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Abstract: Pavements always play a predominant role in transportation. Health monitoring 

of pavements is becoming more and more significant, as frequently suffering from cracks, 

rutting, and slippage renders them prematurely out of service. Effective and reliable sensing 

elements are thus in high demand to make prognosis on the mechanical properties and  

occurrence of damage to pavements. Therefore, in this paper, various types of functionality 

enhancement of industrialized optical fiber sensors for pavement monitoring are developed, 

with the corresponding operational principles clarified in theory and the performance 

double checked by basic experiments. Furthermore, a self-healing optical fiber sensing 

network system is adopted to accomplish full-scale monitoring of pavements. The 

application of optical fiber sensors assembly and self-healing network system in pavement 

has been carried out to validate the feasibility. It has been proved that the research in this 

article provides a valuable method and meaningful guidance for the integrity monitoring of 

civil structures, especially pavements. 
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1. Introduction 

A large number of structures built decades ago are in urgent need of strengthening, rehabilitation 

and replacement, and structural health monitoring (SHM) has emerged as a diagnostic tool to monitor 

in-situ structure behavior accurately and efficiently [1–4]. A SHM system comprised of various 

components, covering optical fiber (OF) sensors, is utilized to identify damages, assess performance, 

predict residual service life of structures and give real-time sound warnings, which has been recognized 

as an efficient approach for saving lives and reducing economic losses [5,6]. It is expected that SHM will 

take shape into an approach, which stands shoulder to shoulder with traditional methods, namely theory, 

experiments and numerical analysis, to extract the mechanical properties of structures. 

Among these components, OF sensors and Fiber Bragg grating (FBG) sensors, for the advantages 

of long-term stability and durability, good geometrical shape-versatility, corrosion resistance, 

anti-electromagnetic interference, low cost and high precision detection, have found wide-spread  

application [7–11]. Research on OF sensors has extended into diverse technological fields, not only 

covering aerospace, ocean platforms, underground construction and transportation engineering, but also 

including the medical, chemical and telecommunication industries [12]. OF sensors have been 

designed to measure a wide variety of physical properties, such as chemical changes, strain, electric and 

magnetic fields, temperature, pressure, rotation, displacement (position), radiation, flow, liquid level, 

vibration, light intensity and color [12–14]. FBG sensors packaged with different materials have been 

manufactured and successfully utilized to detect humidity, temperature, strain, cracks and acceleration in 

aeronautics, energy, railway, nuclear environmental fields and so on [15–18]. A small part of the 

functions of the two types of sensors overlaps, but still there are distinguishing characteristics that OF 

sensors highlight the distributed inspection and FBG sensors majorly focus on high-precision local 

measurements [19–24]. 

Since pavements are constituted of asphalt/concrete mixtures and gravels with different particle sizes, 

and are thus considered heterogeneous structures, it is quite difficult to develop much accurate theory and 

numerical methods to depict these mixtures’ non-uniformity [25–27], while the expense of batch tests is 

huge, and results obtained with them usually don’t match well with experimental measurements [28]. 

SHM technology is a potentially feasible approach to capture real information, and it has received many 

researchers’ approval [29–32]. The composition uncertainty, temperature sensitiveness and viscoelasticity 

characteristics of pavement materials make the pavement structural analysis very complex, compared 

with other civil structures, such as bridges and buildings. Evaluation of the performance of existing 

pavements is a priority issue, as it is very hard to devise an efficient method to determine realistic 

mechanical properties [33]. The layered elastic theory, ignoring the uneven, anisotropy and nonlinear 

stress-strain relationship of paving materials, just offers calculation results incongruent with the real 

state of pavements [34]. For this reason, there has been interest in improving all kinds of sensors so as to 

exhibit strain, stress and displacement with much higher precision, which would provide a reliable 

scientific basis for modification of the theory. 
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Scholars have contributed to the application of OF sensing technology in large-span pavements, and 

some foundational achievements have been obtained. Various packaging methods for OF and FBG 

