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With the aging process, brain functions, such as attention, memory, and cognitive

functions, degrade over time. In a super-aging society, the alteration of neural

activity owing to aging is considered crucial for interventions for the prevention of

brain dysfunction. The complexity of temporal neural fluctuations with temporal scale

dependency plays an important role in optimal brain information processing, such as

perception and thinking. Complexity analysis is a useful approach for detecting cortical

alteration in healthy individuals, as well as in pathological conditions, such as senile

psychiatric disorders, resulting in changes in neural activity interactions among a wide

range of brain regions. Multi-fractal (MF) and multi-scale entropy (MSE) analyses are

known methods for capturing the complexity of temporal scale dependency of neural

activity in the brain. MF and MSE analyses exhibit high accuracy in detecting changes

in neural activity and are superior with regard to complexity detection when compared

with other methods. In addition to complex temporal fluctuations, functional connectivity

reflects the integration of information of brain processes in each region, described as

mutual interactions of neural activity among brain regions. Thus, we hypothesized that

the complementary relationship between functional connectivity and complexity could

improve the ability to detect the alteration of spatiotemporal patterns observed on

electroencephalography (EEG) with respect to aging. To prove this hypothesis, this study

investigated the relationship between the complexity of neural activity and functional

connectivity in aging based on EEG findings. Concretely, MF and MSE analyses were

performed to evaluate the temporal complexity profiles, and phase lag index analyses

assessing the unique profile of functional connectivity were performed based on the

EEGs conducted for young and older participants. Subsequently, these profiles were
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combined through machine learning. We found that the complementary relationship

between complexity and functional connectivity improves the classification accuracy

among aging participants. Thus, the outcome of this study could be beneficial in

formulating interventions for the prevention of age-related brain dysfunction.

Keywords: EEG signal, multi-scale entropy, aging, functional connectivity, multi-fracial

1. INTRODUCTION

Complex temporal variability within brain activity plays an

important role in perceptual and overall mind and behavioral
processes and is known to be a mechanism for stochastic
resonance and facilitation (as reviewed in McDonnell and
Ward, 2011; Garrett et al., 2013; Takahashi, 2013; Yang
and Tsai, 2013; Nobukawa and Nishimura, 2020). Moreover,
various memory function components, cognitive functions, and

perceptual functions of the brain are associated with brain
activity at each temporal scale, as well as with frequency-
band specific behaviors, such as theta, beta, alpha, and
gamma bands (Klimesch et al., 2007). Therefore, studies using
high time resolution for electroencephalography (EEG) and
magnetoencephalography (MEG) are currently being conducted
to evaluate the complexity of high-frequency components. In

particular, neural fluctuations with temporal scale dependency,
which can be observed with EEG and MEG, including their
relationship with cognitive function (McIntosh et al., 2008),
development (Hasegawa et al., 2018), aging (Takahashi et al.,
2009, 2016; Nobukawa et al., 2019a), and the pathology of
mental disorders (Takahashi et al., 2010; Ahmadlou et al., 2011;

Nobukawa et al., 2019b, 2020a), have been extensively studied.
Multi-scale entropy (MSE) and multi-fractal (MF) analyses are
widely utilized as an effective evaluation method for complexity
with temporal scale dependency (as reviewed in Takahashi,
2013; Yang and Tsai, 2013). These methods that focus on the
temporal scale dependency of complexity can capture alterations
in brain activity within a variety of psychiatric disorders (Yang
and Tsai, 2013). In particular, EEG signals in schizophrenia
have been reported to be less complex in the frontal region
based on a slow temporal scale (Paulus et al., 1996; Takahashi
et al., 2010). Similarly, patients with bipolar disorder show less
neural complexity (Gottschalk et al., 1995). Considering the
temporal scale dependence within EEG for Alzheimer’s disease
(AD), MSE analysis showed low complexity in the frontal
region (Mizuno et al., 2010; Ni et al., 2016). In addition, MF
analysis can detect the severity of cognitive impairment in
AD (Zorick et al., 2020). Moreover, recent studies have shown
that the profile of temporal complexity for EEG signals can
be utilized for classifying EEG for AD, and the combination
of complexity profiles obtained via MF and MSE enhances the
accuracy of AD identification based on their complementary
relationship (Zorick et al., 2020; Ando et al., 2021). Consequently,
approaches for combining complexity profiles could open new
avenues for the identification and characterization of the complex
patterns of neural activity regarding cognitive alteration in
psychiatric disorders.

In addition to the complex temporal variability, functional
connectivity reflects the integration of brain information
processes in each neural region, which are represented as mutual
interactions of neural activity among brain regions (reviewed
in Varela et al., 2001; Buzsáki and Draguhn, 2004; Fries,
2005; Hutchison et al., 2013). Therefore, functional connectivity
correlates with cognitive function and alters several pathological
conditions characterized by impairments in cognitive function,
such as AD (Hata et al., 2016; Yu et al., 2016), autism
spectrum disorder (ASD) (Righi et al., 2014), and attention deficit
hyperactivity disorder (ADHD) (Ueda et al., 2020). Functional
connectivity reflected in EEG has been quantified by coherence,
correlation, and mutual information analyses, which reflect
the degree of synchronization of neural activity between brain
regions (Aertsen et al., 1989; Friston et al., 1993; Bullmore
and Sporns, 2009). In recent years, measured values, such as
synchronization likelihood (Stam and Van Dijk, 2002) and the
phase lag index (PLI) (Stam et al., 2007), have been used as
an evaluation method for phase synchronization to solve the
problem of volume conduction as a cause for the detection of
spurious synchronizations (Nunez et al., 1997; Nolte et al., 2004).
By utilizing this advantage of the PLI within EEG, alterations in
functional connectivity under pathological conditions have been
revealed in previous studies (Engels et al., 2015; Ueda et al., 2020;
Nobukawa et al., 2020a). For example, children with ADHDwere
reported to have a lower gamma PLI than children with typical
development (Ueda et al., 2020); AD is associated with a reduced
alpha, beta, and gamma PLI compared with that observed in
healthy controls (Nobukawa et al., 2020a). Likewise, patients with
schizophrenia reportedly demonstrate a reduced PLI of the beta
band in the frontal region and a reduced PLI of the gamma
band throughout the scalp (Takahashi et al., 2018). The PLI
has also been used to assess frequency dependence in children
with ASD (Takahashi et al., 2017). Furthermore, the PLI can
capture functional connectivity within high cognitive functions
among healthy older participants (Nobukawa et al., 2020b). PLI
is robust against artifacts such as body and eye movements,
and muscle activation thus the influence of artifacts on PLI is
relatively small, because the major parts of this influence lie in
the amplitude space of signals, while PLI estimates phase-based
functional connectivity (Stam et al., 2007). However, in the higher
frequency gamma band range, artifacts due to muscle activity
are larger compared to slower frequency ranges (Whitham et al.,
2007, 2008); therefore, there may be issues with PLI estimation
accuracy in the gamma range (Lau et al., 2012; Engels et al., 2015).

In recent trends within neural activity analysis, multiple
spatio-temporal profiles of neural activity (which combine
profiles obtained by several evaluation methods) are integrated
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via machine learning; subsequently, analyses detecting the
pathology of several psychiatric disorders and estimating the
ability of brain function have been conducted with higher
accuracy as compared with using a single profile (reviewed
in Vu et al., 2018). In particular, informative studies have
been conducted combining profiles of functional connectivity
and temporal complexity (Ghanbari et al., 2015; Nobukawa
et al., 2020a). Studies have also reported a complementary
relationship between functional connectivity and neural
complexity (Ghanbari et al., 2015; Nobukawa et al., 2020a).
In patients with ASD, increasing (or decreasing) complexity
decreases (or increases) functional connectivity, suggesting that
the functional connectivity and complexity are complementary
(Ghanbari et al., 2015). For patients with AD, the relationship
between functional connectivity and complexity shows different
temporal scales and region-specific dependencies in both healthy
participants and among patients with AD, suggesting that the
relationship between functional connectivity and complexity
may reflect the complex pathological process occurring within
AD (Nobukawa et al., 2020a). However, to the best of our
knowledge, an approach combining functional connectivity and
the complexity of neural activity has not been evaluated under
healthy conditions. Even in the healthy aging process, brain
functions, such as attention, memory, and cognitive functions,
degrade over time (Birren and Fisher, 1995). Therefore, in a
super-aging society, the alteration of spatial-temporal neural
activity owing to aging is considered crucial for interventions for
the prevention of brain dysfunction.

