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ABSTRACT

Colorectal cancer (CRC) is the third leading cause of global cancer mortality. 
Recent studies have proposed several gene signatures to predict CRC prognosis, but 
none of those have proven reliable for predicting prognosis in clinical practice yet 
due to poor reproducibility and molecular heterogeneity. Here, we have established a 
prognostic signature of 113 probe sets (CRC-113) that include potential biomarkers 
and reflect the biological and clinical characteristics. Robustness and accuracy were 
significantly validated in external data sets from 19 centers in five countries. In 
multivariate analysis, CRC-113 gene signature showed a stronger prognostic value 
for survival and disease recurrence in CRC patients than current clinicopathological 
risk factors and molecular alterations. We also demonstrated that the CRC-113 gene 
signature reflected both genetic and epigenetic molecular heterogeneity in CRC 
patients. Furthermore, incorporation of the CRC-113 gene signature into a clinical 
context and molecular markers further refined the selection of the CRC patients 
who might benefit from postoperative chemotherapy. Conclusively, CRC-113 gene 
signature provides new possibilities for improving prognostic models and personalized 
therapeutic strategies.

INTRODUCTION

Colorectal cancer (CRC) is one of the leading causes 
of morbidity and mortality in the world. It is the third most 
common cause of death worldwide, accounting for 8% 
of all cancer-related deaths [1–3]. The American Joint 
Committee on Cancer (AJCC) staging system is the current 
standard for determining patient prognosis [4]. Usually, 
stage II and stage III patients at risk of locoregional or 
distant relapse are designated for chemotherapy while 
stage I patients are cured by surgery only [5]. However, 
pathological staging fails to accurately predict recurrence 
in many patients undergoing curative surgery for 

localized CRC, because CRC is a highly heterogeneous 
disease [6]. Practically, 10–20% of patients with stage II 
CRC, and 30–40% of those with stage III CRC develop 
recurrence [7]. Thus, molecular markers have extensively 
been investigated for CRC characterization and prognosis. 
Microsatellite instability (MSI), caused by defective 
function of the DNA mismatch repair (MMR) system, 
has reproducibly been found to constitute a significant 
prognostic factor in early CRC in both a meta-analysis 
and prospective trials [8–10]. KRAS is also a reliable 
predictive marker in EGFR-targeted therapies of advanced 
CRC [11, 12]. Other DNA alterations, chromosomal 
instability (CIN), CpG island methylator phenotype 
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(CIMP), p53 and BRAF should be further defined for 
reproducible molecular classification [11, 12].

Gene expression profiling has shown great promise 
in predicting prognosis of individual patients in diverse 
cancers. Several gene signatures have thus been developed 
to classify various prognostic groups beyond the CRC 
clinicopathological features. However, no signature has 
been clinically reliable yet. This poor reproducibility 
is attributed to the heterogeneity that develops in CRC 
through the integration of genetic and epigenetic features 
[13–16]. Therefore, it is critically required to establish a 
prognostic gene signature that would reflect the molecular 
heterogeneity of CRC in both genetic and epigenetic 
aspects, and would be used clinically to accurately predict 
recurrence risk and guide decisions of adjuvant therapy 
for the patients.

In this study, we established a novel prognostic gene 
signature to distinguish low and high risk patients using 
a gene expression profiling technique in six independent 
data sets from 19 centers in five countries. Then, 
we assessed the associations between the gene signature, 
clinicopathological factors and molecular alterations. 
We further investigated whether the new gene signature 
would help to develop adjuvant therapeutic strategies for 
stage III CRC patients. Finally, we attempted to provide 
possibilities for improving prognostic models of CRC 
heterogeneous aspects.

RESULTS

CRC-113 gene signature

In order to generate a molecular classifier  
that distinguishes low and high risk patients, gene 
expression profilings were analyzed in relation to 
survival data. We used the GSE17538 data set as a 
discovery data set [17, 18]. After filtering for probe set 
intensity, 3531 probe sets were analyzed in a univariate 
Cox regression analysis with DFS as the survival end 
point, as discussed previously [19, 20]. As a result, 
the gene signature with 113 probe sets was developed, 
and shown to be associated with DFS (false discovery 
rate of <10%). This model was termed the CRC-113 
gene signature. A flow chart of the procedure used to 
generate the gene signature was provided (Figure 1A). 
Prognostic index for each patient was calculated based 
on the CRC-113 gene signature (Figure 1B). The 
patients were classified into high (n = 73) and low 
(n = 72) risk groups by risk relied on their prognostic 
index. Survival differences between predicted low and 
high risk outcome groups were evaluated with Kaplan-
Meier survival curves for each follow-up time: DFS  
(p = 5.00e-04; Figure 1C), OS (p = 1.59e-04; Figure 1D), 
and DSS (p = 4.49e-05; Figure 1E) of patients classified 
by CRC-113 gene signature. A positive weighting 