sensors were investigated, including steel bar [35], fiber reinforced polymer (FRP) [36], steel  

sheet [37], bending device [38], pipe [39], polypropylene (PP) [40,41], glue [42,43], geotextile [44] 

and cables [45]. Optical fiber strain gauges with a retrofit technique measured strains in the upper and 

lower part of the asphalt layer [46]. An OF sensor based on Fabry-Perot (F-P) technology was 

introduced to detect strain of cold in-depth recycled utilizing foamed asphalt [47]. These sensors could 

realize their function to some extent, but employing steel pipe, FRP, and PP as cladding material, the 

coordinate deformation between protective layer and asphalt mixture couldn’t be well resolved, which 

directly led to low precision. Selecting appropriate materials to match the modulus of asphalt mixtures 

and simultaneously guaranteeing the survival of sensors so far has been treated as a bottleneck issue. 

Consequently, novel improved sensors that could easily survive in pavement construction and possess 

commendable coordination deformation with the host material are in high demand, which would serve 

for high-precision detection and real mechanical-parameter acquirement of pavements. 

Due to the imperfections and incompleteness of subsensors, full-scale monitoring of multi-layered 

pavements has seldom been mentioned [48], while pavements usually suffer from random damage, and 

local destruction without timely maintenance often results in failure of large areas. Therefore, 

assembling these subelements, particularly to establish a self-healing network system is a necessity [49], 

which would assist in accomplishing full scale deformation detection and eventually serve for 

pavement evaluation and inverse optimization design. 

Given the analysis above, various types of functionality enhancement of industrialized optical fiber 

sensors developed for pavement monitoring are put forward in this article for the first time, and the 

corresponding operational principles are also demonstrated and the performance checked by basic 

experiments. A self-healing OF sensing network system is adopted and distributed sensors embedded in 

a single layer structure are implemented to support the feasibility studies. Moreover, a study of a 

three-layered asphalt pavement embedded with armoring pipe packaged FBG and OF sensors is conducted 

on site to check the influence of environmental temperature changes on asphalt pavement strain. 

2. Functionality Enhancements of Industrialized Optical Fiber Sensors 

In addition to satisfying the basic principles mentioned above, the design of sensors should also take 

the unique features of pavements into account. That is to say, sensors developed for pavement behavior 

monitoring must reckon with the mechanical properties of material, structure and damage mode 

simultaneously as follows: 

(1) For the material, its composition, temperature influence and viscoelasticity should be considered; 

(2) For the structure, as a multi-layered system with different media in each layer, the long span 

feature of the pavement makes it cross over different geological stratums, and the hierarchical 

and distributed distinction should be considered; 

(3) For damage modes, the causes and appearances of different damage modes are influenced by 

the characteristics of the material and structure, as stated before, with cracks, rutting and 

subsidence being the most common types. 
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During the paving process, the protective layers of sensors also need to resist large compaction forces 

and high temperatures. Besides, the cost of sensors cannot be high due to the large-scale installation. 

Therefore, the functionality enhancements considered in this paper for industrialized optical fiber 

sensors, including FBG sensors for high-precision local detection and OF sensors for distributed sensing 

using raw materials (fine aggregate mixture and asphalt mixture) and armoring wires have been 

developed. Details are discussed in the following sections. 

“Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering” [50] and 

“Test Methods of Aggregate for Highway Engineering” [51] are the main references of the experiments 

carried out in this paper. 

2.1. Experimental Equipment and Operational Principles 

Equipment used in the experiments is mainly composed of welding and demodulation devices. In the 

fabrication process, a fusion splicer is adopted to connect the optical fiber and patch cords, aided by 

optical time domain reflectometry (OTDR) (Nanjing DVP optical & Electronical Tech. Co. Ltd., 

Nanjing, China) to detect any light discontinuities. Images are displayed in Figure 1a,b. During the 

sensing period, Brillion Optical Time Domain Analysis (BOTDA) (Micro Optics, Hackettstown, NJ, 

USA) is employed to interpretate the frequency shift signal of the optical fiber sensors, and a FBG 

intterogator (Harbin Teda Tech. CO. Ltd., Harbin, China) is used to to abstract the wavelength changes. 

