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Purpose: This study aimed to investigate the microbiological characteristics of clinically isolated Staphylococcus aureus with 
different hemolytic phenotypes in China.
Materials and Methods: Using the three-point inoculation method, the hemolytic phenotypes of 1295 clinically isolated S. aureus 
strains were detected and categorized. Antimicrobial susceptibility testing of all strains was performed using a VITEK 2 Compact 
System. After sample size matching, plasma coagulase activity, catalase activity, mRNA expression of hemolysin genes (hla, hlb, hlc, 
and hld), biofilm formation, growth kinetics, inflammatory response of macrophages and cytotoxicity of S. aureus with different 
hemolytic phenotypes using the rabbit plasma kit, the catalase test on slides, qRT-PCR, crystal violet staining, the microcultivation 
assay, the ELISA kits, and the CCK-8 assay, respectively.
Results: Seven categories of hemolytic phenotypes were identified. Accordingly, strains were categorized into seven different groups, 
including S. aureus with complete hemolytic phenotype (SCHP), S. aureus with weak hemolytic phenotype (SWHP), S. aureus with 
incomplete hemolytic phenotype 1 (SIHP-1), SIHP-2, SIHP-3, SIHP-4 and SIHP-5, the last three of which were reported for the first 
time. Except for the hemolytic phenotype, all seven groups differed in clinical isolation rates, antibiotic resistance profile, plasma 
coagulase activity, mRNA expression of hemolysin genes, biofilm formation, growth kinetics, inflammatory response of macrophages, 
and cytotoxicity.
Conclusion: S. aureus with different hemolytic phenotypes have distinctive microbiological characteristics. Clinical microbiologists 
need to be vigilant about the hemolytic phenotypes when culturing S. aureus strains, and actively enhance communication with 
clinicians to optimize the treatment of infection.
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Introduction
Staphylococcus aureus is a global opportunistic pathogen,1 causing infections ranging from minor skin abscesses to life- 
threatening septicemia.2 Of note, methicillin-resistant S. aureus (MRSA) is the most clinically important due to its high 
mortality rate.3 The pathogenicity of S. aureus is determined by several virulence factors, including adherence, 
colonization, immune evasion, tissue injury, and toxin production. Hemolysin is one of the most important toxins. 
Specifically, S. aureus produces at least four hemolysins, including α-hemolysin, β-hemolysin, γ-hemolysin, and δ- 
hemolysin. Their combined effects destroy the red blood cell membrane and form the complete transparent hemolytic 
ring on blood agar plates.4
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Regardless of whether in vivo or in vitro, S. aureus frequently encounters sub-minimum inhibitory concentrations (sub- 
MICs) of antibiotics. This exposure is attributed to a variety of factors, including the misuse of antibiotics, the presence of 
diffusion barriers, the complexity of pharmacokinetics, the release of waste products, and the use of antibiotics in livestock.5 

Furthermore, S. aureus can develop phenotypic changes and even genetic changes to adapt to the stress environments 
containing sub-MICs of antibiotics.6 Indeed, different antibiotics have different effects on S. aureus.7 For example, previous 
studies have shown that sub-MICs of β-lactam antibiotics or fluoroquinolones upregulate the expression of the hla gene 
encoding α-hemolysin, while fusidic acid, clindamycin, macrolides, and aminoglycosides downregulate the expression.8–10 

Additionally, the sub-MICs of ciprofloxacin or trimethoprim can promote the production of β-hemolysin by excising hlb- 
converting prophage.11 Although there is currently no relevant research, it is reasonable to speculate that γ-hemolysin and δ- 
hemolysin may also be affected by sub-MICs of antibiotics. Consequently, the actual hemolytic phenotypes of S. aureus 
should probably be diverse, especially for clinically isolated strains. Wherein, S. aureus with complete hemolytic phenotype 
(SCHP) is the most common. In contrast, S. aureus with incomplete hemolytic phenotype (SIHP) has only been described in 
a few studies.4,12–14 Through a comparative analysis, we have divided the SIHP strains into two distinct categories: SIHP-1 
and SIHP-2. On blood agar plates, SIHP-1 was characterized by a single dark and opaque incomplete hemolytic ring 
surrounding the colony. By comparison, SIHP-2 displayed a dual hemolytic rings phenotype, featuring an inner smaller 
and transparent complete hemolytic ring encircled by an outer larger and opaque incomplete hemolytic ring. Additionally, the 
S. aureus small colony variant (SCV) has a small, colorless, and weakly hemolytic colony.15

In recent years, three novel hemolytic phenotypes of S. aureus have been discovered in our hospital, and they are 
significantly different from the previously known phenotypes. Therefore, elucidating the microbiological characteristics 
of S. aureus strains with different hemolytic phenotypes is of paramount importance for advancing our understanding of 
their clinical and pathogenic implications. This study reveals that S. aureus strains with different hemolytic phenotypes 
show variations in clinical isolation rates, antibiotic resistance profile, plasma coagulase activity, mRNA expression of 
hemolysin genes, biofilm formation, growth kinetics, inflammatory response of macrophages, and cytotoxicity.