coefficient indicates that the increased expression 
contributes to the high value for the CRC-113 gene 
signature value and thus a higher risk for poor survival. 
The 113 probe sets corresponded to 77 annotated genes 
(24 genes represented by more than one probe set), 
one expressed sequence tag clone, and two probe sets 
have no annotation (Supplementary Table S1). The 
resultant expression patterns of CRC-113 gene signature 
presented the low and high risk patient groups into two 
clusters (Supplementary Figure S1). Several independent 
studies previously proposed different gene signatures 
to identify CRC subtypes for predicting prognosis. We 
thus investigated whether the genes in CRC-113 gene 
signature were overlapped with those in the reported 
signatures: 21 genes (30 probes), 36 genes (53 probes) 
and 17 genes (17 probes) were in common with those 
published in the validation data sets from Jorrisen, et al. 
(GSE14333) [21], De Sousa E Melo, et al. (GSE33113) 
[22], Marisa, et al. (GSE39582) [23], respectively, and 
13 genes (17 probes) in Oh, et al. [24]. However, there 
was no common probe in the probe sets from another 
study of De Sousa E Melo, et al. [25].

CRC-113 gene signature and clinical relevance

To investigate the association between the CRC-113 
gene signature classifier and clinicopathological 
characteristics, including gender, age at diagnosis, 
AJCC disease stage, grade, race and each follow-up 
time, we performed Chi-square (χ2) test (Table 1). 
The AJCC stage (p = 8.45e-03) and patient follow-up 
times (DFS, p = 6.43e-04; OS, p = 1.79e-04; DSS, 
p = 3.74e-04, respectively) were significantly correlated 
to our classification, while the others were not associated. 
To compare the prognostic value of our CRC-113 gene 
signature with other prognostic covariates, we performed 
univariate and multivariate Cox regression analysis 
using the discovery data set (Table 2). In univariate 
analysis, AJCC stage was significantly associated 
with DFS (HR 2.0, 95% CI 1.4–3.1, p = 7.24e-04), 
OS (HR 1.8, 95% CI 1.3–2.6, p = 1.82e-03) and DSS  
(HR 2.1, 95% Cl 1.3–3.8, p = 2.77e-03). The AJCC stage 
remained significantly associated with patient prognosis 
in DFS (HR 1.9, 95% CI 1.2–2.9, p = 5.29e-03), OS 
(HR 1.9, 95% CI 1.2–2.9, p = 5.38e-03) and DSS 
(HR 2.3, 95% Cl 1.2–4.2, p = 0.011) in multivariate 
analysis. Notably, CRC-113 gene signature showed 
stronger prognostic ability than CRC stage: DFS  
(HR 3.5, 95% CI 1.7–7.5, p = 1.08e-03), OS (HR 2.9, 
95% CI 1.5–5.7, p = 1.55e-03), and DSS (HR 5.0, 95% 
CI 1.9–13.2, p = 1.08e-03) in univariate analysis, and DFS 
(HR 3.1, 95% CI 1.6–6.3, p = 1.18e-03), OS (HR 2.9, 95% 
CI 1.5–5.6, p = 2.01e-03), DSS (HR 5.4, 95% CI 2.0–14.8, 
p = 1.10e-03) in multivariate analysis. No significant 
difference was obtained in other clinical variables.
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Validation of CRC-113 gene signature in 
independent validation data sets

To evaluate the robustness of the CRC-113 
classifier, we validated the CRC-113 gene signature in 
three independent data sets of colorectal cancer. The two 

risk groups were distinguished, based on their prognostic 
index of each patient (Supplementary Figure S2).  
A flow chart of the procedure used to validate the external 
data sets was provided (Figure 2A). During leave-one-
out cross-validation (LOOCV), the specificity and the 
sensitivity for correctly predicting risk were 0.972 and 

Figure 1: Survival analysis of the discovery data set. A. Schematic overview of the procedure used to construct CRC-113 gene 
signature based on gene expression data. B. The relative prognostic index based on CRC-113 gene signature expression of each patient. The 
weight of each gene was calculated by the Cox proportional hazard regression model. C–E. Kaplan-Meier plots for DFS, OS, and DSS of 
two risk groups in the discovery data set. p values were computed by log-rank test.
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0.932 in CCP, respectively. The expression patterns 
of CRC-113 gene signature for each validation data 
set presented the low and high risk patient groups into 
two clusters (Supplementary Figure S3A–S3C). In the 
GSE14333 validation data set, CRC-113 gene signature 
distinguished 139 (61.5%) and 87 (38.5%) patients 
as the low and high risk groups, respectively. The 
Dukes’ stage and the DFS were significantly correlated 
to our classification (p = 2.98e-59 and p = 4.57e-09, 
respectively, Supplementary Table S2). In the GSE33113 
validation data set, 66 (66.7%) and 30 (33.3%) patients 
were predicted as low and high risk groups, respectively. 
Recurrence-free survival (RFS) was significantly 
correlated to our classification (p = 0.011, Supplementary 
Table S3). In the GSE39582 validation data set, 331 
(59.4%) and 228 (40.6%) patients were classified into 
low and high risk groups, respectively. AJCC stage and 
relapse-free survival (RFS) were significantly correlated 