These are shown in Figure 1c,d, respectively. 

Figure 1. Equipment used in optical fiber sensing experiments. (a) Fusion splicer;  

(b) OTDR; (c) BOTDA; (d) FBG interrogator. 

 

(a) (b) (c) (d) 

2.1.1. Operational Principle of Brillion Optical Time Domain Analysis (BOTDA) 

BOTDA is a technique based on simulated Brillouin scattering caused by acoustical phonons which 

results in a frequency shift [52,53], as displayed in Figure 2. Two laser sources, one a pump (pulse) laser 

source and the other a probe laser source, are introduced into optical fiber from two ends. When the 

frequency difference between the two lasers is equal to the Brillouin frequency shift, the back Brillouin 

scattering is simulated [53]. It has been found that the Brillouin shift of optical fiber is linearly related to 

applied strain and temperature. BOTDA is one of the demodulating systems used to obtain distributed 

strain or temperature measurements along the fiber by using the good linear relationship [54] between 

the Brillouin frequency shift and strain/temeprature expressed by the function: 

0 0 0 ε( ,ε) ( ,ε ) εB B TT T C C T      (1) 
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where, νB, νB0, Cε and CT indicate the Brillouin frequency shift, original Brillouin frequency shift, 

strain and temperature coefficients, respectively. 

Figure 2. Operational principle of the optical fiber sensor and the Brillouin gain spectrum. 

 

2.1.2. Operational Principle of Fiber Bragg Grating (FBG) 

FBG are made by laterally exposing the core of a single-mode fiber to a periodic pattern of intense 

ultraviolet light. The exposure produces a permanent increase in the refractive index of the fiber’s core, 

creating a fixed index modulation called a grating according to the exposure pattern [36]. At each 

periodic refraction change, a small amount of light is reflected. All the reflected light signals combine 

coherently into one large reflection at a particular wavelength when the grating period is approximately 

half of the input light’s wavelength [36]. Referred to as the Bragg condition, the wavelength at which 

this reflection occurs is called the Bragg wavelength. Light signals at wavelengths other than the Bragg 

wavelength, which are not phase matched, are essentially transparent [36], as shown in Figure 3a. 

Therefore, light propagates through the grating with negligible attenuation or signal variation. Only 

those wavelengths that satisfy the Bragg condition are affected and strongly back-reflected. Figure 3b 

shows the typical output reflected spectrum of FBG [36,55]. The central wavelength of the reflected 

component satisfies the Bragg condition: 

λ 2n   (2) 

where n is the index of refraction and Λ is the grating periodicity. 

Due to the temperature and strain dependence of the parameters n and Λ, the wavelength of the 

reflected component will change as a function of temperature and strain. The general expression of the 

strain-temperature relationship for a FBG strain sensor can be described by [56]: 

ε

λ
(1 )ε (α ζ)

λ
P T


      (3) 

where λ, ξ, α, Pε and T are the wavelength, thermal-optics coefficient, thermal expansion coefficient, 

optical elasticity coefficient and temperature, respectively. 
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Figure 3. Operation principle of the FBG sensor and a typical spectrum. (a) The signal 

interrogation system of FBG; (b) Typical spectrum of FBG sensor. 

  

(a) (b) 

2.2. Fine Aggregate-Asphalt Mixture Packaged Strain Sensors for High-Precision Monitoring  

of Pavements 

It is observed that the elastic modulus of protective layer should match with that of host material, and 

then, raw material-encapsulated optical fiber sensors have been provided [57]. The first type of raw 

materials used is fine aggregate asphalt mixture. Fine aggregate-asphalt mixture packaged FBG sensor 

with width and length size suggested is listed as Figure 4a and physical model displayed in Figure 4b. 