Thus, we hypothesized that the complementary relationship
between functional connectivity and complexity could improve
the ability to detect alteration of spatiotemporal patterns within
EEGwith respect to the aging process. In this study, MF andMSE
analyses were performed to evaluate the temporal complexity
profiles, and PLI analyses evaluating the unique profile of
functional connectivity were performed based on EEG among
younger and older participants. Subsequently, these profiles were
combined via machine learning methodology.

2. MATERIALS AND METHODS

2.1. Participants
A total of 32 healthy younger people (15 males, 17 females;
average age, 23.9 years; standard deviation [SD], 4.7 years; age
range, 20–35 years) and 18 healthy older people (7 males, 11
females; average age, 57.5 years; SD, 4.7 years; age range, 51–
67 years) were enrolled in this study. These groups were sex-
matched (χ2 = 0.30, p = 0.59). The older participants were
all non-smokers and were not on any medications. Participants
with medical or neurological conditions (including epilepsy or
head trauma occurring in the past), as well as those with a history
of alcohol or drug dependence, were excluded from the current
study. All the participants provided their written informed
consent following an explanation of study procedures as well as
risks and benefits by study personnel. This study was approved
by the Ethics Committee of Kanazawa University and was
conducted in accordance with the principles of the Declaration

of Helsinki and its later amendments. The EEG data used in
this study evaluated the dynamics of phase synchronization
(Nobukawa et al., 2019a).

2.2. EEG Recordings
Methods for recording and pre-processing EEG data have
been reported and established in previous research (Mizuno
et al., 2010). Specifically, the participants in the current study
sat in a soundproof recording room, and their EEG was
measured under controlled room lighting conditions. For EEG
measurement, 16 electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4,
O1, O2, F7, F8, Fz, Pz, T5, and T6) were used; this system
was based on the recommended electrode arrangement under
the international 10–20 system. EEG activity was measured
with reference to the binaural connection. The EEG-4518
monitor used for electroencephalogram measurements in this
study was manufactured by Nihon Kohden Co., Ltd. (Tokyo,
Japan). The sampling frequency was 200 Hz for the recording.
The electrode/skin conductance impedance was controlled
to within less than 5k� for each electrode. Participants’
electroencephalogram signals were measured for 10–15 min in
a resting state with the eyes closed. Researchers visually inspected
the participants’ arousal using a video surveillance system;
participants were asked to close their eyes, and researchers
confirmed that only awake epochs were measured. If the alpha
and theta oscillations became weaker or stronger, compared
with ones at beginning stage of the recording, this duration
was not used for evaluation, because this duration belonged to
the light sleep stage. Additionally, the EEG signals were visually
assessed to identify artifacts, such as muscle activity, blinks,
and eye movement; consequently, 60-s (12,000 data points)
of artifact-free time-series segments within the EEG signals
recorded in the awake state with eyes closed were identified.
For each epoch, bandpass filtering with the range of 2.0–60 Hz
was applied. The first and last 5-s period (1,000 data point) in
each bandpass-filtered epoch were removed to avoid transient
behaviors produced by the bandpass filtering process. MSE and
MF analyses were performed for 50 consecutive seconds (i.e.,
10,000 data points) of epochs. In the PLI analyses, values decrease
with increasing epoch length (Fraschini et al., 2016); therefore, it
is difficult to identify changes with an increasing epoch length.
In addition, using short epoch lengths makes it impossible to
capture information on slow frequency components. To balance
these considerations, the PLI analysis divided 50 consecutive
seconds (10,000 data points) into 10 epochs of 5 s each (Takahashi
et al., 2017, 2018; Nobukawa et al., 2020a,b).

2.3. Multi-Fractal Analysis
The overview of flow for multi-fractal analysis is shown in
Figure 1A. In MF analyses, wavelet leaders derived from the
coefficients of the discrete wavelet transform are widely used
(Jaffard et al., 2006; Wendt and Abry, 2007). MF analysis is
an analysis method that uses the Hölder index to represent
the fractal dimension of the partial structure that characterizes
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FIGURE 1 | Overview of flow for complexity analysis. (A) Multifractal (MF) analysis. (B) Multiscale entropy (MSE) analysis.

the structure of data X via spectrum data. The discrete wavelet
coefficient of the discrete signal X(t) is given by Equation (1).

dX(j, k) =

∫

R
X(t)2j,ψ0(2

−jt − k)dt (j = 1, 2, ..., k = 1, 2, ...)

(1)

Here, ψ0 is a compact-supported mother wavelet function. The
Equation (2) shows one-dimensional wavelet leaders which are
time- or frequency-localized suprema of the absolute value of the
discrete wavelet coefficients dX(j, k):

Lx(j, k) = sup
λ′⊂3λj,k

|dX(λ
′)| (2)

Here, λ = λj,k = [k2−j, (k + 1)2−j] represents the time interval

of the scale 2−j. Additionally, 3λj,k−1 = ∪λj,k ∪ λj,k+1 represents
the adjacent time (Wendt and Abry, 2007). The spectrum of
singularity of LX is defined by Equation (3) with wavelet leaders
(Jaffard et al., 2006; Wendt and Abry, 2007).

D(h) = inf
q 6=0

(1+ qh− ζL(q)) (3)

Here, h indicates the Hölder index. Also, q indicates the moment
of the wavelet leaders. The scaling index ζL(q) is defined by
Equation (4). The wavelet leader structure function SL(q, j) is
defined by Equation (5).

ζL(q) = lim inf
j→∞

(

log2 SL(q, j)

log2 2
−j

)

(4)

SL(q, j) =
1

nj

nj
∑

k=1

|LX(j, k)|
q (5)

Here, nj indicates the number of samples of X when the scale
is 2j. As the Hölder index h approaches 1.0, the time-series
shape becomes more differentiable. However, as the Hölder
index h approaches 0, the time-series shape becomes nearly
discontinuous. A signal is monofractal if the scaling index
ζL(q) is a linear function and D(h) converges to a particular h.
Contrastingly, the fact that the signal is multi-fractal indicates
a scaling index, where ζL(q) deviates from linearity and D(h) is
widely distributed in h. In this study, to capture the profile of
D(h), the primary cumulant c1 ofD(h) was used as an indicator of
the smoothness of the entire time series signal, and the secondary
cumulant c2 was used as an index evaluating the local fluctuation
of the time-series signal. For the multi-fractal time series, D(h)
is distributed around c1. Therefore, the degree of distribution
of D(h) reflects the multi-fractal property, which corresponds
to |c2|. The time-series with large (small) multi-fractality (|c2|)
exhibits intermittent and transient behavior with large (small)
amplitude (Ihlen, 2012); while, the complexity notified by
c1 reflects the degree of complexity for temporal behavior
in entire time-range, instead of intermittent behavior (see
Supplementary Material). In this study, multi-fractal analysis
was performed using the wavelet toolbox in MATLAB (https://
jp.mathworks.com/products/wavelet.html; MathWorks, Natick,
MA, USA).

2.4. Multi-Scale Entropy Analysis
The overview of flow for MSE analysis was shown in Figure 1B.
MSE analysis was used to assess the temporal scale dependence
for EEG time series complexity (Costa et al., 2002). The
time-series sample entropy of the random Z-score variables
{x1, x2, ..., xN} is given by Equation (6).

h(r,m) = − log
Cm+1(r)

Cm(r)
. (6)

Here,Cm(r) is the probability of |x
m
i −xmj | < r(i 6= j, i, j = 1, 2, ...)

among all pairs of i and j. xmi indicates an m-dimensional vector
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xmi = {xi, xi+1, ..., xi+m−1}. In the MSE analysis, {x1, x2, ..., xN} is
calculated using Equation (7) for coarse-grained time series yj.

xj =
1

τ

jτ
∑

i=(j−1)τ+1

yi(1 ≤ j ≤
N

τ
). (7)

Here, {y1, y2, ..., yN} represents the observed signals. τ (τ =

1, 2, ...) represents the temporal scale. In this study, we setm = 2
and r = 0.2 (Costa et al., 2002) and MSE analysis was performed
using the Physio Toolkit toolbox in MATLAB (http://physionet.
incor.usp.br/physiotools/sampen/).