to our classification (p = 0.034 and p = 3.00e-03,  
respectively, Supplementary Table S4). CRC-113 
gene signature significantly classified patients into low 
and high risk groups in three independent validation 
data sets on both univariate and multivariate analyses 
(Supplementary Table S5–S7). In multivariate analyses, 
CRC-113 gene signature showed prognostic significance 
for risk in these three different validation data sets: DFS 
of GSE14333 (HR 2.2, p = 9.27e-03, Supplementary 
Table S5), RFS of GSE33113 (HR 3.2, p = 0.014, 
Supplementary Table S6) and RFS of GSE39582 
(HR 1.7, p = 8.37e-04, Supplementary Table S7). Kaplan-
Meier plots indicated significant differences in these three 
validation data sets: GSE14333 (p = 2.0e-04, Figure 2B), 
GSE33113 (p = 6.80e-03, Figure 2C) and GSE39582 
(p = 3.80e-03, Figure 2D). The combined validation data 
sets were also significantly classified into low and high 
risk groups (p = 4.52e-07, Figure 2E).

Table 1: Clinicopathological features of CRC patients in two risk groups of GSE17538 discovery 
data set.
Variables Total Low risk High risk

p (χ2- test)
Number of patients (%) 145 72 (49.7) 73 (50.3)

Gender
Female 69 (47.6) 32 (44.4) 37 (50.7)

0.507
Male 76 (52.4) 40 (55.6) 36 (49.3)

Age
<70 82 (56.6) 40 (55.6) 42 (57.5)

0.810
≥70 63 (43.5) 32 (44.4) 31 (42.5)

AJCC stage

 I 24 (16.6) 17 (23.6) 7 (9.6)

8.45e-03
 II 55 (37.9) 29 (40.3) 26 (35.6)

 III 56 (38.6) 19 (26.4) 37 (50.7)

 IV 10 (6.9) 7 (9.7) 3 (4.1)

Grade

Well 15 (10.3) 10 (13.9) 5 (6.8)

0.380Moderately 111 (76.6) 53 (73.6) 58 (79.5)

Poorly 19 (13.1) 9 (12.5) 10 (13.7)

Race

Black 7 (4.8) 4 (5.6) 3 (4.1)

0.745
Caucasian 122 (84.1) 60 (83.3) 62 (85.0)

Hispanic 1 (0.7) 0 (0) 1 (1.4)

others 15 (10.3) 8 (11.11) 7 (9.6)

DFS
 0 109 (75.2) 63 (87.5) 46 (63.0)

6.43e-04
 1 36 (24.8) 9 (12.5) 27 (37.0)

DSS
 0 117 (80.7) 67 (93.1) 50 (68.5)

1.79e-04
 1 28 (19.3) 5 (7.0) 23 (31.5)

OS
 0 101 (69.7) 60 (83.3) 41 (56.2)

3.74e-04
 1 44 (30.3) 12 (16.7) 32 (43.8)

AJCC, American Joint Committee on Cancer; NA, not applicable; DFS, disease-free survival; DSS, disease specific 
survival; OS, overall survival; p-values were obtained from the χ2-test.
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Figure 2: Prognostic significance of CRC-113 gene signature in independent validation data sets. A. The flowchart 
of the strategy used for the generation of the risk prediction model and evaluation of risk outcome, based on CRC-113 gene signature. 
B–D. GSE39582, GSE14333, and GSE33113, E. all combined validation data sets were classified by CRC-113 gene signature into low 
and high risk, and evaluated by Kaplan-Meier analyses. F and G. GSE21510 and GSE41328 validation data sets with normal and cancer 
tissues. Box plots indicate prognostic differences in each group. In B–E, p values were computed by log-rank test. In F and G, p values 
were obtained by student t-test.
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Validation of CRC-113 gene signature in 
colorectal cancer and normal tissue

To further evaluate whether there was a significant 
difference between CRC tissues and normal tissues 
based on gene expression of CRC-113 gene signature, 
we analyzed two independent data sets, GSE21510 [26] 
and GSE41328 [27], for which there was no available 
survival information on public database. As shown in 
results, the prognostic indices of normal subjects were 
evidently lower than those of colorectal cancer patients 
in GSE21510 (p = 3.11e-03, Figure 2F) and GSE41328 
(p = 1.46e-03, Figure 2G) data sets, respectively. None 
of the tissue samples from non-colorectal cancer patients 
were predicted as indicating high risk.