Materials and Methods
Bacterial Strains and Culture Conditions
After excluding strains from repeated sources, a total of 1295 S. aureus strains were isolated from patients at the Second 
Affiliated Hospital of Anhui Medical University from July 2021 to August 2023. The composition of the departments 
where the strains were isolated is shown in Table 1. The specimens included 117 blood samples (9.03%), 45 urine 
samples (3.47%), 80 interstitial fluids samples (6.18%), 442 secretion samples (34.13%), 570 sputa samples (44.02%) 
and 41 other samples (3.17%).

S. aureus strains were stored in 15% glycerol broth at −80°C and subcultured before being used for any experiment. 
S. aureus strains were grown under shaking at 220 rpm in Luria-Bertani (LB) broth (Sangon Biotech, Shanghai, China) or 
on Columbia sheep blood agar plates (BAP; Tianda, Hefei, China). The hemolytic phenotype of the bacteria was detected 
by the three-point inoculation method on BAP which were subsequently incubated at 35°C in an atmosphere containing 
5% CO2 (v/v) for 20 hours and then refrigerated at 4°C for 20 hours, according to the literature method with minor 
modifications.4,12 Before and after refrigeration, the changes in the hemolytic zones were photographically recorded. 
Accordingly, S. aureus strains were categorized into 7 groups. The strains were identified as S aureus by matrix-assisted 
laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS; microflex LT; Bruker, Bremen, 
Germany) and 16S rRNA amplicon sequencing. S. aureus ATCC29213, S. aureus ATCC25923, Escherichia coli 
ATCC25922, and Staphylococcus epidermidis acted as quality control strains.

Detection of Hemolytic Phenotype
The hemolytic phenotype was detected by the three-point inoculation method. Firstly, the concentrations of the S. aureus 
strain suspensions were standardized to 3.0×108 CFU/mL. Second, each S. aureus strain was point-inoculated on the 
surface of BAP with a spacing of 1.5 cm, forming an equilateral triangle. A volume of 0.5 μL suspension was applied per 
point. Thirdly, the plates were allowed to dry on a laminar flow bench for 10 minutes. Fourthly, the plates were incubated 
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at 35°C in an atmosphere containing 5% CO2 (v/v) for 20 hours. Finally, the plates were refrigerated at 4°C for 20 hours. 
The resulting hemolytic zones around the colonies were photographically recorded. The S. aureus strains were then 
categorized into distinct groups based on the changes observed in the hemolytic zones.

Antimicrobial Susceptibility Testing
Based on the broth microdilution method and the Clinical and Laboratory Standards Institute guidelines (CLSI M100- 
S29), antimicrobial susceptibility testing of S. aureus strains was performed using a VITEK 2 Compact System and 
a VITEK 2 AST-GP639 test kit (bioMerieux, Inc., Durham, NC, USA). Fifteen antibiotics were tested, including 
penicillin (PEN), oxacillin (OXA), gentamicin (GEN), rifampicin (RIF), levofloxacin (LVX), moxifloxacin (MFX), 
erythromycin (ERY), clindamycin (CLI), daptomycin (DAP), trimethoprim/sulfamethoxazole (SXT), linezolid (LNZ), 
vancomycin (VAN), teicoplanin (TEC), tigecycline (TGC), and ceftaroline (CTL). The MRSA status was determined 
using the minimum inhibitory concentration (MIC) of two antibiotics: oxacillin MIC >4 μg/mL, and cefoxitin MIC >8 
μg/mL. Furthermore, the cefoxitin (30 μg) disk diffusion test was performed on the Mueller-Hinton agar plate (MH; 
Tianda, Hefei, China) and incubated at 37°C for 18 hours to verify MRSA.

Detection of Plasma Coagulase Activity
The coagulase test was performed with rabbit plasma (Catalog No. HB4117-4, Hopebio, Qingdao, China). Each vial 
containing freeze-dried rabbit plasma was supplemented with 800 μL of an overnight bacterial culture. The mixture was 
gently mixed until completely dissolved and then incubated at 37°C. Monitored the outcomes at 30-minute intervals for 
a continuous period of 6 hours. If a clot was observed when the vial was tilted or inverted, a positive result was recorded. 
Otherwise, with continued observation for 24 hours, the non-clotting test was considered negative. Based on the clot 
volume (Vclot) and the original volume (Voriginal), the intensity of the plasma coagulase reaction was categorized as 

Table 1 Constituent Ratios of Departments Where 
Strains Were Isolated

Department Strains, n (%)

Neurology 71 (5.48)

Orthopedic 88 (6.80)

Pediatrics 57 (4.40)
Gastroenterology 12 (0.93)

Out-patient 25 (1.93)

Infectious diseases 57 (4.40)
Oncology 37 (2.86)

Intensive Care Unit 307 (23.71)
General surgery 79 (6.10)

Respiration 81 (6.25)

Plastic surgery 68 (5.25)
Cerebral surgery 49 (3.78)

Urology 25 (1.93)

Endocrinology 53 (4.09)
Dermatology 28 (2.16)

Hematology 57 (4.40)

Nephrology 63 (4.86)
Obstetrics and Gynecology 28 (2.16)

Cardiology 23 (1.78)

Cardiovascular Surgery 23 (1.78)
Rheumatism and Immunological Disease 17 (1.31)

Others 47 (3.63)

Total 1295 (100.00%)
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negative reaction (no clot was observed), weak reaction (Vclot < 1/2 Voriginal), moderate reaction (1/2 Voriginal ≤ Vclot < 
Voriginal) or strong reaction (Vclot = Voriginal).