Gradation of the fine aggregate asphalt mixture is shown in Table 1. As bare FBG is very weak and the 

surface of fiber is smooth, a thin pure-asphalt layer is added to protect FBG and establish good bonding 

with fine aggregate asphalt mixture. Strain of host material, εm, passing through protective layer (viz. 

fine aggregate asphalt mixture), makes the distance between two grid blocks elongation, and then 

wavelength of FBG, λ, changes. 

Figure 4. A sketch and actual photo of a fine aggregate-asphalt mixture packaged FBG 

sensor. (a) Layout of the FBG sensor; (b) Physical model. 

  

(a) (b) 

Table 1. Gradation of the fine aggregate asphalt mixture. 

Size of Sieve Pore (mm) <0.075 0.075 0.15 0.3 

Passing Percent for Sieve Pore (%) 0 24 33 65 

Percent of Gradation (%) 24 9 32 35 

A wheel rutting test sample (300 mm × 300 mm × 50 mm, AC16) embedded with this sensor has been 

produced, and integrity of the fine aggregate-asphalt mixture packaged sensor, with the cross-section 

shown in Figure 5, has been confirmed after the rolling compaction process. It indicates that this sensor 

could survive the paving process, as the outside interfaces are tightly agglutinated with those of the 
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asphalt mixture, which means the use of fine aggregate-mixture packaged FBG sensors for asphalt 

pavement monitoring is feasible. 

Figure 5. Cross-section of a wheel rutting test sample with the sensor embedded. (a) Wheel 

rutting test sample with optical fiber embedded; (b) Cross section of the test sample. 

  

(a) (b) 

After making a cuboid with this embedded FBG sensor, and restraining side surfaces and imposing 

step loads by Universal Test Machnine (UTM), the resulting system is as displayed in Figure 6. 

Figure 6. System loading device. 

 

A FBG interrogator has been employed for collecting strain data and a dial indicator introduced to 

abstract the average transverse displacement. Displacement increments measured by the dial indicator 

are tranformed into strains by the linear strain theory, and the transformed strains stand for the strain of 

host material, εm, used for proofreading. The relationship between the strain detected by the FBG, εf 

and the strain of host material, εm, is illustrated in Figure 7. The results demonstrate that this sensor 

could provide reliable measurements. The tiny discrepancy is mostly composed by two parts. One part 

results from the strain loss consumed in the transfer path, which is usually called strain transfer error [58], 

and could be eliminated by introducing the modification equation [59]: 

0 0 0ε ( ) {1 sinh(λ )[λ cosh(λ )]} εfa mx L L L    (4) 

where, λ0 is constant and L stands for the gauge length. 

Another part comes from the average of the displacement increase detected by the dial indicator; it 

represents a strain along the axis of the cuboid that is equivalent at every point, while the real state is that 
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the strain is larger in the center and smaller at the two ends, which contributes a lot to the discrepancy. 

As the relationship of transverse and vertical strain of asphalt mixture is uncertain and influenced by a 

lot of factors, such as compactness, it is thus difficult to get a high-precision strain value which 

approaches the real strain of asphalt mixtures. All these facts augment the error. A much higher-precision 

test could be obtained by adopting other devices to obtain the real strain of asphalt mixtures. 

Figure 7. Strain detected by the FBG and the dial indicator. 
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2.3. Asphalt-Mastic Packaged OF Strain Sensor for Distributed Monitoring of Asphalt Pavements 

An asphalt-mastic packaged OF sensor, whose corresponding manufacturing operation and appearance 

are shown in Figure 8, has been designed for distributed monitoring of flexible pavement [60]. The 

asphalt mastic gradation is listed in Table 2. 

Figure 8. Manufacturing process of an asphalt-mastic encapsulated distributed OF sensor. 

 

Table 2. The aggregates of asphalt mastic. 