Validation of CRC-113 gene signature in stage 
II and III CRC patients

CRC patients in stage II and III frequently develop 
recurrence after treatment, while patients in stage I are 
usually cured by surgery alone [5]. Thus, we investigated 
whether CRC-113 gene signature could suitably classify 
patients with stage II and/or III into two risk groups in 
discovery and/or validation data sets. The discovery data 
set included patients with survival information in stage II 
(n = 55) and III (n = 56), and the validation data sets 
comprise patients with stage II (n = 444) or III (n = 292). 
All patients were labeled according to Dukes’ classification 
system in the GSE14333 validation data set. Thus, we 
categorized patients with Dukes’ B and C stages to AJCC 
stage II and III, respectively. In all data sets, stage II 
patients showed a good outcome, whereas stage III patients 
had a relative poor outcome (80.3% and 63.5% in 5-year 
DFS, respectively). As expected, CRC-113 gene signature 
significantly stratified the stage II and/or III patients into low 
and high risk groups (Figure 3). The patients with high risk 
(n = 303, 41.2%) showed poorer outcomes than those with 
low risk (n = 433, 59.8%) in stage II and/or III (p = 8.02e-04 
for stage II, p = 0.034 for stage III and p = 4.54e-05 for stage 
II and III, respectively, Figure 3A–3C). Additionally, with 
the discovery data set, we also observed similar results in 
stage II (p = 1.38e-04), stage III (p = 0.012), and stage II and 
III (p = 1.13e-06) (Supplementary Figure S4A–S4C). This 
CRC-113 gene signature could clearly classify patients in 
stage I with or without patients from the discovery data set 
(p = 0.033 and p = 7.82e-03, respectively, Supplementary 
Figure S4D and S4E), but not in stage IV patients even 
including patients from discovery data set (Supplementary 
Figure S4F).

Association of CRC-113 gene signature with 
molecular pathways and mutations

Traditional CRC development involves stepwise 
accumulation of genetic alterations [28], which is 
substantially more complex than that originally  envisioned 

with three distinct pathways of genetic instability: MMR, 
CIMP and CIN [29]. The MMR dysfunction causes MSI 
which is the condition of genetic hypermutability. The 
CIMP inactivates tumor suppressor genes via genome 
hypermethylation. The CIMP is also relevant to BRAF 
mutation [30]. The CIN phenotype results from the 
accumulation of numerical or structural chromosomal 
abnormalities (aneuploidy) [31], and is strongly related 
to KRAS and p53 mutations [32]. However, it still 
remains undefined to evaluate the heterogeneity of CRC. 
Based on the information of these genetic and epigenetic 
alterations presented in the GSE39582 data set, MMR 
and KRAS could classify the patients into low and high 
risk groups (p = 9.26e-04 and p = 0.023, respectively, 
Supplementary Figure S5A and S6A). However, the 
other DNA alterations did not contribute to stratification 
of patients into two prognostic risk groups (CIN and 
CIMP, Supplementary Figure S5D and S5G; p53 and 
BRAF, Supplementary Figure S6D and S6G). We thus 
investigated whether the CRC-113 gene signature could 
further stratify the CRC patients associated with the 
molecular subtypes. We first incorporated CRC-113 gene 
signature with each of these DNA alteration factors. In 
association analysis using χ2 test, the CRC-113 gene 
signature risk was remarkably interrelated with each 
DNA alteration: MMR (p = 1.33e-05, Figure 4A), CIN 
(p = 0.035, Figure 4B), CIMP (p = 0.045, Figure 4C), 
KRAS (p = 1.91e-03, Figure 4D) and p53 status 
(p = 3.88e-04, Figure 4E), except for BRAF status 
(p = 0.053, Figure 4F). The high risk patients with pMMR 
showed the highest risk outcome among the four sub-
groups. The high risk patients with KRAS wild type (WT) 
presented similar poor-prognostic outcomes compared to 
the patients with KRAS mutant (M). Moreover, CRC-113 
gene signature significantly exhibited further hierarchical 
discrimination in the status of DNA alterations: MMR 
proficient (pMMR, p = 6.34e-04) and MMR deficient 
(dMMR, p = 0.05) (Supplementary Figure S5B and S5C); 
CIN-high (p = 5.24e-03) and CIMP-low (p = 0.032) 
(Supplementary Figure S5F and S5H), KRAS WT 
(p = 1.32e-03, Supplementary Figure S6B), p53 M 
(p = 1.05e-03, Supplementary Figure S6F), and BRAF 
WT (p = 0.024, Supplementary Figure S6H). Patients 
with pMMR frequently presented CIMP-low and CIN-
high phenotypes (78.4%, n = 269 of 343), whereas there 
was no significant relationship in dMMR, CIMP and 
CIN. Additionally, KRAS, BRAF and p53 mutations did 
not show any interrelationship. The association between 
each DNA alteration and CRC-113 gene signature was 
summarized in Supplementary Table S8.

