed at a relatively small value. The NPRE
represents pairwise relative errors. Thus, our method is superior with low-density matrices.
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(a) (b)

Figure 5. Impact of matrix density. (a) MAE; (b) NPRE.

6. Conclusions

Based on the intuition that unreliable users have a negative effect on personalized QoS predictions,
we proposed a blockchain-based QoS prediction framework that can effectively resist unreliable users
to obtain more accurate prediction results. In this framework, we proposed a novel model, namely BMF,
which systematically fuses blockchain technology and matrix factorization to obtain more accurate
predictions. In addition, we argue that BMF can be regarded as a new personalized QoS prediction
model for service selection. BMF provides an arbitration network to determine reliable users who can
enter the prediction system. Thus, we can obtain more accurate prediction results than other methods.
Analysis of a large number of experiments demonstrated the effectiveness of our approach.

In future research, we intend to integrate contextual information, such as spatial and temporal
context, to establish more complex and effective solutions to improve the accuracy of QoS prediction.
In addition, we will apply our method to a cloud computing environment.
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