Detection of Catalase Activity
The catalase activity of S. aureus with different hemolytic phenotypes was detected by slide catalase test with 3% (v/v) 
hydrogen peroxide. In brief, the visibility of effervescence confirmed the catalase-positive test for this strain. Conversely, 
no effervescence confirmed a negative catalase test.

Extraction of RNA
The bacteria were grown overnight on BAP. Sterile disposable plastic loops were used to transfer an appropriate number 
of colonies into 2-mL polypropylene snap-cap liquid nitrogen grinding tubes (Jingxin, Shanghai, China). Each contained 
1 mL of sterile double-distilled water. The bacterial pellets were collected by centrifugation at 15 000g for 5 minutes. 
Subsequently, the grinding tubes were quickly immersed in liquid nitrogen and ground for 5 minutes using a freeze 
grinder (Jingxin, Shanghai, China). After grinding, the tubes were stored at −80°C.

An RNA extraction kit (Catalog No. B518625, Sangon Biotech, Shanghai, China) was used to extract total RNA. 
According to the instructions of the kit and the protocol of Cold Spring Harbor Laboratory Press,16 the quantity and 
quality of extracted RNA were determined by spectrophotometry using the NanoDrop spectrophotometer (Thermo Fisher 
Scientific, MA, USA). Subsequently, residual DNA was removed and complementary DNA (cDNA) was synthesized 
using a ToloScript RT EasyMix kit (Catalog No. 22106, TOLO Biotech, Shanghai, China) with gDNA eraser. cDNA 
products were stored at −80°C until further analysis.

Detection of the mRNA Levels of Four Hemolysin Genes
Specific primers were designed using the NCBI Primer-BLAST. cDNA from five strains of each group was used as 
a template for quantitative real-time PCR (qRT-PCR) and the specific primers were shown in Table 2. Briefly, qRT-PCR 
was performed using a SYBR Green Master mix kit (Catalog No. 22204, TOLO Biotech, Shanghai, China). The reaction 
conditions were as follows: pre-denaturation at 95°C for 30 seconds, followed by 40 cycles of 10s at 95 °C, and 30s at 60 
°C. Reactions were performed in a MicroAmp Optical 96-well reaction plate using QuantStudio 5 (Applied 
BiosystemsTM, Thermo Fisher Scientific, MA, USA). Cycling thresholds (Ct) were determined by automated threshold 
analysis. All qRT-PCR assays were repeated three times. Messenger RNA (mRNA) levels of four hemolysin genes (hla, 
hlb, hlc, and hld) were calculated by normalizing to the housekeeper gene gyrB (DNA gyrase subunit B). The data were 
analyzed using the 2−ΔΔCt method.

Biofilm Crystal Violet Staining
The biofilm formation was detected using the crystal violet (CV) staining method, which provided a semi-quantitative 
measurement of biofilm formation, as described previously.17 Briefly, overnight cultures were diluted in LB broth to 

Table 2 Primers Used in This Study

Primer name GenBank Number Primer Sequences (5’-3’) Product Size Primer Source

hla-F KT279561 TGGTTTAGCCTGGCCTTCAG 190 bp This study

hla-R ATTTGCACCAATAAGGCCGC
hlb-F EF690812 GGGGCAATATAAACGCGCTG 167 bp This study

hlb-R CTGATTGAGAACGGCCGAGT

hlc-F D42143 TTGCACAAGACCCAACTGGT 173 bp This study
hlc-R AGCATCCATGTTTCTGCCGT

hld-F AB043555 GGAAGGAGTGATTTCAATGGCA 88 bp This study

hld-R AGTGAATTTGTTCACTGTGTCG
gyrB-F M86227 ACGAAGGTGGTACGCATGAA 278 bp This study

gyrB-R TGTACGTGCGACTTGTGGAT
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obtain a final concentration of 1.0×106 CFU/mL. The diluted cultures (200 μL/well) were aliquoted into a 96-well flat- 
bottom microplate (Costar, Corning, ME, USA). Biofilms were allowed to grow for 36 hours at 37°C. Thereafter, the 
supernatant was removed from each well and washed three times with water to remove loosely adherent bacteria. 
Afterward, 200 μL of 2.5% glutaraldehyde was added to each well for 30 minutes to fix the biofilm. The wells were 
washed with water after the fixative was carefully aspirated. Then, 200 μL of 0.2% (wt/vol) CV solution was added to 
each well and stained for 15 minutes. After removal of the CV solution, the biofilms were washed with water until the 
removed liquid appeared clear. Subsequently, 200 μL of 30% acetic acid solution was added to each well for 20 minutes 
to allow the dye that had entered the biofilm to dissolve completely. To quantify biofilm formation, the absorbance at 585 
nm was measured using a microplate spectrophotometer (Spectra max i3x, Molecular Devices, CA, USA). Five 
biological replicates were analyzed for each strain. The optical density (OD585) values from the wells that had not 
been inoculated with bacteria were used as negative controls. In accordance with a previous study, the cut-off value for 
optical density (ODc) to determine a biofilm producer was defined as twice the value of the negative control.18 Based on 
the OD585 values, the strains were categorized as non-biofilm producers (OD585 < ODc), weak biofilm producers (ODc ≤ 
OD585 < 2ODc) or strong biofilm producers (OD585 ≥ 2ODc).