Association of CRC-113 gene signature with 
advantage of adjuvant chemotherapy

Adjuvant chemotherapy for stage III CRC has 
been shown to improve survival rate, and is currently 
recommended as standard therapy [33, 34]. Thus, in order 
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Figure 3: Kaplan-Meier plots of stage II and/or III patients. Incorporation of CRC-113 gene signature into patients with A–C. 
stage II, stage III, and stage II and III, respectively in combined validation data sets. Each group was classified by CRC-113 gene signature 
into low and high risk, and evaluated by Kaplan-Meir analyses. p values were computed by log-rank test.
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Figure 4: Kaplan-Meier survival analysis of CRC-113 gene signature with molecular pathways and gene 
mutations. Incorporation of CRC-113 gene signature into A–F. MMR, CIMP, CIN, KRAS, BRAF, and p53 status of CRC patients. Each 
group was classified by CRC-113 gene signature into low and high risk, and evaluated by Kaplan-Meir analyses. p-values were obtained 
from the χ2-test.
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to examine the association of the signature with response to 
adjuvant chemotherapy, we performed subgroup analysis 
with patients in stage III of GSE14333 and GSE39582. 
In the GSE14333 validation data set, the patients in 
stage C received standard adjuvant chemotherapy (either 
single agent 5-fluouracil/capecitabine or 5-fluouracil 
and oxaliplatin). In the GSE39582 validation data 
set, the stage III patients received standard adjuvant 
chemotherapy with 5-fluorouracil and leucovorin. 
Chemotherapy itself showed therapeutic benefit for 
DFS in the GSE14333 validation data set (p = 0.037, 
Supplementary Figure S7A), but did not give advantage 
for recurrence in the GSE39582 validation data set 
(p = 0.554, Supplementary Figure S7B). By incorporating 
CRC-113 gene signature into chemotherapy information, 
the high risk patients with stage III of GSE14333 
validation data set were shown to obtain the benefit 
compared to patients without adjuvant chemotherapy  
(p = 0.022, Figure 5A). In contrast, low risk patients 
with stage III of the GSE14333 validation data set 
did not have significant difference in chemotherapy 
treatment (p = 0.445, Figure 5B). Interestingly, the 
stage III patients in both low and high risk groups of 
GSE39582 validation data set did not benefit from 
chemotherapy (Supplementary Figure S7C and S7D). 
We also applied CRC-113 gene signature to other stages; 
however, all the patients of these stages did not achieve 
benefit with chemotherapy treatment (data not shown). 
Additionally, we investigated whether incorporation of 
CRC-113 gene signature into DNA alterations could give 
chemotherapeutical benefit to stage III patients of the 
GSE39582 validation data set. Without incorporation of 
CRC-113 gene signature, only the patients with KRAS 
M among stage III had chemotherapeutical benefit 
(p = 0.018, Supplementary Figure S7E). However, with 
incorporation of the CRC-113 gene signature, high 
risk patients had no benefit in adjuvant chemotherapy 
(p = 0.719, Figure 5C), whereas low risk patients 
receiving adjuvant chemotherapy showed better prognosis 
(p = 2.49e-04, Figure 5D).

Incorporation of CRC-113 gene signature into a 
published molecular subtype classifier

Marisa, et al (GSE39582 validation data set) [23] 
previously suggested six molecular subtypes for the 
predicting prognosis of CRC recurrence. These subtypes 
were associated with distinct clinicopathological 
characteristics, molecular mutations, gene expression 
signature and signaling pathways. The six subtypes were 
termed according to their biological characteristics as 
follows: C1 (CINImmuneDown), C2 (dMMR), C3 (KRASm: 
KRAS-mutant), C4 (CSC: cancer stem cell), C5 
(CINWntUp) and C6 (CINnormL The subtypes were finally 
categorized by two distinct groups: a poor-prognosis 
group (‘C4C6′: C4 and C6), and all other subtypes as 

the good-prognosis (‘Others’: C1, C2, C3 and C5), 
corresponding with the prognostic difference. They 
reported that the C4 and C6 subtypes were enriched 
for stem cell-like signature from both of a mouse 
intestinal stem cell signature [35] and a human colon 
top and bottom crypt signature [36], and a normal-
like signature from a breast cancer signature [37], 
respectively. Especially, 1108 probe sets were used for 
subtype-discrimination, which shared 53 probe sets with 
CRC-113 gene signature (Supplementary Table S1). 
Thus, we investigated the association between CRC-113  
gene signature and these two distinct prognostic groups. 
After incorporation of CRC-113 gene signature, our 
signature risk was significantly associated with the 
binary classification in all stages (p = 1.40e-06, χ2-test, 
Figure 6A), and a similar result was found in the analysis 
of the stage II and III combined group (p = 1.40e-04, 
χ2-test, Figure 6B). Here, we identified the poorest 
prognostic sub-group, C4C6-high, from the ‘C4C6’ 
group. Our classifier further stratified this ‘C4C6’ group 
into low and high risk groups in all stages (p = 0.014, 
Figure 6C), stage II and III (p = 0.014, Figure 6D), 
while the ‘Others’ group was not further classified 
(data not shown). Among the patients of ‘C4′ (n = 59) 
and ‘C6’ (n = 60), 58 and 24 patients (n = 82, 68.9%), 
respectively, belonged to high risk patients of CRC-113 
gene signature.

Gene ontology term enrichment analysis and 
visualization of CRC-113 gene signature

To identify the biological function of the genes in the 
CRC-113 gene signature, we performed GO enrichment 
analysis in DAVID, and then identified 42 significant GO 
terms (biological process), including biological adhesion, 
cell adhesion, cell motility, extracellular matrix organization 
and response to wounding. The false discovery rates 
(FDRs) were estimated using the procedure of Benjamini 
(p < 0.05, Supplementary Table S9). GO term redundancy 
was removed and visualized in the semantic space via 
REViGO, representing functional clusters (Supplementary 
Figure S8).

Protein network in CRC-113 gene signature

To verify potential protein interactions of 77 genes 
in the CRC-113 gene signature, we generated a molecular 
network by introducing these 77 genes into STRING, a 
molecular tool that was able to elaborate physical and 
functional associations among proteins. As shown in 
results, 69 out of 77 genes were closely connected in a 
single network (Supplementary Figure S9).

