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Fatty acid composition is a critical aspect of pork because it affects sensorial and tech-
nological aspects of meat quality and it is relevant for human health. Previous studies
identified significant QTLs in porcine chromosome 12 for fatty acid profile of back fat (BF)
and intramuscular fat (IMF). In the present study, 374 SNPs mapped in SSC12 from the
60K Porcine SNP Beadchip were used.We have combined linkage and association analyses
with expression data analysis in order to identify regions of SSC12 that could affect fatty
acid composition of IMF in longissimus muscle. The QTL scan showed a region around
the 60-cM position that significantly affects palmitic fatty acid and two related fatty acid
indexes. The Iberian QTL allele increased the palmitic content (+2.6% of mean trait). This
QTL does not match any of those reported in the previous study on fatty acid composi-
tion of BF, suggesting different genetic control acting at both tissues.The SNP association
analyses showed significant associations with linolenic and palmitic acids besides sev-
eral indexes. Among the polymorphisms that affect palmitic fatty acid and match the QTL
region at 60 cM, there were three that mapped in the Phosphatidylcholine transfer protein
(PCTP ) gene and one in the Acetyl-CoA Carboxylase ∝ gene (ACACA). Interestingly one of
the PCTP SNPs also affected significantly unsaturated and double bound indexes and the
ratio between polyunsaturated/monounsaturated fatty acids. Differential expression was
assessed on longissimus muscle conditional on the genotype of the QTL and on the most
significant SNPs, according to the results obtained in the former analyses. Results from
the microarray expression analyses, validated by RT-qPCR, showed that PCTP expression
levels significantly vary depending on the QTL as well as on the own PCTP genotype.
The results obtained with the different approaches point out the PCTP gene as a powerful
candidate underlying the QTL for palmitic content.
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INTRODUCTION
For several years, selection performed in most of the pig breeding
schemes increased the efficiency of lean tissue deposition at the
expense of back fat (BF) and intramuscular fat (IMF) content (De
Vries and Kanis, 1994). These changes are unsuitable for eating
quality of pig meat, because it is widely accepted that this latter
largely depends on the amount and type of fat in meat (Webb
and O’Neill, 2008). During the last decade, the selection objective
of some pig breeding nuclei shifted toward dual goals combining
carcass leanness and meat quality with a particular emphasis on
IMF content (Lonergan et al., 2001; Schwab et al., 2009). Besides
fat quantity, fatty acid composition is also a critical aspect of pork
because it influences the sensorial and technological aspects of
meat quality, such as juiciness, flavor, and tenderness (Wood et al.,
2008).

The presence of a high content of polyunsaturated fatty acids
(PUFA) is associated with low juiciness and can lead to abnor-
mal flavor and rancidity in meat by excessive oxidation of free

unsaturated fatty acids and production of undesirable volatile
compounds (Lawrence and Fowler, 1997). Unsaturated fatty acids
may undergo oxidation during the processing of dry-cured hams
and lead to flavor, color, and texture deterioration (Ventanas et al.,
2007). Dietary saturated fatty acids (SFA) are relevant nutrients for
human health since some SFA with 14 or 16 carbon atoms chain
length increase the level of plasmatic cholesterol and therefore
the risk of cardiovascular disease (Lichtenstein, 2003). PUFA-rich
diets play a cardiovascular health protective effect reducing choles-
terol levels in blood, although nutritionists tend to focus more on
the PUFA/SFA balance and the n−6/n−3 PUFA ratio rather than
the content of particular fatty acids (Jimenez-Colmenero et al.,
2010).