2.5. Phase Lag Index Analysis
The PLI was obtained to measure phase synchronization, and the
characteristics of the synchronization signal were quantitatively
estimated. The EEG signal was divided into five frequency bands:
the delta (2–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30
Hz), and gamma bands (30–60 Hz). Here, several studies showed
that artifacts in the gamma band due to muscle activity is larger
compared with slower frequency bands (Whitham et al., 2007,
2008). Therefore, through visual examination of EEG signals,
the time including muscle activity was avoided in the evaluation
epochs. Each band division divides the signal at time t, and the
point φa is indicated by phase φa(t) and amplitude Aa(t) using
the Hilbert transform. In addition, the phase difference 1φab(ti)
observed between signals with two different points a and b at time
ti is given by Equations (8) and (9) (Stam et al., 2007).

1φab(ti) = φa(ti)− φb(ti) (8)

1φmod(ti) = 1φab(ti)mod2π (9)

The PLI of the signal between the two points a and b for the
duration T is given by Equation (10).

PLIab =

∣

∣

∣

∣

∣

1

T

T
∑

i=0

sign(1φmod(ti))

∣

∣

∣

∣

∣

(10)

When signals with the same source are observed at different
points, 1φab(ti) is 0 and 1φmod(ti) = 0; subsequently the PLIab
value becomes 0. In addition, the observation at the point on the
opposite side of the electric dipole is defined as 1φab(ti) = π

within Equation (8) in cases where the signal source is assumed
to follow the dipole model. This yields PLIab = 0. The average
PLI of any electrode a via another electrode b = 1, 2, ...,K(b 6= a)
(called the node strength; NS) is given by Equation (11). Here, K
represents the total number of electrodes K = 16.

NSa =
1

K − 1

K
∑

b=1,b6=a

PLIab (11)

2.6. Statistical Analysis
For c1 and |c2|, repeated-measures analysis of variance (ANOVA)
was performed to determine statistically significant differences
between the younger and older groups. Age group was used
as an inter-subject factor, and the 16 electrodes from Fp1 to
T6 were used as intra-subject factors. The ANOVA results were
represented by F values based on intra-group and inter-group
variance comparisons. Greenhouse-Geisser adjustments were
applied to the degrees of freedom. The α = 0.05 bilateral level
was used; this was considered a statistically significant criterion
for avoiding type I errors. A post-hoc t-test was subsequently
used to evaluate the main effect between the younger and older
age groups and effect of the interactions per electrode. Here,
Benjamini-Hochberg false discovery rate (FDR) correction was
applied to the t value for multiple comparisons of c1 and |c2|
(q < 0.05) (16 p values: 16 electrodes).

In the ANOVA for sample entropy, age group was used as an
inter-subject factor, and the 16 electrodes from Fp1 to T6 and a
temporal scale were used as intra-subject factors. A post-hoc t-
test was subsequently used to evaluate the main effect between
the younger and older groups and effects of interaction for the
electrodes and temporal scales. The α = 0.05 bilateral level was
used. FDR correction was applied to the t scores for multiple
comparisons (q < 0.05) (480 p values: 16 electrode× 30 scales).

In ANOVA for NS at each frequency band, age group was
used as an inter-subject factor, and the 16 electrodes (from
Fp1 to T6) were used as intra-subject factors. A post-hoc t-
test was subsequently used to evaluate the main effect between
the younger and older groups and effect of the interaction for
the electrodes. The α = 0.05 bilateral level was used. FDR
correction was applied to the t scores for multiple comparisons
(q < 0.05) (80 p values: 16 electrodes × 5 frequency bands).
The t-test was used for electrode-pair-wise group comparison of
PLI between the younger and older groups. With a control for
multiple comparisons, FDR correction was applied to the t scores
(q < 0.05) (600 p values: 120 electrode pairs× 5 bands).

Older participants were classified using the receiver operating
characteristics (ROC) curve. A logistic regression model based
on sample entropy, c1, |c2|, and the NS of the PLI was used to
identify older participants. Here, the logistic regression model
outputs the “older participants” discrimination probability for
each participant. The true/false positive rate at each threshold
of discrimination probability from 0 to 1.0 for both groups was
then measured. Principal component analysis was used as a pre-
treatment for dimensionality reduction, and logistic regression
based on c1, |c2|, sample entropy, and the NS of the PLI was
implemented. The accuracy of discrimination was evaluated
using the area under the ROC curve (AUC). We also used 5-fold
cross-validation to prevent overfitting; AUC= 1.0 corresponds to
perfect discrimination, and AUC= 0.5 corresponds to random
discrimination. Here, the principal component analysis was
conducted within cross validation (Shim et al., 2021) to avoid
the inaccurate estimation of performance of discrimination. AUC
values were averaged among 20 trials to choose tested and
evaluated data set in 5-fold cross-validation and their standard
deviations (SD) were also derived.

Frontiers in Aging Neuroscience | www.frontiersin.org 5 February 2022 | Volume 14 | Article 793298

http://physionet.incor.usp.br/physiotools/sampen/
http://physionet.incor.usp.br/physiotools/sampen/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ando et al. Neural Network Activity in Aging

To evaluate the relationship between NS and complexity, we
used Spearman’s correlation R between NS and the complexity
indexes (c1, |c2|). To control the multiple comparison, FDR
correction was applied these R-scores (q < 0.05) (16 p values:
16 electrodes).

3. RESULTS

3.1. Multi-Fractal Analysis
MF analysis was performed in the younger and older participants.
Figure 2 shows the mean and standard deviation for each group
with respect to D(h) and h. Owing to its wide distribution,
this analysis is thought to reflect the multi-fractal characteristics
(Sikdar et al., 2018) of the EEG signals for both groups. Table 1
shows the repeated-measures ANOVA results of the first (c1) and
second (|c2|) cumulants within a singular spectrum. A strong
main effects were observed for c1 and |c2|. The mean values of
c1 and |c2| in the older and younger groups, as well as the results
of a post-hoc t-test between the older and younger groups, are
shown in Figure 3. The post-hoc t-test revealed that the value of
c1 was statistically significantly lower for the older participants
at 13 electrodes (F3, Fz, F4, F7, F8, C3, C4, P3, Pz, P4, T6, O1,
and O2) (q < 0.050). In addition, the results showed that the
value of |c2| was statistically significantly lower for the older
participants at 14 electrodes (Fp1, Fp2, F3, Fz, F4, F7, F8, C3,

FIGURE 2 | Spectrum of singularity for the older and younger groups. This

figure shows the mean and standard deviation of each group for D(h) and h,

respectively. Owing to the wide distribution observed here, these results are

thought to reflect the multifractal characteristics of the EEG signals for both

groups.

C4, Pz, P4, T6, O1, and O2) (q < 0.050). The results of the MF
analysis demonstrated that aging increases complexity (shown
by less smoothness) and decreases multi-fractality. The time-
series with large (small) multi-fractality exhibits intermittent
and transient behavior with large (small) amplitude (Ihlen,
2012). Meanwhile, complexity reflects the degree of complexity
for temporal behavior in entire the time-range, rather than
intermittent behavior. Therefore, EEG signal in older subjects
corresponds to homogeneous and highly complex temporal
behaviors.

3.2. Multi-Scale Entropy Analysis
MSE analysis was performed in the younger and older
participants. Table 2 shows the repeated-measures ANOVA
results for the MSE analysis. We found that no main effect was
observed, although there were interactions in the group × scale
and the group × node × scale. The mean values of sample
entropy in the older and younger groups, as well as the results of a
post-hoc t-test between the older and younger groups, are shown
in Figure 4. The results demonstrated a statistically significantly
higher sample entropy for the older participants (q < 0.050)
in the temporal-scale region of 1 to 5 (0.005 to 0.025 s at all
electrodes). The results of the MSE analysis demonstrated that
aging increases complexity on a fast temporal scale.