DISCUSSION

In colorectal cancer, accurate prognostic prediction 
for recurrence and mortality after surgery is frequently 
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limited due to molecular heterogeneity. Thus, it is 
necessary to correctly identify individual recurrence 
risk and adjuvant chemotherapeutical benefit. Several 
studies have previously shown that the gene signatures 
are capable of prognosticating in CRC patients, but no 
gene signature has been clinically useful yet. To address 
this issue, we established a CRC-113 gene signature 
which could be valuable to predict disease recurrence 
and adjuvant chemotherapy effect by using a large patient 

sample size with a long follow-up time and the same 
platform. We applied the supervised method and avoided 
model overfitting by LOOCV. The robustness of the 
CRC-113 gene signature was supported by the high 
sensitivity (0.972) and specificity (0.932) values, and the 
reproducibility through significant association between 
the predicted outcome and patient prognosis in validation 
data sets. Independence of CRC-113 gene signature as 
a prognostic marker was reinforced by the results using 

Figure 5: Kaplan-Meier survival analysis of stage III CRC with adjuvant chemotherapy. A and B. high risk and low risk 
groups in GSE14333. C–D. high risk and low risk groups of KRAS M in GSE39582. Patients were separated according to chemotherapy 
treatment, and the chemotherapeutical advantage was evaluated by Kaplan-Meir analyses. p values were computed by log-rank test.
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various approaches. By incorporating DNA alterations, 
we found that the CRC-113 gene signature which could 
further stratify patients into prognostic subdivisions has 
important clinical value to help guide judicious treatment 
decisions. Additionally, subgroup analysis of patients 
with stage III cancer only indicated that CRC-113 gene 
signature might predict which patients would benefit from 
adjuvant chemotherapy for DFS. Finally, we demonstrated 
that CRC-113 provides a new insight to elucidate CRC 
heterogeneity.

The current AJCC pathological staging criteria 
cannot accurately predict patient survival. Approximately 
25% of CRC patients present metastatic features, and 
pathological staging fails to correctly predict recurrence 
in many patients undergoing curative surgery for CRC 
due to the heterogeneity [38, 39]. We evidently showed 
that the CRC-113 gene signature supplies the lack of 
pathological staging via further stratification of patients 
into significant low and high risk groups in each CRC 
stage. Unfortunately, CRC-113 gene signature was not 

Figure 6: Kaplan-Meier survival analysis of CRC-113 gene signature with subgroups of the GSE39582 validation data 
set. Incorporation of CRC-113 gene signature into patients with A. all stage, B. stage II and III, C. stage II, and D. stage III. Each group was 
classified by CRC-113 gene signature into low and high risk, and evaluated by Kaplan-Meir analyses. p-values were obtained from the χ2-test.
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correlated to demographic disparities such as age, gender 
and ethnicity for prognosis prediction. Actually, these 
factors have been considered to be the risk factors in CRC 
[40, 41]. For example, incidence or mortality rates of CRC 
are statistically highest in black men and women, followed 
by white, Hispanic, Asian/Pacific Islander, and American 
Indian/Alaska Native people [41]. At present, it remains to 
be answered why our gene signature does not reflect the 
demographic disparities.

In colorectal carcinogenesis, there are three distinct 
genetic pathways: MSI, CIMP and CIN [29]. However, the 
patients evaluated by these molecular markers still differ 
remarkably in prognosis and therapeutic responses [42]. We 
found that CRC-113 gene signature further stratified patients 
in combination with MMR status; high risk patients with 
pMMR presented the poorest prognosis. It also stratified 
CIMP-Low or CIN-High patients. Moreover, CRC-113 
gene signature further stratified the patients with KRAS 
and BRAF WTs, and p53 M. Therefore, we argue that 
CRC-113 gene signature can overcome limitations of the 
conventional molecular markers via further stratification 
in CRC predicting prognosis. Interestingly, the number 
of the high risk group (n = 128, 59.8%) was relatively 
larger than that of the low risk group (n = 86, 40.2%) in 
patients with KRAS M, while the ratio was inclinable to 
be opposite in patients with KRAS WT (n = 133, 41.3% 
for high risk group; n = 198, 58.7% for low risk group). 
This result seemed reasonable for the relationship between 
KRAS status and risk classification, although the sample 
size was not sufficient to firmly conclude this observation. 
Meanwhile, poor-prognostic outcomes were shown in 
both groups of low risk with KRAS M and high risk with 
KRAS WT.

The identification of individual patients in need of 
optimized adjuvant therapy still remains as a major clinical 
concern. In both internal and combined-validation data 
sets, the CRC-113 gene signature clearly stratified stage III 
CRC patients into low and high risk groups. Subgroup 
analysis of patients with available data revealed that 
adjuvant chemotherapy improved DFS in high risk patients 
with stage III. Although CRC-113 gene signature could 
not predict delayed relapse after adjuvant chemotherapy, 
when combined with KRAS M, it helped to define stage III 
patients with delayed relapse. Our signature also showed 
that a subgroup of patients with low risk and KRAS 
M were more sensitive to chemotherapy. Additionally, we 
found that a subgroup of patients with high risk and KRAS 
M did not present adjuvant chemotherapeutical advantage. 
The CRC-113 gene signature might imply the potential 
benefit of adjuvant chemotherapy in patients with stage III 
CRC, although we agree that it would not be enough to 
make a strong conclusion for the predictive power due to 
the small number of patients used in these analyses.