There are several studies reporting the role of genetic factors
on fatty acid composition of porcine fats. Classical studies of QTL
detection, using microsatellites genotyping data, have reported a
few QTLs for BF and IMF fatty acid composition. QTLs affecting
fatty acid composition of BF have been described on chromosomes
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1, 2, 4, 5, 7, 8, 9, 10, 12, 15, and 17 (Kim et al., 2006; Nii et al., 2006).
In addition, on porcine chromosomes 1, 3, 6, 7, 11, 12, 13, 14, 15,
and 16, QTLs affecting IMF fatty acid composition have also been
reported on different muscles from experimental and commercial
pig populations (Sanchez et al., 2007; Quintanilla et al., 2011).
Moreover, experimental research suggests that the genetic control
of fatty acid composition might be different at diverse fat and mus-
cle tissues (Muñoz et al., 2010; Uemoto et al., 2011). Among these
results, SSC12 has been one of the porcine chromosomes showing
consistent results. A previous work, focusing on SSC12 showed
two QTLs affecting different BF fatty acids (Muñoz et al., 2007)
and highly significant associations were found for two SNPs in the
Acetyl-CoA Carboxylase ∝ gene (ACACA). Recent availability of a
porcine genome wide SNP panel has prompted the genetic analy-
sis of complex traits trough the use of high-density genotyping
markers. In the current study, we have tried to identify regions in
SSC12 influencing intramuscular fatty acid composition by using
genotypes of SSC12 from high-density 60K porcine SNP Bead-
chip and combining linkage and association analyses approaches
as well as expression data analyses.

RESULTS AND DISCUSSION
QTL DETECTION
The total number of SNPs contained in the PorcineSNP60
Genotyping Bead Chip and potentially located in SSC12 was
around 1,200 SNPs, following Sscrofa10 annotation. After filter-
ing by genotype clustering quality, the number of available SNPs
decreased to 614. In addition, SNPs with a minor allele frequency
less than 0.15 and those that showed mapping errors (Muñoz et al.,
2011) were also discarded. In total, the genotyping information
from 374 SNPs was used for the different analyses performed in
this study. The SSC12 linkage map constructed with the infor-
mation of 374 SNPs displayed 91.46 cM length with a 0.25-cM
averaged distance between markers.

In order to perform the QTL scan along SSC12 for IMF
fatty acid composition traits (Table 1), three different mod-
els (a first one counting for additive and dominance effects, a
second one counting only for additive effects and a last one
counting only for dominant effects) were used and barely sig-
nificant additive effects were detected. A QTL region affecting
myristic, palmitic, and arachidonic fatty acids as well as the
indexes unsaturation (UI), double bound index (DBI), SFA, and
the ratio between polyunsaturated/monounsaturated fatty acids
(PUFA/MUFA) was detected with nominal P-values lower than
0.005. This region, around the 60-cM position, was limited by
ASGA0054160 and MARC0040388 probes (59–61 cM; Table 2).
Another QTL region affecting gadoleic fatty acid with a nominal
P-value lower than 0.005 was also identified around 17 cM (15–
20 cM). Moreover, the likelihood profile across chromosome 12
(Figure 1) showed other highly significant regions around the 40-
to 50-cM position for palmitic fatty acid, UI, and SFA. However,
additional analyses considering two QTL in the statistical model
did not reveal any significant evidence for a second QTL affecting
these traits.

When we calculated the chromosome-wise thresholds for cor-
recting multiple tests, only the QTL region for palmitic fatty acid,
UI, and SFA at 60 cM remained significant at FDR < 0.05 (Table 2).
The Q allele of this QTL region, which corresponds to the Iberian
parental breed in accordance to our experimental design, increased
the palmitic fatty acid content in a 2.6% of the mean trait. This
is the most abundant of the SFA and therefore the reported
effect is consistent with those observed on SFA and UI, equiva-
lent to a +2.4 and −5.6% of their respective mean traits. These
results are in accordance with phenotypical differences between
Iberian and Landrace described by Serra et al. (1998). The rele-
vance of these results comes from the important role of SFA and
in particular of palmitic fatty acid in human health and in the
organoleptic properties of pork. Palmitic acid is considered less

Table 1 | Phenotypic data analyzed in F3, BC1, and BC2 generations from Iberian × Landrace intercross (IBMAP).