3.3. Phase Lag Index Analysis
PLI analysis was performed on younger and older participants.
Table 3 shows the ANOVA analysis results for the NS of the
PLI for each band among younger and older participants. The
results indicated that there was a main effect in the delta and
gamma bands and that there was an interaction with respect to
the group× node in the alpha, beta, and gamma bands. The post-
hoc t-test results for the NS are shown in Figure 5C. Although
no statistically significant differences satisfying with FDR criteria
q < 0.05 were observed between the older and younger groups,
relatively higher NS at delta and gamma band in the older group
was observed. Regarding the PLI among pair-wise electrodes, the
mean values of the PLI in the older and younger groups, as well
as the results of t-tests between the older and younger groups,
are shown in Figures 5A,B. No statistically significant differences
satisfying with FDR criteria (q < 0.05) were observed between
the older and younger groups.

3.4. Correlation Analysis Between
Complexity and Functional Connectivity
To evaluate the relationship between complexity and functional
connectivity, a correlation analysis was performed, using

TABLE 1 | Younger vs. older repeated measure ANOVA analysis results [F value (p value, partial η2 )] in multifractal (MF) analysis.

Group Group × nodes Degree of freedom (ǫ)

c1 F = 25.25 (p < 0.001, η
2 = 0.345) F = 1.73 (p = 0.13, η2 = 0.035) 5.06 (ǫ = 0.034)

|c2| F = 22.23 (p < 0.001, η
2 = 0.317) F = 1.73 (p = 0.11, η2 = 0.035) 6.04 (ǫ = 0.035)

F and p values with p < 0.05 are represented by bold characters. Degree of freedom and Greenhouse-Geisser adjustments ǫ in the interaction for group × nodes are also shown.
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FIGURE 3 | (A) 1st cumulant of the spectrum of singularity c1. The mean values of c1 in the younger (left) and older (right) groups. (B) t values comparing the younger

and older groups. Warm (cold) colors represent higher (smaller) c1 values for older versus younger participants. The left and right of the figure correspond to the t- and

t-values satisfying the false discovery rate (FDR) correction criteria q < 0.050. The c1 value for the older group, which had statistically significantly lower values at F3,

Fz, F4, F7, F8, C3, C4, P3, Pz, P4, T6, O1, and O2, and is shown here. (C) Absolute value of 2nd cumulant of the spectrum of singularity |c2|. The mean values of |c2|

in the younger (left) and older (right) groups are shown here. (D) t-values comparing the older and younger groups. Warm (cold) colors represent higher (smaller) |c2|

values for older versus younger participants. The left and right correspond to the t- and t-values satisfying the FDR correction criteria q < 0.050. The |c2| of the older

group had statistically significantly lower values at Fp1, Fp2, F3, Fz, F4, F7, F8, C3, C4, Pz, P4, T6, O1, and O2.
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TABLE 2 | Younger vs. older repeated–measures ANOVA results [F value (p value, partial η2 )], degree of freedom and Greenhouse-Geisser adjustments ǫ in multi scale

entropy (MSE) analysis.

Group Group × node Group × scale Group × node × scale

F = 3.37 (p = 0.073, η2 = 0.066) F = 1.51 (p = 0.21, η2 = 0.030,

degree of freedom: 3.62, ǫ = 0.242)

F = 19.93 (p < 0.001, η2 = 0.293

degree of freedom: 2.94, ǫ = 0.102)

F = 1.949 (p = 0.020, η2 = 0.039

degree of freedom: 13.898, ǫ = 0.032)

F and p values with p < 0.05 are represented by bold characters.

FIGURE 4 | Multi-scale entropy analysis in younger and older groups. The horizontal axis represents the temporal-scale factor, τ . (A) Mean values of sample entropy

from 1 (0.005 s) to 30 (0.15 s) scale factors in younger (left part) and older (right part) participants are shown here. (B) t-values comparing the older and younger

groups are shown here as well (left part). Warm (cold) colors represents a higher (smaller) sample entropy value for older individuals than for younger participants. The

observed t-value satisfies the FDR correction criterion q < 0.050 (right part). A statistically significantly higher sample entropy of the low temporal-scale regions 1 to 5

(0.005–0.025 s) is depicted here.

Spearman’s correlation, between NS and the complexity indexes
(c1, |c2|). Figure 6 shows the Spearman’s correlations between
NS of PLI and c1 and between NS of PLI and |c2| in both the
younger and older groups. The correlation with c1 did not meet
the FDR correction criteria of q < 0.050; while there were
positive correlations with NS at alpha and |c2| at Fp1, Fp2, F3, F4,

and Fz as well as NS at beta band and |c2| at F3 in younger group.
In Figure 7, the scatter plots at these electrodes were shown,
significantly large positive correlations were observed. Therefore,
large node strength might lead the intermittent and transient
behavior reflecting |c2| in local neural activity, instead of steady
neural variability reflecting c1.
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TABLE 3 | Younger vs. older repeated-measure ANOVA analysis results [F value (p value, partial η2)] in the node strength (NS) of phase lag index (PLI).

Group Group × nodes Degree of freedom (ǫ)

delta F = 4.18 (p = 0.046, η2 = 0.80) F = 1.26 (p = 0.262, η2 = 0.026) 8.183 (ǫ = 0.546)

theta F = 0.04 (p = 0.833, η2 = 0.001) F = 0.98 (p = 0.453, η2 = 0.020) 8.948 (ǫ = 0.597)

alpha F = 1.09 (p = 0.301, η2 = 0.022) F = 3.95 (p < 0.001, η2 = 0.076) 5.899 (ǫ = 0.393)

beta F = 0.097 (p = 0.757, η2 = 0.002) F = 2.89 (p = 0.006, η2 = 0.057) 7.060 (ǫ = 0.471)

gamma F = 4.17 (p = 0.047, η2 = 0.080) F = 3.35 (p = 0.002, η2 = 0.065) 6.785 (ǫ = 0.452)

F and p values with p < 0.05 are represented by bold characters. Degree of freedom and Greenhouse-Geisser adjustments ǫ in the interaction for group × nodes are also shown.

FIGURE 5 | (A) Mean values of phase lag index (PLI) for each band in younger (upper parts) and older (lower parts) groups. (B) t-values between the younger and

older groups (upper parts). The warm (cold) colors represents higher (smaller) PLI values in the older group than in the younger group. (lower parts). (C) t-values for the

node strength (NS) of PLI between the older and younger groups. Warm (cold) colors represent a higher (smaller) NS for older versus younger individuals. Although no

statistically significant differences satisfying with FDR criteria q < 0.05 were observed between the older and younger groups, relatively higher NS at delta and gamma

band in the older group was observed. In PLI among pair-wise electrodes, no statistically significant differences satisfying with FDR criteria (q < 0.05) were observed

between the older and younger groups.

3.5. ROC Curve Analysis
To evaluate the classification ability for c1, |c2|, and the PLI,
we evaluated the ROC. We observed a statistically significantly
large sample entropy in the older group for time scales of 1
to 5, as shown in Figure 4. Therefore, the sample entropy was
averaged in this temporal region for the purpose of clarification.

Table 4 shows the results of the ROC in cases with the first-
third principal components of c1 and |c2|, as well as sample
entropy. In the results shown in Table 4, c1 had the highest
value (AUC = 0.86). Table 5 shows the results of the ROC in
cases with the first-third principal components for the NS of
the PLI in the delta, theta, alpha, beta, and gamma bands. In

Frontiers in Aging Neuroscience | www.frontiersin.org 9 February 2022 | Volume 14 | Article 793298

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ando et al. Neural Network Activity in Aging

FIGURE 6 | Spearman’s rank correlation coefficient R between NS of PLI and c1 in younger (1st line) and older (2nd line) groups. The correlation values did not meet

the FDR correction criteria of q < 0.050. Spearman’s rank correlation coefficient R between NS of PLI and |c2| in younger (3rd line) and older (4th line) groups. The

electrodes with correlation values to meet the FDR correction criteria of q < 0.050 are surround with a line. In younger group, positive correlation with NS at alpha and

|c2| at Fp1, Fp2, F3, F4, and Fz and positive correlation with NS at beta band and |c2| at F3 were confirmed.

the results shown in Table 5, NS at alpha had the highest value
(AUC = 0.84). Table 6 shows the results of the ROC in cases
with the first-third principal components of the combination
of c1 and |c2| and the combination of the NS at alpha, as well
as c1, |c2| and sample entropy. Almost AUC values increased
by combining the NS at alpha, c1, |c2|, and sample entropy
in comparison with cases using a single index, as shown in
Tables 4, 5. While, at the other bands, AUCs in the NS are
significantly lower in comparison with the complexity indexes
(c1, c2, and sample entropy) (see Tables 4, 5). Therefore, AUCs
in the case with combinations of NS at the other band and the
complexity index are inferior to AUCs in the case using a single
complexity index.