Titles Components 

Sieve diameter (mm) 0.075 0.15 0.3 

Wight of mineral aggregate (g) 90 320 350 
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The strain of the host material, εm, passes through the interfaces (viz. the interfaces between the 

asphalt mixture, asphalt mastic and optical fiber), and then, arriving at the optical fiber, it makes the fiber 

core elongate. 1.5 Meter-length beams with this sensor embedded have been created and support a 

uniform gravity load, with BOTDA being utilized for collecting the distributed strain data. The 

experimental set-up and cross-section of the asphalt mixture beam follows Figure 9a, and the 

corresponding data are shown in Figure 9b. In the first stage, no cracks occur on the beam and the strain 

line appears smooth, with a maximum value of less than 100 με. When a crack occurs at the center, a 

sudden growth of the strain line emerges. With the expansion of crack size, the corresponding strain 

data increases. The test results illustrate that this sensor is efficient for distributed monitoring of asphalt 

pavements, which means this flexible asphalt-mastic encapsulation technology is feasible for this use. 

Figure 9. Asphalt mixture beam embedded with an optical fiber sensor. (a) Experimental 

set-up; (b) The corresponding data. 
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2.4. Armoring-Wire Encapsulated FBG Sensor with Spring for Large-Strain Monitoring of Pavements 

Armoring wire has been selected as the encapsulation material, as it is able to bear strong compaction 

forces, but bends freely. Two grid blocks made of FRP are fixed at both sides of FBG. Silicone rubber 

gaskets are introduced to connect the FRP blocks and armoring. A spring is added to the sensing  

element to decrease the sensitivity and realize an enlarged test range. The structure and a physical model 

of the armoring- wire encapsulated FBG sensor with a spring in series are shown in Figure 10. 

Figure 10. Sketch and actual photo of an armoring-wire encapsulated FBG sensor.  

(a) Structure of the FBG sensor; (b) Physical model. 

  

(a) (b) 

The influence of the spring on the strain detected by the FBG has been tested in the laboratory, and 

good linearity is observed, as shown in Figure 11. The results show that the FBG receives half of the 

strain detected by the sensing element, which means the sensitivity is a half compared with a bare FBG. 
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Figure 11. Tension test data of a FBG connected in series with a spring. 
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The performance of the sensor has also been tested in a material testing machine with force control, 

as shown in Figure 12a. Supplemental tension experiments by displacement control have been 

accomplished to detect the behavior of this FBG sensor. The interrogator has been used to collect strain 

data when continuous force and step displacement increments are applied on the FBG. Eight cycles 

with gradual displacement increases have been executed to check the parameters of this sensor, and the 

fitted data is shown in Figure 12b. The Pearson’s coefficient r is higher than 0.99, which demonstrates 

good linearity of this FBG sensor. Sensitivity parameter is stable at 0.8 pm/με, while the common 

strain-sensing coefficient of FBG is 1.2 pm/με. For a 20 cm-length gauge FBG sensor, the tension test 

illustrates that the measurement range of this armoring-wire packaged FBG sensor is up to 35,200 με. 

Results indicate that this sensor behaviors well under cyclic loads and could bear a much larger strain in 

a normal state. 

Figure 12. Tension test and strain data of the armoring-wire encapsulated FBG sensor.  

(a) Tension test; (b) The fitted data. 
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2.5. Armoring-Wire Encapsulated Quasi-Distributed OF Sensors for Large-Span Monitoring  

of Pavements 

Considering the advantages of the armoring wire setup mentioned above, armoring-wire encapsulated 

quasi-distributed OF sensors have been developed. The outstanding feature of this sensor is the division of 

the distributed optical fiber into continuous discrete sensing parts, as shown in Figure 13b. As armoring-wire 

encapsulated FBG sensor has been proved to function as intended, this quasi-distributed OF sensor 

could be quite likely to be feasible in engineering applications. 

Figure 13. Sketch of a quasi-distributed OF sensor. (a) Structure of single sensing part; (b) 

Assembled quasi-distributed sensor. 