Growth Kinetic Assays
Except for S. aureus ATCC29213 and S. aureus ATCC25923, the growth kinetics of 5 strains in each group were tested 
through the microcultivation assay as previously described.19 Briefly, the log-phase bacteria were centrifuged and 
resuspended with fresh LB broth medium to get a starting concentration of 1.0×106 CFU/mL. Subsequently, 200 μL 
of bacterial suspension was transferred to each well of Costar clear polystyrene 96-well flat-bottom microplate (Corning, 
ME, USA). Two biological replicates were analyzed for each strain. Then, the microplate was incubated at 37 °C. 
Bacterial growth kinetics was recorded for 30.5 hours by measuring the OD600, using a microplate spectrophotometer 
(Spectra max i3x, Molecular Devices, CA, USA). The data were analyzed using the Origin 2021 software (Origin Lab 
Corporation, Northampton, MA, USA) to generate growth curves.

Quantification of Cytokines Secretion from S. aureus Stimulated Macrophages
The culture supernatants of mouse macrophage RAW264.7 cells stimulated by S. aureus strains were collected. The 
levels of cytokines (IL-1β, IL-6, and TNF-α) were determined by using ELISA kits (Catalog No. CSB-E08054m, 
CSB-E04639m, CSB-E04741m; Cusabio, Wuhan, China) according to the manufacturer’s instructions. Briefly, cells 
(1.0×105 cells/mL, complete RPMI 1640 medium) were seeded in a 48-well Transwell plate (Costar, Corning, ME, 
USA), 1 mL per well, followed by incubation with 100 μL of LB broth or logarithmic phase bacteria (1.8×108 CFU/ 
mL) at 37°C for 24 hours. Then, the plate was centrifuged and the supernatant was collected. Successively, three 
100 μL aliquots of each supernatant were taken to determine the concentrations of cytokines. Finally, the 
absorbance was measured at 450 nm using a microplate spectrophotometer (Spectra max i3x, Molecular Devices, 
CA, USA).

Cytotoxicity Assay
The cytotoxicity of S. aureus strains on mouse macrophage RAW264.7 cells (ATCC, Manassas, VA, USA) was evaluated 
by cell counting kit-8 (CCK8; Catalog No. C0037, Beyotime Biotech, Shanghai, China) assay according to the 
instructions. Briefly, cells (1 × 105 cells/mL) were seeded in a 48-well Transwell plate (Costar, Corning, ME, USA), 
1 mL per well, followed by incubation with 100 μL of LB broth or logarithmic phase bacteria (1.8×108 CFU/mL) at 37°C 
for 24 hours. Then, the plate was centrifuged and the supernatant was discarded. Successively, 40 μL of CCK-8 solution 
was mixed with 400 μL of Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal calf serum, added into 
each well, and incubated in the dark for 1 hour. Finally, the absorbance was measured at 450 nm using a microplate 
spectrophotometer (Spectra max i3x, Molecular Devices, CA, USA). The media without cells and bacteria was a blank 
control.
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Statistical Analyses
One-way ANOVA, Kruskal–Wallis, and Chi-squared test were used for the statistical analysis. Error bars on the figures 
represent standard deviations (SD) of the mean. Statistical significance was defined as P < 0.05. All the statistical 
analyses were performed using SPSS 18.0 software (SPSS Inc., USA).

Results
Novel Hemolytic Phenotypes of S. aureus Strains on Sheep Blood Agar Plates
According to the morphological characteristics of the hemolytic ring around the colony, a total of 7 hemolytic phenotypes 
of S. aureus were categorized in the study, including SCHP, S. aureus with weak hemolytic phenotype (SWHP), and 5 
subtypes of SIHP (SIHP-1, SIHP-2, SIHP-3, SIHP-4, and SIHP-5). Among the 1295 clinical isolates, 1036 (80.00%) 
strains were classical SCHP, 42 (3.24%) strains were SWHP, 20 (1.54%) strains were SIHP-1, 25 (1.93%) strains were 
SIHP-2, 26 (2.00%) strains were SIHP-3, 136 (10.50%) strains were SIHP-4, and 10 (0.77%) strains were SIHP-5.

For classical SCHP, a transparent complete hemolytic ring (Φ=12.0 ± 0.3 mm) with a hazy edge (Φ=19.6 ± 0.9 mm) was 
observed around the colony (Figure 1A). For SWHP, almost no visible hemolytic ring was observed around the colony 
(Figure 1B). For SIHP-1, a dark and opaque incomplete hemolytic ring (Φ=11.1 ± 0.3 mm) was observed around the colony 
(Figure 1C). For SIHP-2, an inner smaller and transparent complete hemolytic ring (Φ=7.7 ± 0.4 mm) encircled by an outer 
larger and opaque incomplete hemolytic ring (Φ=18.1 ± 0.7 mm) was observed around the colony (Figure 1D). For SIHP-3, 
a big translucent incomplete hemolytic ring (Φ=20.0 ± 0.6 mm) was observed around the colony (Figure 1E). For SIHP-4, an 
inner smaller and transparent complete hemolytic ring (Φ=8.2 ± 0.3 mm) encircled by an outer larger and translucent 
incomplete hemolytic ring (Φ=18.6 ± 0.4 mm) was observed around the colony (Figure 1F). For SIHP-5, before refrigeration, 
the dual hemolytic rings phenotype resembled SIHP-4; however, after refrigeration, an almost transparent incomplete 
hemolytic ring (Φ=22.0 ± 0.3 mm) emerged on the outer ring (Φ=17.6 ± 0.1 mm) (Figure 1G). Additionally, ATCC29213 
(Figure 1H) and ATCC25923 (Figure 1I) were similar to SCHP and SIHP-2, respectively. Interestingly, for all 5 subtypes of 
SIHP, a transparent linear hemolytic enhanced zone formed at the junction of the two neighboring incomplete hemolytic rings.