In the comparative analysis between our gene 
signature and the six molecular subtypes (C1-C6) in 
the recent study of Marisa, et al [23], the C4 and C6 

patients (‘C4C6’) were classified as a poorer-outcome 
group than the other group patients. The ‘C4C6’ 
subtypes presented down-regulation of cell growth and 
death pathways, and up-regulation of the epithelial–
mesenchymal transition pathway. Our CRC-113 gene 
signature further stratified ‘C4C6’ patients into low 
and high risk groups, of which high risk patients 
in ‘C4C6’ belonged to the poorest subtype group. 
Especially, all of the C4 patients, except for one, 
were evaluated as high risk patients by CRC-113  
gene signature. Interestingly, 36 genes in CRC-113 
gene signature were overlapped with their subtype-
discrimination probe sets that they reported [23].

The majority of genes in CRC-113 gene signature 
have critical roles in cell proliferation, angiogenesis, 
migration, invasion and metastasis of CRC. These genes 
include APOE [43], Bcat1 [44], CAV2 [45], COL1A1 
[46], COL3A1 [47], COL5A2 and COL11A1 [48], 
COL10A1 [49], CTGF [50], FN1 [51, 52], HOPX [53], 
HOXC6 [54], LOX [55], NRP-1 [56], SERPINE1 [57], 
THBS2 [58], TM4SF1 [59], Versican [60], WIST1 
[61] and WNT5A [62]. Also, CRC-113 gene signature 
includes a number of hypoxia and inflammation-related 
genes in various cancer such as AKAP12 [63], ANXA1 
[64, 65], CCL11 [66], CTGF [67], FABP4 [68], FN1 
[69], IGFBP3 [70], LOX [71], NOX4 [72, 73], NRP1 
[74], OLR1 [75], SLC2A3 [76] and WNT5A [77], 
indicating that hypoxia and inflammation, which are two 
inseparable hallmarks in tumorigenesis [78], really play 
important roles in CRC pathogenesis. In addition, CRC-
113 gene signature also contains epigenetics-related 
genes, which have pivotal roles in cancer development. 
NNMT controls hypomethylation of histones and other 
cancer-related proteins [79]. The hypermethylation of 
FBN1 and SFRP2 was reported as sensitive molecular 
markers for detecting CRC [80, 81]. Finally, many novel 
genes such as C5AR1, KRT80, FRMD6, OLFML2B, 
PRRX1 and ZNF532 are included, suggesting that CRC-
113 gene signature contains new promising biomarkers 
for CRC diagnosis and potential therapeutic targets.

Conclusively, we developed a robust gene 
signature that is highly discriminative. We demonstrated 
that CRC-113 gene signature predicts individual 
patients at high risk of recurrence and mortality by 
integrating CRC heterogeneity. The prognostic value 
of our signature was statistically significant in the 
overall data sets, independently of the pathological 
staging. When incorporated into a clinical context and 
molecular subtypes, CRC-113 gene signature further 
stratified patients into two distinct prognostic risk 
groups to overcome the limitation of the conventional 
classification and molecular markers. Hence, we 
propose that our CRC-113 gene signature provides a 
basis for the rational design of potentially targetable 
markers for CRC prognostic prediction.
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MATERIALS AND METHODS

Patient and gene expression data

All clinical and gene expression data are available 
on Gene Expression Omnibus database (http://www 
.ncbi.nlm.nih.gov/geo/) fulfilling the following criteria:  
a similar chip platform (Affymetrix U133 Plus 2.0 chips) 
with raw data CEL files (Table 3) and clinical information 
of patients on survival event and time (Table 4). The raw 
data were normalized using a robust multiarray averaging 
method [82, 83]. The 1,358 unique patients of six different 
CRC data sets were used in the analysis. Gene expression 
data of 340 patients who had no clinicopathological 
information were excluded from survival analysis. 
GSE17538 (n = 145, Moffitt Cancer Center, Vanderbilt 
Medical Center) was used as a discovery data set [17]. 
The validation sets were GSE14333 (n = 226, Royal 
Melbourne Hospital) [21], GSE33113 (n = 96, Academic 
Medical Center in Amsterdam) which included only stage 
II patients of CRC [22, 25] and GSE39582 (n = 557, the 
French Ligue Nationale Contre le Cancer) [23]. GSE21510 
(n = 148, Tokyo Medical and Dental University Hospital) 
[26] and GSE41328 (n = 20, University of Illinois) [27], 
were used for comparing between normal subjects and 
CRC patients.