To demonstrate that the determination area for older
participants is determined by c1, |c2|, sample entropy, and
the NS at alpha of the PLI, the determination area of the
older participants was defined as the plane between the first
principal components of c1 and first principal components

of |c2|, and plane between the first principal components
of c1 and first principal components of the NS at alpha,
plane between the first principal components of |c2| and
first principal components of the NS at alpha, and plane
between the first principal components of sample entropy
and first principal components of the NS at alpha (see
Figure 8). Here, the other components, with the exception
of the axis of the planes, were set to average among
participants in both the younger and older study groups. The
dependency on all of these factors in the decision region
was confirmed.

4. DISCUSSION

In this study, we investigated the relationship between
complexity and functional connectivity in aging via EEG.
In the MF analysis, we found that c1 (as the index for the
smoothness of the EEG signal) decreased with aging, and |c2|
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FIGURE 7 | Scatter plot between NS of PLI at alpha/beta bands and |c2| in younger group where Spearman’s rank correlation R coefficient satisfies with FDR

correction criteria of q < 0.050 in Figure 6. The significant large positive correlations were observed.

TABLE 4 | The area under the ROC curve (AUC) for c1, |c2|, and sample entropy

averaged scale 1–5.

AUC (SD)

c1 0.862 (0.029)

|c2| 0.857 (0.026)

sample entropy 0.850 (0.026)

In this case, c1, |c2|, and sample entropy, each first-third principal components, were

used separately. Here, AUC values were averaged among 20 trials to choose tested and

evaluated data set in 5-fold cross-validation and their standard deviations (SD) were also

derived.

(which is an index of a multi-fractal nature) also decreased
with aging. In the MSE analysis, a statistically significant
region-specific increase in the small-temporal-scale sample
entropy of aging was observed. In the PLI analysis, we found that
functional connectivity increased in the delta and gamma bands

TABLE 5 | AUC for the NS of the PLI. In this case, the NS of the PLI was used

separately for each of the first-third principal components.

AUC (SD)

NS at delta 0.600 (0.055)

NS at theta 0.545 (0.053)

NS at alpha 0.840 (0.030)

NS at beta 0.785 (0.034)

NS at gamma 0.708 (0.058)

Here, AUC values were averaged among 20 trials to choose tested and evaluated data

set in 5-fold cross-validation and their standard deviations (SD) were also derived.

with aging. In the comparison of the classification accuracy
among c1, |c2|, small-temporal-scale sample entropy, and
the NS of the PLI, c1 demonstrated the highest classification
accuracy (AUC = 0.86). Considering the complementary
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TABLE 6 | AUC for the combination of c1 and |c2| and the combination of the NS at alpha, c1, |c2| and sample entropy.

AUC (SD) t-value (p-value)

with c1

t-value (p-value)

with |c2|

t-value (p-value) with

sample entropy

t-value (p-value)

with NS at alpha

c1 & |c2| 0.885 (0.038) t = 2.69 (p = 0.014) t = 2.96 (p = 0.007) - -

c1 & NS at alpha 0.881 (0.046) t = 1.82 (p = 0.083) - - t = 4.82 (p < 0.001)

|c2| & NS at alpha 0.887 (0.035) - t = 3.31 (p = 0.003) - t = 5.79 (p < 0.001)

sample entropy & NS at alpha 0.873 (0.031) - - t = 3.27 (p = 0.004) t = 4.37 (p < 0.001)

In this case, the first-third principal components were used separately. Here, AUC values were averaged among 20 trials to choose tested and evaluated data set in five–fold cross-

validation and their standard deviations (SD) were also derived. The paired t-value comparing with AUC only used single measure (c1, |c2|, sample entropy.) The t and corresponding

p values with p < 0.05 are represented by bold characters. Positive t value indicates the increased AUC in the combination case.

FIGURE 8 | Decision region (represented as the red region) for older participants with a decision probability of more than 0.9, obtained via logistic regression, is

shown on the plane between the 1st principal component of c1 and the 1st principal component of |c2| (upper left part), the plane between the 1st principal

component of c1 and the 1st principal component of NS at alpha (upper right part), and the plane between the 1st principal component of |c2| and the 1st principal

component of NS at alpha (lower left part), and the plane between the 1st principal component of sample entropy and the 1st principal component of the NS at alpha

(lower right part). Here, the other components, except for the axis of the planes, were set to average among participants in both the younger and older groups. The

dependency on all these factors in the decision region was confirmed.

TABLE 7 | Younger vs. older repeated–measures ANOVA results [F value (p value, partial η2 )] with mean values of relative power at gamma band among 16 electrodes as

covariate in c1, |c2|, mean values of sample entropy in low temporal-scale regions 1 to 5 (0.005–0.025 s), and NS at gamma band.

Group Group × node degree of freedom (ǫ)

c1 F = 9.059 (p = 0.004, η2 = 0.162) F = 1.109 (p = 0.356, η2 = 0.023) 5.151 (ǫ = 0.343)

|c2| F = 4.143 (p = 0.047, η2 = 0.081) F = 1.009 (p = 0.420, η2 = 0.021) 6.023 (ǫ = 0.402)

sample entropy F = 10.179 (p = 0.003, η2 = 0.178) F = 1.104 (p = 0.355, η2 = 0.023) 3.792 (ǫ = 0.253)

NS at gamma F = 0.127 (p = 0.723, η2 = 0.003) F = 1.704 (p = 0.109, η2 = 0.035) 6.853 (ǫ = 0.457)

F and p values with p < 0.05 are represented by bold characters. Degree of freedom and Greenhouse-Geisser adjustments ǫ in the interaction for group × node are also shown.
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relationship between complexity and functional connectivity, the
accuracy of aging classification improved based on the current
study results.

It is imperative to discuss the reason why c1, which is an index
of smoothness, decreases with aging. Gamma activity has been
reported to increase with age (Böttger et al., 2002). In our results,
a higher relative power of the gamma band in the major part
of the electrodes was confirmed (see Supplementary Material).
A previous study demonstrated that the degree of complexity
of EEG signals predominantly depends on smaller temporal
scale (i.e., fast frequency component) behaviors, instead of on
larger temporal scale (i.e., slow frequency component) behaviors
(Nobukawa et al., 2019b). Our results exhibit a tendency
corresponding with these findings; that is, it can be interpreted
that our observed increasing complexity (decreasing c1 and
increasing smaller temporal-scale sample entropy) is induced by
increasing gamma activity due to aging.

In the gamma band, artifacts due to muscle activity are larger
compared to lower frequency bands (Whitham et al., 2007,
2008). Therefore, although the majority of the time segments
with artifacts involving muscle activity were removed in the
evaluation epochs, it was essential to investigate the influence
of muscle activity on gamma band results in the estimation of
functional connectivity and complexity.Table 7 shows the results
of younger vs. older groups repeated-measures ANOVA with
the mean values of relative power at the gamma band among
16 electrodes as covariate in c1, |c2|, mean values of sample
entropy in low temporal-scale regions 1 to 5 (0.005–0.025 s),
and NS at gamma band. Resultingly, the group difference is
maintained in c1, |c2|, and small-temporal-scale sample entropy.
However, the group difference was not confirmed in the NS at
gamma band. Therefore, in an epoch involving muscle activity,
functional connectivity at the gamma band might be more
strongly affected.

Moreover, we must consider the reason why the relationship
between multi-fractality and complexity and their underlying
neurophysiological mechanism. The time-series with large
(small) multi-fractality exhibits intermittent and transient
behavior with large (small) amplitude (Ihlen, 2012). Complexity
reflects the degree of complexity for temporal behavior in the
entire time-range, instead of intermittent behavior. Therefore,
EEG signal in older subjects corresponds to homogeneous
and high complex temporal behaviors. In the aging process,
the connectivity of the wide range of inter neural networks
becomes weak and the neural noise increases; consequently,
the amount of network communication decreases (Cremer
and Zeef, 1987; Onoda et al., 2012; Nobukawa et al., 2019a).
Therefore, the amplitude of intermittent transient behavior
driven by the neural activities from the other regions might
become weak, that is, the decreased multi-fractality might
reflect fewer global neural interactions. Regarding complexity,
as mentioned above, increasing complexity (decreasing c1 and
increasing smaller temporal-scale sample entropy) is induced by
increasing gamma activity due to aging. Considering fact that
gamma-band activity relates to local excitatory and inhibitory
neural interaction (Börgers and Kopell, 2003), increasing

complexity is caused by the alternation of local regional
neural activity.