Figure 1 Hemolytic phenotype comparative analysis of S. aureus on sheep blood agar plates. 
Notes: (A) S. aureus with complete hemolytic phenotype (SCHP, n = 1036). (B) S. aureus with weak hemolytic phenotype (SWHP, n = 42). (C) S. aureus with incomplete 
hemolytic phenotype 1 (SIHP-1, n = 20). (D) S. aureus with incomplete hemolytic phenotype 2 (SIHP-2, n = 25). (E) S. aureus with incomplete hemolytic phenotype 3 (SIHP- 
3, n = 26). (F) S. aureus with incomplete hemolytic phenotype 4 (SIHP-4, n = 136). (G) S. aureus with incomplete hemolytic phenotype 5 (SIHP-5, n = 10). (H) S. aureus 
ATCC29213. (I) S. aureus ATCC25923.
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Antibiotic Resistance of S. aureus Strains
The antibiotic resistance profile of S. aureus with different hemolytic phenotypes was demonstrated in Figure 2. It shows 
that S. aureus strains presented high resistance to PEN (91.20%), OXA (38.07%), ERY (47.26%), and CLI (44.86%) 
when compared with the other antibiotics tested such as LVX (10.81%), MFX (8.88%), GEN (4.25%), DAP (1.24%), 
RIF (0.46%), SXT (6.49%), LZD (0.00%), VAN (0.00%), TEC (0.00%), TGC (0.00%), and CTL (0.00%).

For S. aureus with different hemolytic phenotypes, antibiotic resistance was observed most frequently to PEN. All 
SWHP and SIHP-5 were resistant to PEN (100%). Statistical analysis showed that SCHP has significantly lower 
resistance rates to OXA (32.14%) than SIHP-1 (80.00%), SIHP-2 (64.00%), SIHP-4 (67.65%), and SIHP-5 (80.00%); 
lower resistance rates to GEN (3.57%) than SIHP-3 (23.08%); lower resistance rates to LEV (8.98%) and MXF (7.14%) 
than SIHP-1 (35.00% and 30.00%, respectively) and SIHP-3 (both 34.62%); lower resistance rates to ERY (44.40%) and 
CLI (41.60%) than SIHP-4 (60.29% and 58.09%, respectively). Similarly, SWHP has significantly lower resistance rates 
to OXA (38.10%) and ERY (33.33%) than SIHP-1 and SIHP-4. In addition, SIHP-3 has significantly higher resistance 
rates to GEN and SXT (19.23%) than SIHP-4 (2.94% and 2.21%, respectively).

Figure 2 Antibiotic resistance profile of 1295 S. aureus with different hemolytic phenotypes. 
Notes: (A) Antimicrobial characteristics of S. aureus with different hemolytic phenotypes in terms of 8 antibiotics. (B) Antimicrobial characteristics of S. aureus with 
different hemolytic phenotypes in terms of 7 antibiotics. *Statistically significant versus S. aureus with complete hemolytic phenotype (SCHP); #Statistically significant versus 
S. aureus with weak hemolytic phenotype (SWHP); &Statistically significant versus S. aureus with incomplete hemolytic phenotype 3 (SIHP-3). 
Abbreviations: CLI, clindamycin; CTL, ceftaroline; DAP, daptomycin; ERY, erythromycin; GEN, gentamicin; LNZ, linezolid; LVX, levofloxacin; MFX, moxifloxacin; OXA, 
oxacillin; PEN, penicillin; RIF, rifampicin; SXT, trimethoprim/sulfa-methoxazole; TEC, teicoplanin; TGC, tigecycline; VAN, vancomycin.
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Plasma Coagulase Activity of S. aureus Strains
Considering the huge differences in the number of S. aureus with different hemolytic phenotypes, 5 strains were 
randomly selected from each group for the detection of plasma coagulase activity. In SCHP, 2 negative reactions, and 
1 weak reaction. In SIHP-2, 2 moderate reactions. In SIHP-3, 1 moderate reaction. In SIHP-5, 1 weak reaction. The rest 
S. aureus was all strong reaction.

Catalase Activity of S. aureus Strains
The catalase activity of S. aureus with different hemolytic phenotypes was positive and there was no difference in 
activity intensity.