Trait Mean SD Trait Mean SD

Carcass weight, CW (kg) 74.41 11.10 Eicosadienoic, C20:2 (n−6) 0.45 0.14

Intramuscular fat, IMF (%) 1.52 0.80 Eicosatrienoic, C20:3 0.45 0.25

Fatty acids content (%) Arachidonic, C20:4 (n−6) 2.55 1.55

Myristic, C14:0 1.19 0.19 Fatty acid indexes

Palmitic, C16:0 22.65 1.55 Average chain length, ACL 17.40 0.20

Palmitoleic, C16:1 (n−9) 0.36 0.08 Peroxidability, PI 26.27 9.42

Palmitoleic, C16:1 (n−7) 2.55 0.54 Double bond, DBI 0.84 0.09

Margaric, C17:0 0.24 0.07 Unsaturation, UI 2.24 0.35

Heptadecenoic, C17:1 0.45 0.50 SFA (%) 37.84 2.07

Stearic, C18:0 13.56 1.19 MUFA (%) 45.11 4.30

Oleic, C18:1 (n−9) 37.30 4.03 PUFA (%) 16.39 4.79

Vaccenic, C18:1 (n−7) 3.80 0.33 MUFA/SFA 1.19 0.11

Linoleic, C18:2 (n−6) 12.26 3.15 PUFA/SFA 0.44 0.15

Linolenic, C18:3 0.60 0.16 C20:4/C18:2 0.20 0.08

Arachidic, C20:0 0.22 0.08 (n−6)/(n−3) 29.11 8.80

Gadoleic, C20:1 (n−9) 0.70 0.19

SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid.
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Table 2 | Most relevant results of a QTL scan for fatty acid composition

of intramuscular fat.

Trait Position in cM (CI) aQTL (SE) P -value

C14:0, % 60 (59–61) 0.07 (0.02) 0.00150

C16:0, % 60 (59–61) 0.73 (0.18) 0.00005
†

C20:1, % 17 (15–20) −0.05 (0.01) 0.00150

C20:4, % 60 (59–66) −0.45 (0.14) 0.00140

DBI 60 (59–62) −0.03 (0.01) 0.00120

UI 60 (59–61) −0.13 (0.04) 0.00014
†

SFA 60 (59–61) 0.90 (0.24) 0.00019
†

PUFA/SFA 60 (59–61) −0.04 (0.01) 0.00230

CI, confidence interval at 95%; aQTL, additive effect of the QTL; †Threshold for

P-value < 0.0005 for FDR < 0.05.

FIGURE 1 | QTL significant profiles for different fatty acids and indexes

across SSC12. QTL regions affecting C14:0, C16:0, C20:1, and C20:4 fatty
acids and DBI, UI, SFA and PUFA/SFA indexes. For each test, on the y -axis
are −log10 of P -values using a model of one QTL and on the x -axis, the
position in cM. One of the cut off values is 3 representing a FDR = 0.10 and
the other is 3.30 corresponding to a FDR = 0.05.

hypercholesterolemic than other SFA with shorter carbon atoms
chain length, such as lauric (C12:0) and myristic (C14:0; Li and
Sinclair, 2002). An increase in the concentration of palmitic acid
and therefore in monounsaturated fatty acids could be positively
correlated with eating qualities (Cameron and Enser, 1991).