Furthermore, it is necessary to consider why the classification
accuracy is improved by adding the NS at alpha. The
activity of the neural network alternates region-specifically with
aging [as reviewed in Reuter-Lorenz (2002)]. In our result,
NS at alpha exhibits significant high region-specificity (see
Table 3). Such age-related region-specific characteristics could
be extracted by principal component analysis and logistic
regression; consequently, a relatively high classification accuracy
was thus obtained in the current study. Furthermore, in recent
years, studies on complexity and functional coupling have
pointed out complementary relationships (Ghanbari et al., 2015;
Nobukawa et al., 2020a); the studies have reported that their
combination improves the detection accuracy of pathological
conditions. This relationship is attributed that the inter-regional
neural interactions as functional connectivities induce the local
regional variability (Sporns et al., 2007; Misic et al., 2011),
which was observed between NS and multi-fractality |c2|
(see Figures 6, 7). The complementarity was also observed
in the decision plan for this study (see Figure 8). Based on
these results, we conclude that the combination of complexity
and the PLI likely improves the classification accuracy of
aging.

Finally, in addition to the substantial strengths of the current
investigation, the limitations of this study need to be considered.
The EEG signal does not always reflect the neural activity
just below the electrodes. In this study, EEG was measured
using 16 electrodes, which is less than the current number
of electrodes recommended by the International Federation
of Clinical Neurophysiology (Seeck et al., 2017). Therefore,
using MEG and high dense EEG with increased high spatial
resolution and applying cortical positioning method might
enhance the ability to identify the complex functional connection
structures caused by aging. Regarding temporal-scale resolution,
recently, Kosciessa et al. (2020) indicated an issue in the
coarse-grain process’s ability to rigidly extract the complexity
with temporal-scale specificity (Kosciessa et al., 2020). Since
the age-related alternation of power was distributed in wide
frequency bands in this study, the need for a more appropriate
method to extract temporal-scale dynamics is important to
thoroughly investigate neural interactions and temporal-scale
specific complexity. In future studies, these points should be
dealt with.

5. CONCLUSION

In this study, we were able to portray the changes in
neural activity with aging by using MF and MSE analyses,
which are complexity analyses, as well as PLI analysis,
which evaluates the functional connections. Classification
accuracy was improved by combining functional connectivity,
which has a complementary relationship with the index
of complexity. Despite certain limitations, the outcome of
this study demonstrates that the complementary relationship
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between complexity and functional connectivity within EEG
plays an important role in detecting age-related changes in
neural activity. Therefore, these results could be useful in
formulating interventions for the prevention of age-related
brain dysfunction.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily
available because the informed consent did not include the
declaration regarding publication of clinical data. Requests
to access the datasets should be directed to Sou Nobukawa,
nobukawa@cs.it-chiba.ac.jp.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of Kanazawa University. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

MA, SN, MK, and TT designed the methods. MA and SN
analyzed the results, wrote the main manuscript text, and
prepared all the figures. MK conducted the experiments. All
authors reviewed the manuscript.

FUNDING

This work was supported by JSPS KAKENHI for Early-Career
Scientists (grant number 18K18124) (SN), Grant-in-Aid for
Scientific Research (C) (grant number 20K07964) (TT), and The
Okawa Foundation for Information and Telecommunications
(grant number 20–20) (SN).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.
2022.793298/full#supplementary-material

REFERENCES

Aertsen, A., Gerstein, G., Habib, M., and Palm, G. (1989). Dynamics of neuronal

firing correlation: modulation of “effective connectivity”. J. Neurophysiol. 61,

900–917. doi: 10.1152/jn.1989.61.5.900

Ahmadlou, M., Adeli, H., and Adeli, A. (2011). Fractality and a wavelet-chaos-

methodology for EEG-based diagnosis of Alzheimer disease. Alzheimer Disease

Assoc. Disord. 25, 85–92. doi: 10.1097/WAD.0b013e3181ed1160

Ando, M., Nobukawa, S., Kikuchi, M., and Takahashi, T. (2021).

Identification of electroencephalogram signals in Alzheimer’s disease by

multifractal and multiscale entropy analysis. Front. Neurosci. 15, 772.

doi: 10.3389/fnins.2021.667614

Birren, J. E., and Fisher, L. M. (1995). Aging and speed of behavior:

possible consequences for psychological functioning. Ann.

Rev. Psychol. 46, 329–353. doi: 10.1146/annurev.ps.46.020195.0

01553

Börgers, C., and Kopell, N. (2003). Synchronization in networks of excitatory

and inhibitory neurons with sparse, random connectivity. Neural Comput. 15,

509–538. doi: 10.1162/089976603321192059

Böttger, D., Herrmann, C. S., and von Cramon, D. Y. (2002). Amplitude differences

of evoked alpha and gamma oscillations in two different age groups. Int. J.

Psychophysiol. 45, 245–251. doi: 10.1016/s0167-8760(02)00031-4

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575

Buzsáki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks.

Science 304, 1926–1929. doi: 10.1126/science.1099745

Costa, M., Goldberger, A. L., and Peng, C.-K. (2002). Multiscale entropy

analysis of complex physiologic time series. Phys. Rev. Lett. 89, 068102.

doi: 10.1103/PhysRevLett.89.068102

Cremer, R., and Zeef, E. J. (1987). What kind of noise increases with age? J.

Gerontol. 42, 515–518. doi: 10.1093/geronj/42.5.515

Engels, M. M., Stam, C. J., van der Flier, W. M., Scheltens, P., de Waal, H., and

van Straaten, E. C. (2015). Declining functional connectivity and changing

hub locations in Alzheimer’s disease: an EEG study. BMC Neurol. 15, 1–8.

doi: 10.1186/s12883-015-0400-7

Fraschini, M., Demuru, M., Crobe, A., Marrosu, F., Stam, C. J., and Hillebrand,

A. (2016). The effect of epoch length on estimated EEG functional

connectivity and brain network organisation. J. Neural Eng. 13:036015.

doi: 10.1088/1741-2560/13/3/036015

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal

communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480.

doi: 10.1016/j.tics.2005.08.011

Friston, K., Frith, C., Liddle, P., and Frackowiak, R. (1993). Functional

connectivity: the principal-component analysis of large (PET) data sets. J.

Cereb. Blood Flow Metab. 13, 5–14. doi: 10.1038/jcbfm.1993.4

Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W., Lindenberger, U.,

McIntosh, A. R., and Grady, C. L. (2013). Moment-to-moment brain signal

variability: a next frontier in human brain mapping? Neurosci. Biobehav. Rev.

37, 610–624. doi: 10.1016/j.neubiorev.2013.02.015

Ghanbari, Y., Bloy, L., Edgar, J. C., Blaskey, L., Verma, R., and Roberts, T. P. (2015).

Joint analysis of band-specific functional connectivity and signal complexity in

autism. J. Autism Develop. Disor. 45, 444–460. doi: 10.1007/s10803-013-1915-7

Gottschalk, A., Bauer, M. S., and Whybrow, P. C. (1995). Evidence of chaotic

mood variation in bipolar disorder. Arch. Gen. Psychiatry 52, 947–959.

doi: 10.1001/archpsyc.1995.03950230061009

Hasegawa, C., Takahashi, T., Yoshimura, Y., Nobukawa, S., Ikeda, T., Saito, D. N.,

et al. (2018). Developmental trajectory of infant brain signal variability: a

longitudinal pilot study. Front. Neurosci. 12:566. doi: 10.3389/fnins.2018.00566

Hata, M., Kazui, H., Tanaka, T., Ishii, R., Canuet, L., Pascual-Marqui, R. D., et al.

(2016). Functional connectivity assessed by resting state EEG correlates with

cognitive decline of Alzheimer’s disease–an eloreta study. Clin. Neurophysiol.