Relative mRNA Expression Levels of Four Hemolysin Genes
Fold changes of four hemolysin genes (hla, hlb, hlc, and hld) expression were calculated using the 2−ΔΔCt method. Data 
represented gyrB-normalized target gene expression level relative to that in S. aureus ATCC25923 which was considered 
1. As shown in Figure 3, the transcriptional expression levels of four hemolysin genes among S. aureus with different 

Figure 3 Comparison of the transcriptional expression levels of four hemolysin genes among S. aureus with different hemolytic phenotypes. 
Notes: (A) Transcriptional expression levels of hla. (B) Transcriptional expression levels of hlb. (C) Transcriptional expression levels of hlc. (D) Transcriptional expression 
levels of hld. Bars indicate the standard deviations from the mean. &Statistically significant versus S. aureus with complete hemolytic phenotype (SCHP); *Statistically 
significant versus S. aureus with incomplete hemolytic phenotype 4 (SIHP-4); #Statistically significant versus S. aureus with incomplete hemolytic phenotype 5 (SIHP-5); 
ψStatistically significant versus S. aureus ATCC29213; $Statistically significant versus S. aureus ATCC25923.
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hemolytic phenotypes were significantly different (Kruskal–Wallis test: hla, P = 0.036; hlb, P < 0.001; hlc, P = 0.005; 
and hld, P < 0.001). The detailed results are described below. Firstly, as for hla, SIHP-4 was significantly increased 
7.0-folds to ATCC25923, 4.6-folds to SCHP, 3.3-folds to SWHP, 5.2-folds to SIHP-2, and 4.6-folds to SIHP-3. 
Moreover, SIHP-5 significantly increased by 4.2-folds to ATCC25923, and 3.1-folds to SIHP-2. Secondly, as for hlb, 
SIHP-4 was significantly increased 5.3-folds to SCHP, 4.4-folds to SWHP, 3.1-folds to SIHP-1, 5.4-folds to SIHP-2, and 
4.9-folds to SIHP-3. Furthermore, SCHP, SWHP, SIHP-1, SIHP-2, SIHP-3, and SIHP-5 were significantly suppressed by 
8.7-, 7.2-, 5.1-, 8.9-, 8.1-, and 4.6-folds compared with ATCC25923. Similarly, SCHP, SWHP, SIHP-2, and SIHP-3 were 
significantly suppressed by 3.3-, 2.7-, 3.4-, and 3.1-folds compared with ATCC25913. Thirdly, as for hlc, SCHP was 
significantly suppressed by 6.0-folds to SWHP, 42.1-folds to SIHP-1, 9.1-folds to SIHP-3, 7.6-folds to ATCC29213, and 
12.9-folds to ATCC25923. Additionally, SIHP-5 was significantly suppressed by 17.7- and 5.4-folds compared with 
SIHP-1 and ATCC25923. Similarly, SIHP-2 was significantly suppressed by 3.2-folds compared with ATCC25923. 
Fourthly, as for hld, ATCC29213 was significantly increased 39.6-folds to SWHP, 3196.7-folds to SIHP-1, 17.5-folds to 
SIHP-2, 9.0-folds to SIHP-3, and 6.7-folds to SIHP-5. In comparison, ATCC25923 significantly increased 13.4-folds to 
SWHP, 1084.6-folds to SIHP-1, and 5.9-folds to SIHP-2. Then, SCHP significantly increased 18.2-folds to SWHP, 
1469.1-folds to SIHP-1, and 8.0-folds to SIHP-2. Further, SIHP-4 significantly increased 8.3-folds to SWHP and 
668.4-folds to SIHP-1.

Biofilm Formation Analysis
Based on the OD585 values, SIHP-1 and SIHP-3 were defined as strong biofilm producers; the rest were defined as weak 
biofilm producers. Statistical results are as follows. SIHP-1 was significantly increased 2.4-folds to SCHP, 1.5-folds to 
SWHP, 1.8-folds to SIHP-2, 1.8-folds to SIHP-4, 2.1-folds to SIHP-5, and 1.9-folds to ATCC25923. Similarly, SIHP-3 
was significantly increased by 2.0-folds to SCHP, 1.8-folds to SIHP-5, and 1.6-folds to ATCC25923. In addition, 
ATCC29213 significantly increased 1.7-folds to SCHP and 1.5-folds to SIHP-5. By contrast, SCHP was significantly 
suppressed by 1.6-folds to SWHP, and 1.3-folds to SIHP-4. See Figure 4 for further details.

Growth Kinetic Characteristics
The bacterial growth kinetic experiment showed differential growth rates among S. aureus strains with different 
hemolytic phenotypes. However, SCHP, SWHP, and SIHP-1 exhibited relatively similar growth kinetics to some degree, 
because the log and stationary phase growths in the three cultures appeared comparable. The log phase growths of SIHP- 
2, SIHP-3, SIHP-5, and ATCC29213 were earlier than the above three S. aureus with different hemolytic phenotypes. 
Furthermore, the stationary phase growths of SIHP-5 and ATCC29213 were about 1.4-folds to the above three. Although 
the log phase growth of ATCC25923 was delayed, the stationary phase growth approached SIHP-5 and was second only 
to ATCC29213. It is noteworthy that, for SIHP-3 and SIHP-4, there was a crossover between the two log phase growths, 
resulting in a higher number of bacteria in the stationary phase of the latter. See Figure 5 for further details.