The QTL region detected in the present study does not match
any of those reported in our previous study concerning BF fatty
acid composition (Muñoz et al., 2007). This suggests that fatty
acid composition could be under different genetic control at each
tissue. Similar results were also reported by Uemoto et al. (2011)
in a whole-genome QTL analysis for fatty acid composition and
melting point of inner and outer subcutaneous fat, and inter and
intramuscular fat in a purebred Duroc population. There are

few published studies that focus on porcine QTL for fatty acid
composition but even fewer that focus on fatty acid composition
of IMF (Sanchez et al., 2007; Quintanilla et al., 2011; Uemoto
et al., 2011). Nevertheless, the study performed by Quintanilla
et al. (2011) in Duroc pigs revealed a significant QTL in SSC12
for SFA and another suggestive QTL for palmitic fatty acid in
longissimus thoracis et lumborum muscles at position 72–73 cM.
This QTL seems to be close to our QTL region, according to the
lengths of the chromosome estimated in both studies. However,
the study of Quintanilla et al. (2011) was conducted with a reduced
number of markers, only four microsatellites, along the chromo-
some which probably did not allow them to reach higher statistical
power and narrow confidence intervals. The QTL region identified
in our study displayed a 95% CI of 3.00 cM that corresponds to
only 0.99 Mb, according to the Sscrofa10 annotation. This narrow
CI should facilitate the identification of the candidate gene to carry
the causal mutation or mutations underlying this QTL.

SNP ASSOCIATION ANALYSIS
The SNP association analyses based on the actual allele frequen-
cies were carried out as an alternative approach to the classical
QTL detection based on the parent line origin. The analyses were
performed for the same traits that had previously been consid-
ered for the QTL detection (Table 2) and the same 374 selected
SNPs were used. A first survey of the results showed a total of
253 associations between SNPs and IMF fatty acid percentages
and indexes which displayed a nominal P-value lower than 0.05.
Twenty SNPs showed association with linolenic acid (C18:3, n−3),
74 with palmitic acid (C16:0), 52 with DBI, 63 with UI, and 44 with
PUFA/SFA (Tables A1–A5 in Appendix).

The associations detected for linolenic fatty acid content were
the most statistically significants, in fact 11 out of 20 SNP associ-
ations reached a q-value lower than 0.05 (Table A1 in Appendix).
It should be noted that 7 out of these 11 SNPs map very close
to each other, around physical position 11–21 Mb on the chro-
mosome (Figure 2), which indicates a genome region of around
10 Mb associated to this fatty acid that it was not detected in the
previous linkage analyses. Linolenic fatty acid constitutes one of
the most relevant PUFA as it is considered essential from a health
point of view. This fatty acid cannot be de novo synthesized by
monogastric animals but must be obtained from the diet. There-
fore, the observed genetic association could be explained by an
alteration in a gene related with the absorption, transformation
or transport of linolenic acid in such a way this would result in
an alteration of the amount of accumulated linolenic acid in IMF.
Although seven out of the associated SNPs are located in anno-
tated genes, none of them and neither the genes included in the
reported SSC12 11–21 Mb region, were related with fatty acids
transport or metabolism, except phosphatidylinositol transfer pro-
tein, cytoplasmic 1 gene (PITPNC1). PITPNC1, also known as
M-rdgB beta, encodes for a protein that belongs to the Nir/rdgB
family and is implicated in a broad spectrum of cellular functions
such as regulation of lipid trafficking, metabolism, and signal-
ing among others (Lev, 2004). However, the biological association
between this gene and the linolenic fatty acid content is not easy
to explain because protein domain/motifs within the RdgB pro-
teins have been identified by bioinformatic analyses and in no case
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(with the possible exception of the PITP domain of DrdgBα) has
their functional significance been experimentally tested (Trivedi
and Padinjat, 2007).

Out of the 74 SNPs associated with palmitic fatty acid, 49 of
them reached a q-value lower than 0.10 (Table A2 in Appendix).
The annotation of these 49 SNPs, following Sscrofa10, showed
that 20 are located in intergenic regions, 28 on introns of anno-
tated genes and one is not annotated. Since our linkage analysis
revealed a significant QTL for palmitic percentage, we decided to
center our attention on those SNPs with significant effects on the
palmitic fatty acid percentage and that could be ascribed to genes
mapped within or close to the QTL region that are potentially
related with fatty acid metabolism. Twenty out of the 49 SNPs are
mapped around the physical position of 30–40 Mb of chromo-
some SSC12. This would match the QTL region identified in the
previous analyses, around the 60-cM position, assuming a recom-
bination rate of 1.43 cM/Mb in SSC12 (Muñoz et al., 2011). Among
the significant SNPs included in this interval with a significant