127, 1269–1278. doi: 10.1016/j.clinph.2015.10.030

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A.,

Calhoun, V. D., Corbetta, M., et al. (2013). Dynamic functional

connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378.

doi: 10.1016/j.neuroimage.2013.05.079

Ihlen, E. A. F. E. (2012). Introduction tomultifractal detrended fluctuation analysis

in matlab. Front. Physiol. 3:141. doi: 10.3389/fphys.2012.00141

Jaffard, S., Lashermes, B., and Abry, P. (2006). “Wavelet leaders in multifractal

analysis,” inWavelet Analysis and Applications (Basel: Springer), 201–246

Klimesch, W., Sauseng, P., Hanslmayr, S., Gruber, W., and Freunberger, R. (2007).

Event-related phase reorganization may explain evoked neural dynamics.

Neurosci. Biobehav. Rev. 31, 1003–1016. doi: 10.1016/j.neubiorev.2007.03.005

Kosciessa, J. Q., Kloosterman, N. A., and Garrett, D. D. (2020). Standard

multiscale entropy reflects neural dynamics at mismatched temporal scales:

what’s signal irregularity got to do with it? PLoS Comput. Biol. 16:e1007885.

doi: 10.1371/journal.pcbi.1007885

Lau, T. M., Gwin, J. T., McDowell, K. G., and Ferris, D. P. (2012).

Weighted phase lag index stability as an artifact resistant measure to detect

Frontiers in Aging Neuroscience | www.frontiersin.org 14 February 2022 | Volume 14 | Article 793298

mailto:nobukawa@cs.it-chiba.ac.jp
https://www.frontiersin.org/articles/10.3389/fnagi.2022.793298/full#supplementary-material
https://doi.org/10.1152/jn.1989.61.5.900
https://doi.org/10.1097/WAD.0b013e3181ed1160
https://doi.org/10.3389/fnins.2021.667614
https://doi.org/10.1146/annurev.ps.46.020195.001553
https://doi.org/10.1162/089976603321192059
https://doi.org/10.1016/s0167-8760(02)00031-4
https://doi.org/10.1038/nrn2575
https://doi.org/10.1126/science.1099745
https://doi.org/10.1103/PhysRevLett.89.068102
https://doi.org/10.1093/geronj/42.5.515
https://doi.org/10.1186/s12883-015-0400-7
https://doi.org/10.1088/1741-2560/13/3/036015
https://doi.org/10.1016/j.tics.2005.08.011
https://doi.org/10.1038/jcbfm.1993.4
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1007/s10803-013-1915-7
https://doi.org/10.1001/archpsyc.1995.03950230061009
https://doi.org/10.3389/fnins.2018.00566
https://doi.org/10.1016/j.clinph.2015.10.030
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.3389/fphys.2012.00141
https://doi.org/10.1016/j.neubiorev.2007.03.005
https://doi.org/10.1371/journal.pcbi.1007885
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ando et al. Neural Network Activity in Aging

cognitive EEG activity during locomotion. J. Neuroeng. Rehabil. 9, 1–9.

doi: 10.1186/1743-0003-9-47

McDonnell, M. D., and Ward, L. M. (2011). The benefits of noise in neural

systems: bridging theory and experiment. Nat. Rev. Neurosci. 12, 415–425.

doi: 10.1038/nrn3061

McIntosh, A. R., Kovacevic, N., and Itier, R. J. (2008). Increased brain signal

variability accompanies lower behavioral variability in development. PLoS

Comput. Biol. 4:e1000106. doi: 10.1371/journal.pcbi.1000106

Misic, B., Vakorin, V. A., Paus, T., and McIntosh, A. R. (2011). Functional

embedding predicts the variability of neural activity. Front. Syst. Neurosci. 5,

90. doi: 10.3389/fnsys.2011.00090

Mizuno, T., Takahashi, T., Cho, R. Y., Kikuchi, M., Murata, T., Takahashi,

K., et al. (2010). Assessment of EEG dynamical complexity in Alzheimer’s

disease using multiscale entropy. Clin. Neurophysiol. 121, 1438–1446.

doi: 10.1016/j.clinph.2010.03.025

Ni, H., Zhou, L., Ning, X., Wang, L., and (ADNI), A. D. N. I. (2016). Exploring

multifractal-based features for mild Alzheimer’s disease classification. Magn.

Resonan. Med. 76, 259–269. doi: 10.1002/mrm.25853

Nobukawa, S., Kikuchi, M., and Takahashi, T. (2019a). Changes in functional

connectivity dynamics with aging: a dynamical phase synchronization

approach. Neuroimage 188, 357–368. doi: 10.1016/j.neuroimage.2018.12.008

Nobukawa, S., and Nishimura, H. (2020). Synchronization of chaos in neural

systems. Front. Appl. Math. Stat. 6, 19. doi: 10.1016/j.cnsns.2010.04.036

Nobukawa, S., Yamanishi, T., Kasakawa, S., Nishimura, H., Kikuchi, M., and

Takahashi, T. (2020a). Classification methods based on complexity and

synchronization of electroencephalography signals in Alzheimer’s disease.

Front. Psychiatry 11:255. doi: 10.3389/fpsyt.2020.00255

Nobukawa, S., Yamanishi, T., Nishimura, H., Wada, Y., Kikuchi, M., and

Takahashi, T. (2019b). Atypical temporal-scale-specific fractal changes in

Alzheimer’s disease EEG and their relevance to cognitive decline. Cogn.

Neurodyn. 13, 1–11. doi: 10.1007/s11571-018-9509-x

Nobukawa, S., Yamanishi, T., Ueno, K., Mizukami, K., Nishimura, H., and

Takahashi, T. (2020b). High phase synchronization in alpha band activity

in older subjects with high creativity. Front. Human Neurosci. 14, 420.

doi: 10.3389/fnhum.2020.583049

Nolte, G., Holroyd, T., Carver, F., Coppola, R., and Hallett, M. (2004). “Localizing

brain interactions from rhythmic EEG/MEG data,” in The 26th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society, Vol. 1, (San Francisco, CA: IEEE), 998–1001.

Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker,

D. M., Silberstein, R. B., et al. (1997). EEG coherency: I: statistics, reference

electrode, volume conduction, laplacians, cortical imaging, and interpretation

at multiple scales. Electroencephalography Clin. Neurophysiol. 103, 499–515.

doi: 10.1016/s0013-4694(97)00066-7

Onoda, K., Ishihara, M., and Yamaguchi, S. (2012). Decreased functional

connectivity by aging is associated with cognitive decline. J. Cogn. Neurosci.

24, 2186–2198. doi: 10.1162/jocn_a_00269

Paulus, M. P., Geyer, M. A., and Braff, D. L. (1996). Use of methods from

chaos theory to quantify a fundamental dysfunction in the behavioral

organization of schizophrenic patients. Amer. J. Psychiatry 153, 714–717.

doi: 10.1176/ajp.153.5.714

Reuter-Lorenz, P. A. (2002). New visions of the agingmind and brain.Trends Cogn.

Sci. 6, 394–400. doi: 10.1016/s1364-6613(02)01957-5

Righi, G., Tierney, A. L., Tager-Flusberg, H., and Nelson, C. A. (2014).

Functional connectivity in the first year of life in infants at risk

for autism spectrum disorder: an EEG study. PLoS ONE 9:e105176.

doi: 10.1371/journal.pone.0105176

Seeck, M., Koessler, L., Bast, T., Leijten, F., Michel, C., Baumgartner, C., et al.

(2017). The standardized EEG electrode array of the IFCN. Clin. Neurophysiol.

128, 2070–2077. doi: 10.1016/j.clinph.2017.06.254

Shim, M., Lee, S.-H., and Hwang, H.-J. (2021). Inflated prediction accuracy of

neuropsychiatric biomarkers caused by data leakage in feature selection. Sci.