Inflammatory Response of Macrophages to S. aureus Strains
To compare the inflammatory responses of macrophages stimulated by S. aureus with different hemolytic phenotypes, we 
examined the pro-inflammatory cytokines in the culture supernatants. See Figure 6 for further details. Roughly speaking, 
S. aureus strains could stimulate macrophages to secrete pro-inflammatory cytokines, including IL-1β (Figure 6A), IL-6 
(Figure 6B), and TNF-α (Figure 6C). Specifically, first, SIHP-1 had significantly higher levels of IL-1β than SWHP, 
ATCC29213, and ATCC25923. Second, SIHP-1, SIHP-2, SIHP-3, SIHP-4, and SIHP-5 had higher levels of IL-6 than 
SCHP, SWHP, and ATCC25923. Moreover, SIHP-1, SIHP-2, and SIHP-3 had higher levels of IL-6 than ATCC29213. 
Third, SIHP-5 had higher levels of TNF-α than SWHP and SIHP-2. Besides, SIHP-2 had lower levels of TNF-α than 
SIHP-1 and SIHP-3.

Cytotoxicity Assay
The CCK-8 assay revealed statistically significant higher OD450 values of LB control compared with SCHP, SIHP-1, 
SIHP-2, and SIHP-4. In addition, SIHP-1 had statistically significantly lower OD450 values compared with SWHP and 
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SIHP-3. The results showed that SCHP, SIHP-1, SIHP-2, and SIHP-4 exhibited obvious cytotoxic effects on mouse 
macrophage RAW264.7 cells, reducing cell proliferation activity. Among them, SIHP-1 seemed to have the stronger 
cytotoxicity. See Figure 7 for further details.

Discussion
The present study revealed that S. aureus was found to have at least 7 hemolytic phenotypes, including SCHP, SWHP, 
SIHP-1, SIHP-2, SIHP-3, SIHP-4, and SIHP-5. To our knowledge, the latter three cannot be classified into any known 
subtypes of SIHP, and they were defined for the first time. S. aureus strains with different hemolytic phenotypes show 
variations in clinical isolation rates, antibiotic resistance profile, plasma coagulase activity, mRNA expression of 
hemolysin genes, biofilm formation, growth kinetics, inflammatory response of macrophages, and cytotoxicity. Not 
surprisingly, all S. aureus strains tested positive for catalase activity. This also reflects the fact that the genes controlling 
catalase synthesis are more conserved and stable compared to those controlling plasma coagulase synthesis.

In this study, 3.24% of strains were SWHP, 1.54% were SIHP-1, 1.93% were SIHP-2, 2.00% were SIHP-3, 10.50% 
were SIHP-4, and 0.77% were SIHP-5. Consistent with previous studies,4,13,14 the overwhelming majority of clinically 
isolated S. aureus strains were classical SCHP. By contrast, previous studies have shown that 22.60% of clinical strains 

Figure 4 Biofilm formation of S. aureus with different hemolytic phenotypes was analyzed by crystal violet (CV) staining method. 
Notes: Mean values from five biological replicates are shown. Bars indicate the standard deviations from the mean. $Statistically significant versus S. aureus with weak 
hemolytic phenotype (SWHP); *Statistically significant versus S. aureus with incomplete hemolytic phenotype 1 (SIHP-1); &Statistically significant versus S. aureus with 
incomplete hemolytic phenotype 3 (SIHP-3); ψStatistically significant versus S. aureus with incomplete hemolytic phenotype 4 (SIHP-4); #Statistically significant versus 
ATCC29213. 
Abbreviations: ODc, cut-off optical density value.
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were SWHP,20 24.62% were SIHP-2,14 and no data was provided for SIHP-1.4 Notably, besides weak hemolytic 
phenotype, the colony morphology and growth properties of SWHP included were different from previously reported 
S. aureus SCV.21 Hemolytic toxins of S. aureus can damage many mammalian cells. Normally, a bright and transparent 
complete hemolytic zone with a blurred edge around the colony on sheep BAP is suggested to be caused by α-hemolysin, 
whereas a dark and opaque incomplete hemolytic zone with a sharp edge is considered due to β-hemolysin. Furthermore, 
dark and opaque incomplete hemolytic zone with blurred edge is considered due to δ-hemolysin. However, γ-hemolysin 
cannot lead to any visible hemolytic zone. Remarkably, β-hemolysin is a hot-cold hemolysin with a sphingomyelinase 
and a biofilm ligase activity. Thus, the hemolytic activity of β-hemolysin-producing S. aureus could be enhanced by 
incubation on BAP at 35°C or 37°C, followed by cooling to 4°C. In addition, Wang et al reported that β-hemolysin can 
partially inhibit the hemolytic activity of α-hemolysin, but strongly reinforce the hemolytic activity of δ-hemolysin, 
resulting in a narrower turbid zone and a visible transparent complete hemolytic zone, respectively.22 As demonstrated in 
this study, S. aureus with different hemolytic phenotypes have distinct transcriptional expression profiles of four 
hemolysin genes, which may be the direct reason for the emergence of novel hemolytic phenotypes.