 

(a) (b) 

An 8-meter stabilized cement layer embedded with this quasi-distributed OF sensor has been 

prepared in the laboratory, and cracks have been added to examine its performance, as displayed in 

Figure 14. 

Figure 14. Cement stabilized layer embedded with quasi-distributed OF sensors. (a) Sensor 

layout and structure; (b) Cement structure with large cracks. 

  

(a) (b) 

BOTDA has been employed to collect strain data. Part of the typical data is shown in Figure 15. 

Results shows that local cracks just cause strain changes of the corresponding gauge, which means this 
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armoring-wire encapsulated quasi-distributed OF sensor could be used to identify local damage. 

Compared with many other FBG sensors, this sensor costs very little. Compared with the common 

distributed OF sensor, the mode of action of this sensor eliminates the influence of surrounding OF on the 

sensing part located in the middle, which indirectly improves the measuring precision. This proposed 

quasi-distributed optical fiber sensor simultaneously realizes much higher precision and multi-scale 

distributed monitoring. 

Figure 15. Strain detected by the proposed sensor along the span. (a) Data sensed by 

1.2-meter sensing part; (b) Data sensed by 1.5-meter sensing part. 
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3. Self-Healing OF Sensing Network System Used for Full-Scale Monitoring of Pavements 

Based on the definition of survivability relative to optical communication, the self-healing structural 

health monitoring network is redefined as follows: “SHM sensing networks still maintain connectivity 

and the ability of local and overall safety evaluation after the network undergoes various fault (e.g., 

physical faults and software faults), such as the failure of local sensors, the damage of the optical fiber 

and the signal mutual interference, even a disastrous fault such as an earthquake, explosion or fire.” 

Following this new definition of survivability of structural health-monitoring networks, design 

principles of the self-healing OF sensing network are as follows: (a) Protection: the sensors and the 

sensing line must be protected against man-made destruction and from its own failure through structural 

damage; (b) Rapid diagnosis: the faults should be detected and located in time, at the moment when 

faults in the sensing network occur; (c) Robustness: the sensing network should have strong redundancy 

that is sufficient to maintain connectivity and measuring continuity based on some self-healing 

algorithms, especially in structurally vulnerable areas; (d) Artificial repair: to guarantee the 

measurement continuity of key points, new sensors and optical fibers can be repaired at the position of 

node failure in the network; (e) Capability for network reconstruction: the repaired nodes must be 

compatible with the network before conducting repairs to hardware (e.g., equipment connection) and 

software (e.g., SHM safety assessment). 

Due to the large scale of the dimensions and the geometrical complexity of a typical civil structure, a 

large number of sensors are required to measure various structural and environmental parameters, which 

make the SHM system complex. One SHM network can be divided into numerous subsystems, each of 

which has a self-healing functionality. The subsystems are connected to one another by an armored OF, 

Crack  

Crack  
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and the OF is kept free even when the structure is under large deformation. Furthermore, one alternate 

OF or laser path is needed to link the good subsystems to the data acquisition system when any sub- 

system or part of the armored OF fails, as shown in Figure 16. Each subsystem can be a spider-OF 

sensing network (OFSN) or OF-based hybrid system. The whole SHM system can be a large 

spider-OFSN, regarding each subsystem as a local spider-OFSN [61]. 

Figure 16. A self-healing sensing network. 

 

Furthermore, to enable the network to find the new access automatically, three types of self-repair 

nodes are designed, as shown in Figure 17. Among these nodes, the self-repairing node Type-I includes 

two smart light switches, sensors (s1, …, sk), and an armored OF (ek + 1, …, en). The number of 

sensors and armored OF is determined based on the degree of connectivity of the local position. All 

sensors in the self-repair nodes are intercorrelated. The sensor si begins to work after the sensor si-1 

fails, and the initial value of si is equal to the last value measured by the sensor si-1. The armored OF  

(ek + 1, …, en) maintains the network connection after all sensors fail. The smart light switch can 

automatically choose a light path from the bottom port to the top port if the sensing path is found broken. 