Rep. 11, 1–7. doi: 10.1038/s41598-021-87157-3

Sikdar, D., Roy, R., and Mahadevappa, M. (2018). Epilepsy and seizure

characterisation by multifractal analysis of EEG subbands. Biomed. Signal

Process. Control 41, 264–270. doi: 10.1016/j.bspc.2017.12.006

Sporns, O., Honey, C. J., and Kötter, R. (2007). Identification and classification of

hubs in brain networks. PLoS One 2:e1049. doi: 10.1371/journal.pone.0001049

Stam, C. J., Nolte, G., and Daffertshofer, A. (2007). Phase lag index: assessment

of functional connectivity from multi channel EEG and MEG with

diminished bias from common sources. Hum. Brain Map. 28, 1178–1193.

doi: 10.1002/hbm.20346

Stam, C. J., and Van Dijk, B. (2002). Synchronization likelihood: an unbiased

measure of generalized synchronization in multivariate data sets. Phys. D

Nonlin. Phenomena 163, 236–251. doi: 10.1016/S0167-2789(01)00386-4

Takahashi, T. (2013). Complexity of spontaneous brain activity in mental

disorders. Progr. Neuro Psychopharmacol. Biol. Psychiatry 45, 258–266.

doi: 10.1016/j.pnpbp.2012.05.001

Takahashi, T., Cho, R. Y., Mizuno, T., Kikuchi, M., Murata, T., Takahashi,

K., et al. (2010). Antipsychotics reverse abnormal EEG complexity in

drug-naive schizophrenia: a multiscale entropy analysis. Neuroimage 51, 173–

182. doi: 10.1016/j.neuroimage.2010.02.009

Takahashi, T., Cho, R. Y., Murata, T., Mizuno, T., Kikuchi, M., Mizukami,

K., et al. (2009). Age-related variation in EEG complexity to photic

stimulation: a multiscale entropy analysis. Clin. Neurophysiol. 120, 476–483.

doi: 10.1016/j.clinph.2008.12.043

Takahashi, T., Goto, T., Nobukawa, S., Tanaka, Y., Kikuchi, M., Higashima,

M., et al. (2018). Abnormal functional connectivity of high-frequency

rhythms in drug-naïve schizophrenia. Clin. Neurophysiol. 129, 222–231.

doi: 10.1016/j.clinph.2017.11.004

Takahashi, T., Yamanishi, T., Nobukawa, S., Kasakawa, S., Yoshimura,

Y., Hiraishi, H., et al. (2017). Band-specific atypical functional

connectivity pattern in childhood autism spectrum disorder.

Clin. Neurophysiol. 128, 1457–1465. doi: 10.1016/j.clinph.2017.

05.010

Takahashi, T., Yoshimura, Y., Hiraishi, H., Hasegawa, C., Munesue,

T., Higashida, H., et al. (2016). Enhanced brain signal variability

in children with autism spectrum disorder during early

childhood. Hum. Brain Map. 37, 1038–1050. doi: 10.1002/hbm.

23089

Ueda, R., Takeichi, H., Kaga, Y., Oguri, M., Saito, Y., Nakagawa,

E., et al. (2020). Atypical gamma functional connectivity pattern

during light sleep in children with attention deficit hyperactivity

disorder. Brain Develop. 42, 129–139. doi: 10.1016/j.braindev.2019.

11.001

Varela, F., Lachaux, J.-P., Rodriguez, E., and Martinerie, J.

(2001). The brainweb: phase synchronization and large-scale

integration. Nat. Rev. Neurosci. 2, 229–239. doi: 10.1038/350

67550

Vu, M.-A. T., Adalı, T., Ba, D., Buzsáki, G., Carlson, D., Heller, K.,

et al. (2018). A shared vision for machine learning in neuroscience.

J. Neurosci. 38, 1601–1607. doi: 10.1523/JNEUROSCI.0508-1

7.2018

Wendt, H., and Abry, P. (2007). Multifractality tests using bootstrapped wavelet

leaders. IEEE Trans. Signal Process. 55, 4811–4820. doi: 10.1109/TSP.2007.8

96269

Whitham, E. M., Lewis, T., Pope, K. J., Fitzgibbon, S. P., Clark, C. R.,

Loveless, S., et al. (2008). Thinking activates EMG in scalp electrical

recordings. Clin. Neurophysiol. 119, 1166–1175. doi: 10.1016/j.clinph.2008.

01.024

Whitham, E. M., Pope, K. J., Fitzgibbon, S. P., Lewis, T., Clark, C. R.,

Loveless, S., et al. (2007). Scalp electrical recording during paralysis:

quantitative evidence that EEG frequencies above 20 Hz are contaminated

by EMG. Clinical neurophysiology 118, 1877–1888. doi: 10.1016/j.clinph.2007.

04.027

Yang, A. C., and Tsai, S.-J. (2013). Is mental illness complex?

from behavior to brain. Progr. Neuro Psychopharmacol.

Biol. Psychiatry 45, 253–257. doi: 10.1016/j.pnpbp.2012.

09.015

Yu, M., Gouw, A. A., Hillebrand, A., Tijms, B. M., Stam, C. J., van Straaten,

E. C., et al. (2016). Different functional connectivity and network topology

in behavioral variant of frontotemporal dementia and Alzheimer’s disease: an

EEG study. Neurobiol. Aging 42, 150–162. doi: 10.1016/j.neurobiolaging.2016.

03.018

Zorick, T., Landers, J., Leuchter, A., and Mandelkern, M. A.

(2020). EEG multifractal analysis correlates with cognitive

Frontiers in Aging Neuroscience | www.frontiersin.org 15 February 2022 | Volume 14 | Article 793298

https://doi.org/10.1186/1743-0003-9-47
https://doi.org/10.1038/nrn3061
https://doi.org/10.1371/journal.pcbi.1000106
https://doi.org/10.3389/fnsys.2011.00090
https://doi.org/10.1016/j.clinph.2010.03.025
https://doi.org/10.1002/mrm.25853
https://doi.org/10.1016/j.neuroimage.2018.12.008
https://doi.org/10.1016/j.cnsns.2010.04.036
https://doi.org/10.3389/fpsyt.2020.00255
https://doi.org/10.1007/s11571-018-9509-x
https://doi.org/10.3389/fnhum.2020.583049
https://doi.org/10.1016/s0013-4694(97)00066-7
https://doi.org/10.1162/jocn_a_00269
https://doi.org/10.1176/ajp.153.5.714
https://doi.org/10.1016/s1364-6613(02)01957-5
https://doi.org/10.1371/journal.pone.0105176
https://doi.org/10.1016/j.clinph.2017.06.254
https://doi.org/10.1038/s41598-021-87157-3
https://doi.org/10.1016/j.bspc.2017.12.006
https://doi.org/10.1371/journal.pone.0001049
https://doi.org/10.1002/hbm.20346
https://doi.org/10.1016/S0167-2789(01)00386-4
https://doi.org/10.1016/j.pnpbp.2012.05.001
https://doi.org/10.1016/j.neuroimage.2010.02.009
https://doi.org/10.1016/j.clinph.2008.12.043
https://doi.org/10.1016/j.clinph.2017.11.004
https://doi.org/10.1016/j.clinph.2017.05.010
https://doi.org/10.1002/hbm.23089
https://doi.org/10.1016/j.braindev.2019.11.001
https://doi.org/10.1038/35067550
https://doi.org/10.1523/JNEUROSCI.0508-17.2018
https://doi.org/10.1109/TSP.2007.896269
https://doi.org/10.1016/j.clinph.2008.01.024
https://doi.org/10.1016/j.clinph.2007.04.027
https://doi.org/10.1016/j.pnpbp.2012.09.015
https://doi.org/10.1016/j.neurobiolaging.2016.03.018
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ando et al. Neural Network Activity in Aging

testing scores and clinical staging in mild cognitive impairment.

J. Clin. Neurosci. 76, 195–200. doi: 10.1016/j.jocn.2020.

04.003

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Ando, Nobukawa, Kikuchi and Takahashi. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 16 February 2022 | Volume 14 | Article 793298

https://doi.org/10.1016/j.jocn.2020.04.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

	Alteration of Neural Network Activity With Aging Focusing on Temporal Complexity and Functional Connectivity Within Electroencephalography
	1. Introduction
	2. Materials and Methods
	2.1. Participants
	2.2. EEG Recordings
	2.3. Multi-Fractal Analysis
	2.4. Multi-Scale Entropy Analysis
	2.5. Phase Lag Index Analysis
	2.6. Statistical Analysis

	3. Results
	3.1. Multi-Fractal Analysis
	3.2. Multi-Scale Entropy Analysis
	3.3. Phase Lag Index Analysis
	3.4. Correlation Analysis Between Complexity and Functional Connectivity
	3.5. ROC Curve Analysis

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