Attention must be paid to the situation in which β-hemolysin is variably produced by S. aureus, depending on the 
presence or absence of hlb-converting prophage whose insertion inactivates hlb.23 The prophage has been found in about 
90% of human clinical isolates, but only about 30% of animal isolates.24 However, the excision of the prophage could be 
promoted by chronic infections, oxidative stress, antibiotics, and temperature changes, increasing the production of β- 
hemolysin.11,25 In addition to its well-known hemolytic activity towards erythrocytes, β-hemolysin could also worsen 
infections of bovine mammary glands and keratitis in rabbits, promote neutrophilic inflammation and the vascular 
leakage of serum proteins, and play an important role in skin colonization by damaging keratinocytes.26,27 Indeed, as 
shown in this study, SIHP-4 had a relatively higher level of β-hemolysin compared to the overwhelming majority of other 
S. aureus. Interestingly, a transparent linear hemolytic enhanced zone formed between the two neighboring colonies of 
each SIHP subtype. A few previous studies have also discovered such zone,4,12–14 which is probably formed by 

Figure 5 Growth kinetics of S. aureus with different hemolytic phenotypes.
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a mechanism similar to the precipitation line in counter immunoelectrophoresis. Specifically, β-hemolysins secreted by 
two neighboring colonies met at the appropriate site, causing enhanced hemolysis.

Except for hemolytic toxins, S. aureus also produces other kinds of exotoxins, exoenzymes, cell surface-associated antigens, 
and antibiotic resistance-related molecules. The regulation of these factors in is mediated by a complex network that integrates 
environmental signals and host signals. In general, the regulatory systems include the two-component systems (AgrAC, SaeRS, 
SrrAB, and ArlRS), the cytoplasmic SarA-family regulators (SarA, MgrA, and Rot), and the alternative sigma factors (SigB and 
SigH). They work together to affect the adhesion, colonization, antibiotic resistance profile, immune evasion, intercellular 
interactions, and tissue injury capacity of S. aureus. Of these, the two-component systems are particularly important. Briefly, 
membrane-associated histidine kinase can be activated by external signals, causing its autophosphorylation and subsequent 
phosphorylation of response regulators. Upon phosphorylated, the response regulator binds to specific DNA sequence motifs and 
alters target gene expression.28 Among the two-component systems, the best studied is the accessory gene regulator (agr), which 
plays a central role in pathogenesis, senses external signals through auto-induced peptide, and encodes a quorum-sensing system 

Figure 6 Detection of cytokines secreted by macrophages stimulated with S. aureus. 
Notes: (A) S. aureus strains stimulate macrophages to secrete IL-1β. (B) S. aureus strains stimulate macrophages to secrete IL-6. (C) S. aureus strains stimulate macrophages 
to secrete TNF-α. The mean and standard deviations of five biological replicates are shown. *Statistically significant versus Luria-Bertani (LB) broth control; ψStatistically 
significant versus S. aureus ATCC29213; $Statistically significant versus S. aureus ATCC25923; §Statistically significant versus S. aureus with complete hemolytic phenotype 
(SCHP); &Statistically significant versus S. aureus with weak hemolytic phenotype (SWHP); #Statistically significant versus S. aureus with incomplete hemolytic phenotype 2 
(SIHP-2). 
Abbreviations: IL-1β, cytokines interleukin 1β; IL-6, cytokines interleukin 6; TNF-α, tumor necrosis factor α.
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that acts as a master virulence transcriptional regulator.29 To adapt quickly to changing conditions, S. aureus has evolved many 
different strategies for fine-tuning the expression of agr. Moreover, in the laboratory, spontaneous agr mutations have been 
frequently observed due to the high metabolic burden entailed by the agr autoactivation circuit.30 S. aureus strains isolated from 
clinical samples often encounter host-immune system and sub-MICs of antibiotics. As environmental and host signals, they may 
trigger the virulence regulatory system of S. aureus and alter the expression of target genes. It has been demonstrated that 
S. aureus with nonhemolytic phenotype owing to mutations in agr or other loci during infection rather than subculturing after 
isolation,20 although revertants have been found for 10% of clinical isolates.31 Similarly, the emergence and discrepant 
microbiological characteristics of S. aureus strains with different hemolytic phenotypes in this study are most probably due to 
the same underlying reason.

Generally, the primary mechanisms of antibiotic resistance in S. aureus involve a variety of molecules including blaZ- 
encoded penicillinases, mecA-encoded penicillin-binding protein 2a (PBP2a), mecC-encoded PBP2c, fem-encoded 
enzymes related to cell wall synthesis, llm-encoded lipophilic membrane protein, fmtA-encoded penicillin-recognizing 
protein (PRP), and YsxC.32–35 In the future, we plan to detect these antibiotic resistance-related genes in S. aureus with 
different hemolytic phenotypes, which will facilitate a more nuanced understanding of the genetic underpinnings of 
antibiotic resistance in this pathogenic bacterium, thereby informing the development of targeted therapeutic 
interventions.

Conclusion
Taken together, S. aureus with different hemolytic phenotypes have distinctive microbiological characteristics. Due to the 
difficulty in eliminating the irrational use of antibiotics, clinical microbiologists need to be vigilant about the hemolytic 

Figure 7 Cytotoxicity of S. aureus with different hemolytic phenotypes on RAW264.7 cells was evaluated by cell counting kit-8 (CCK8). 
Notes: Bars indicate the standard deviations from the mean. *Statistically significant versus Luria-Bertani (LB) broth control; #Statistically significant versus S. aureus with 
weak hemolytic phenotype (SWHP); &Statistically significant versus S. aureus with incomplete hemolytic phenotype 3 (SIHP-3).
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phenotypes during the culture of S. aureus strains, and actively enhance communication with clinicians to optimize the 
treatment of infection.
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