The self-healing sensor nodes Type-II and Type-III consist of one light switch and one coupler. As 

shown in Figure 17, when the OF path is broken, the light switch begins to form a new OF path. A 

complex self-healing network can thus be constructed by combining a large number of self-healing 

sensor nodes. 

Figure 17. Self-healing sensor nodes. (a) Type-I; (b) Type-II; (c) Type-III. 
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Figure 18 shows the schematic configuration of a local and distributed OF hybrid system, which 

consists of local OF sensing systems (FBG, F-P and long period fiber Bragg (LPFG )) and distributed 

OF sensing systems (BOTDA, Romain optical time domain reflector (ROTDR) and OTDR), light 

switcher or coupler, multi-signal OF sensors (e.g., BOTDA-FBG sensor) [61]. As the local sensors are 

installed on the stress hot area for high-precision measurement and the distributed sensors are installed 

to obtain global information of a structure, the hybrid system can provide multi-signal in one OF sensor. 

Figure 18. Schematic configuration of an OF hybrid system. 

 

When damage occurs in the network, the repair strategy of the self-healing network could follow 

Figure 19. It shows the flow chart of the repair strategy of a self-healing network based on OTDR and 

the multi-sensor information fusion algorithm. 

Figure 19. Repair strategy of self-healing network. 
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Initially, the connectivity of the sensor network is monitored using OTDR technology. If the 

network is unconnected, it is repaired by using the self-healing nodes; otherwise, the stage of data 

acquisition is completed. The states of the sensors are then monitored. Some suspect sensors in the 

network are evaluated by using the multi-sensor information fusion algorithm or other methods. If a 

number of wrong measurements are incurred because of slipping or the sensing performance 

deteriorates, the sensors are repaired. Finally, we determine whether the structural safety assessment is 

running properly. By using multi-sensor information fusion algorithm, we can determine whether the 

damaged sensors should be repaired. For example, if a sensor is redundant or a sensor that has a large 

sensing cross-correlation with other sensors fails, then it is no need to repair it. 

Based on the demonstration of theory and feasibility provided above, primary networks have been 

designed to investigate the validation of application in pavement. When one break happens, spare patch 

cord assisted by couples, is put into use to keep the network available. The original network as shown 

in Figure 20a is denoted as N1, and the repaired network expressed in Figure 20b is N2. One cement 

stabilized gravel layer embedded with distributed OF sensors, OF number OF1 and OF2, has been 

established, with the layout displayed in Figure 20c. Prefabricated cracks have been located on one 

side of the layer. Light couplers or light switchers have been utilized as the robust link node or 

emergency component. OF1 sensor is likely to fail initially, when cracks extend from one side to 

another, as displayed in Figure 20c. The data collected in the experiment is shown in Figure 21. When 

the strain sensed by OF1 reaches 9,000 με, a break occurs and the repaired network N2 is been enabled 

to continue the detection. Clearly, the sensing network has always maintained good connectivity. The 

data indicates that the strain data has good consistency and detection in a vulnerable region is feasible, 

which means it is reliable to employ a self-healing network for full-scale monitoring of pavements. 

Figure 20. Design and application of primary self-healing network in cement layer.  

(a) Network N1; (b) Network N2; (c) Arrangement of optical fiber sensors. 
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Figure 21. Experimental data: (a) Strain measurement of N1; (b) Strain measurement of N2. 
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4. Full-Scale Demonstration Tests on Site 

Varied types of sensors have been displayed in the sections stated above, and the corresponding 

performance inspected in laboratory tests has been validated to satisfy the functionality required. Given 

this, armoring-wire encapsulated strain sensors, including both OF and FBG sensors have been 

installed in a three-layered asphalt pavement on site, as shown in Figure 22. An OF sensor with six 

sensing parts is denoted by BO6, and an OF sensor with three sensing parts is labeled as BO3. Due to 

the impudent paving installation and immature embedding technology, 30 percent of the 

quasi-distributed OF sensors are not working. Due to the maintenance of BOTDA during the 

experiments, most of the distributed strain data has not been collect. Therefore, most of the complete 

data measured just comes from the FBG sensors. No vehicle load is imposed on the structure, and the 

influence of temperature variation on the strain of the asphalt pavement has been highlighted. 