Development of the prognostic gene 
expression signature

A gene expression signature to predict prognostic 
risk was developed from the GSE17538 discovery 
data set. Gene expression and disease-free survival 
(DFS) data were combined to build a gene expression 
profiling-based survival classifier. The 54,675 probe 
sets were filtered by at least 2 absolute value of log2 
scale which represented the same gene expression level. 
The univariate Cox proportional hazard regression (p 
< 0.001) was then used to identify the DFS-associated 
gene expression signature from the discovery data 
set. Regarding predicting prognosis, probes from the 
survival signature were applied to the survival risk 
prediction analysis [84]. This method used the principal 
component from the discovery data set and produced a 
prognostic index for each patient. The prognostic index 
was computed by the formula ∑iwi xi - 0.256901 where 
wi and xi were the weight and logged gene expression for 
the i-th gene, respectively. We attempted to divide the 
patients into two groups based on a median prognostic 
index of −0.04444. Patients were assigned to the high 
risk group if their prognostic indices were greater than 
the median value, whereas the low risk group was 
composed of patients with the prognostic indices that 
were equivalent to or less than the median value.

Validation of the prognostic signature

The validation of the gene signature was 
accomplished on independent data sets. Gene expression 
data from different data sets were adjusted individually 
by subtracting the median expression value across the 
samples. To further refine this model and to sub-stratify 
the predicted outcomes, Compound Covariate Predictor 
(CCP) was utilized as a class prediction algorithm [85]. 
The robustness was estimated by the misclassification 
rate that was determined during the leave-one-out  
cross-validation (LOOCV) in the training set.

The Kaplan-Meier survival analyses were performed 
after the patient classification into two risk groups, and 
Chi-square (χ2) and log-rank tests were used to evaluate the 
survival risk between two predicted subgroups of patients. 
The univariate and multivariate Cox proportional hazard 
regression analyses were used to evaluate independent 
prognostic factors associated with survival, and then gene 
signature, tumor grade and pathological characteristics 
were employed as covariates.

Pathway analysis

Gene ontology (GO) biological process enrichment 
analysis was carried out using the Database for 
Annotation, Visualization and Integrated Discovery 
(DAVID) bioinformatics tool (http://david.abcc.ncifcrf 
.gov/) [86]. The results of the GO analysis were visualized 
in semantic similarity-based scatterplots via REViGO 
[87], a web server that summarized GO terms by removing 
redundant ones. The allowed similarity was chosen to 
be small (0.5), and the semantic similarity measure was 
‘SimRel’.

STRING analysis

Protein-protein interactions were predicted using the 
Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database v10.0 (http://www.string-db.org/). 
Proteins were linked based on the following six criteria; 
neighborhood, gene fusion, co-occurrence, co-expression, 
experimental evidence and existing databases [88].

Statistical methods of microarray data

Microarray data and heatmap were analyzed using 
BRB-Array Tools Version 3.0 (http://linus.nci.nih.gov/
BRB-ArrayTools.html) [89]. All other statistical analyses 
were accomplished in the R language environment (http:///
www.r-project.org) and Statistical Package for Social 
Sciences (SPSS) software (version 20, SPSS Inc, Chicago, 
IL, USA). In all statistical analyses, p value of less than 
0.05 was considered significant.
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Table 4: Clinical characteristics of patients in discovery and validation data sets
Characteristics Discovery data set Validation data sets

GSE17538 GSE14333 GSE33113 GSE39582

Number of patients 
(Patients used) 238 (145) 290 (226) 96 (90) 566 (557)

Median age (years) 65 67 73.98 68.1

Gender (male/female) 124/114 164/126 42/48 310/256

AJCC stage

 0 0 − 0 4

 I 28 − 0 33

 II 72 − 96 264

 III 76 − 0 205

 IV 56 − 0 60

 N/A 6 − 0 0

Dukes’ stage

 A − 44 − −

 B − 94 − −

 C − 91 − −

 D − 61 − −

 N/A − 0 − −

Chemotherapy

 Yes − 117 − 233

 No − 172 − 316

 N/A − 1 − 17

 DFS 145 (28.36)1 226 (39.32)1 − −

 OS 177 (41.49)1 − − −

 RFS* − − 90 (39.32)1 557 (43.00)1

 DSS 232 (41.52)1 − − −

1presents median months of followup times; AJCC, American Joint Committee on Cancer; NA, not applicable; OS, overall 
survival; DFS, disease-free survival; RFS*, recurrence-free survival for GSE33113 validation data set, relapse-free survival 
for GSE39582 validation data set; DSS, disease specific survival.

Table 3: CRC microarray data sets
GEO Number Origin/Year Chip type References

GSE17538 USA, 2009 Affymetrix HG-U133_Plus_2 Smith, et al [17, 18]

GSE14333 Australia, 2010 Affymetrix HG-U133_Plus_2 Jorissen, et al [21]

GSE33113 Netherlands, 2011 Affymetrix HG-U133_Plus_2 de Sousa, et al [22, 25]

GSE39582 France, 2013 Affymetrix HG-U133_Plus_2 Marisa, et al [23]

GSE21510 Japan, 2011 Affymetrix HG-U133_Plus_2 Tsukamoto, et al [26]

GSE41328 USA, 2006 Affymetrix HG-U133_Plus_2 Lin, et al [27]
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