Figure 22. The layout and external view of armoring-wire encapsulated strain sensors in 

three-layered pavement. (a) The layout of strain sensors; (b) External view of the 

three-layered pavement. 

 

(a) (b) 
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Data detected by FBG sensors located at different layers over several days is displayed in  

Figure 23a–c. The vertical axis represents microstrain, με, and the abscissa axis stands for the corresponding 

time on one day from morning to afternoon. Ground temperature measured by a thermometer is listed in 

Figure 23d. Numbers in Figure 23 present the days since the sensors were embedded in the multi-layer 

pavement structure. For example, number 34 means strain measured by the sensors on the 34th day. 

Figure 23. Strain detected by FBG sensors: (a) microstrain of the cement stabilized gravel 

layer by FBG-2; (b) microstrain of the gravel layer by FBG-3; (c) microstrain of the asphalt 

concrete layer by FBG-4; (d) ground temperature distribution on select days. 
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Based on the continuous strain information of the asphalt pavement under environmental effects, it 

can be seen that temperature played a leading role, and some outcomes could be achieved: strain of the 

base course in Figure 23a has a small growth in the afternoon, as most of the data is collected in late 

summer and the temperature of the cement stabilized gravel layer increases after exposing it to sunlight 

for 10 h; in the strains of the middle layer and surface layer displayed in Figure 23b,c the changes are 

much smaller, as the heat in the asphalt coarse and gravel layer is much easier to spread; strain at the 

40th day in the three layers has a mutation compared with that of other days, and the corresponding 

temperature is the lowest, which obviously expresses that the strain of asphalt pavement is highly 

affected by temperature variations and low temperatures are liable to cause large strains (as the weather 

the day before was hot and a sudden decrease happened on 40th day, the large strain occurred; 

however, the case on the 41st day was different. The temperature mutation was not so sharp on the 

41st day compared with the day before, which explained the low strain phenomenon); the surface layer 
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is most likely to be damaged first under mutation caused by environmental action for the limited tension 

force that the coarse asphalt could bear. 

5. Discussion and Conclusions 

Due to the complex characteristics of pavement structures, few available references provide definite 

specifications on their mechanical properties, and SHM is regarded as a feasible way to abstract this 

information. Optical fiber been selected as sensing element, but its design should take the special 

features of asphalt pavement into consideration. A network system is required to obtain the full-scale 

information about pavement structures. Four kinds of raw material and armoring-wire packaged sensors 

containing both FBG and OF sensors have been put forward and lab tests have been carried out to study 

the feasibility of the proposed sensors. These sensors packaged with flexible materials show high 

“survival rate” after installation. The field test data also proves the potential of using OF-based sensors 

for pavement structure shrinkage and life cycle performance monitoring over a wide range. Furthermore, 

the basic theory of a self-healing OF sensing network system is presented, and tests on one cement 

stabilized gravel layer embedded with OF sensors have been carried out, the results of which have 

validated the feasibility of its application in pavement structures. 

In one word, the research in this article provides a valuable method and meaningful guidance for the 

integrity monitoring of civil structures, especially pavements. Since the work presented in this paper 

focuses on exhibiting the preliminary achievement of each topic, much deeper research and 

improvements will be performed in the future. For example, the accuracy of armoring-wire packaged 

quasi-distributed OF sensors and the strain transfer error between sensor core and pavement (host 

material) will be analyzed and explained. However, the current results already show the feasibility and 

prospects of the proposed sensors and self-healing network sensing system. 
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