FIGURE 2 | Association analyses between C18:3 fatty acid and 374

SNPs mapped in SSC12. Each dot represents one SNP. On the y -axis are
−log10 of P -values and on the x -axis, the physical position of the SNP in the
SSC12. Cut off value is 3.3 which represents a q = 0.10.

effect on palmitic content, there were three (ASGA0054039 T > C,
ASGA0054041 A > G, ASGA0054044 A > T) located in Phos-
phatidylcholine transfer protein (PCTP) gene and, another one
(ALGA0066302 G > A) located in the Acetyl-CoA Carboxylase ∝
(ACACA) gene (Table 3; Figure 3). Both genes are related to
lipid metabolism. PCTP, also known as STARD2, encodes for
a protein that takes part in lipid and phospholipids transport,
besides regulating genes like PPARG, PPARA, and CREBP that
encode proteins involved in fatty acid metabolism (Wirtz, 1991;
Kang et al., 2010a,b). The other gene, ACACA, encodes for an
enzyme that catalyzes the carboxylation of acetyl-CoA to mal-
onyl CoA and is the rate-limiting enzyme for long-chain fatty
acid synthesis. These results indicate that both genes are good
functional and positional candidate genes to carry the mutation
or mutations underlying the QTL for IMF palmitic fatty acid
percentage.

The double bond index (DBI) is a simple weighted average
of the number of double bonds per fatty acid molecule, which

FIGURE 3 | Association analyses between C18:3 (n−3) fatty acid and

374 SNPs mapped in SSC12. Each dot represents one SNP. On the y -axis
are −log10 of P -values and on the x -axis, the physical position of the SNP in
the SSC12. Cut off value is 1.6 which represents a q = 0.10.

Table 3 | Association analyses: significant effects of SNPs within candidate genes in the QTL region.

SNP MAF Trait aSNP (SE) P -value q-value

ACACA: ALGA0066302 G >A 0.46 C16:0, % −0.40(0.16) 0.009 0.077

PCTP: ASGA0054039 T > C 0.28 C16:0, % 0.43 (0.15) 0.005 0.073

UI −0.08 (0.03) 0.009 0.059

PCTP: ASGA0054041 A > G 0.46 C16:0, % 0.32 (0.13) 0.011 0.077

DBI −0.02 (0.01) 0.001 0.040

UI −0.08 (0.02) 0.001 0.058

PUFA/SFA −0.03 (0.01) 0.002 0.067

PCTP: ASGA0054044 A >T 0.25 C16:0 0.35 (0.15) 0.022 0.091

ACACA, acetyl-CoA carboxylase α; PCTP, phosphatidylcholine transfer protein.
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partially reflects, in other way, the fatty acid composition. Out of
the 52 SNPs associated with DBI, seven reached a q-value lower
than 0.05 and six of them matched the previously mentioned SNPs
that were significantly associated with palmitic fatty acid (Table A3
in Appendix). None of the seven SNPs map in genes related to fatty
acid metabolism except one (ASGA0054041), located in the PCTP
gene. This is also one of the SNPs that is associated with palmitic
fatty acid in the above association analysis although with an oppo-
site effect. The ASGA0054041G allele leads to a decrease of 0.02
units on the magnitude of double bonds, which in turn is consis-
tent with the 0.32% increase observed on saturated palmitic acid
(Table 3).

Seven out of the 63 SNPs associated with UI reached a q-value
lower than 0.10 (Table A4 in Appendix) and six out of them
match the SNPs showing association with DBI (q-value < 0.05).
They included again the ASGA0054041 SNP located in the PCTP
gene, which showed a significant effect on this index as well
consistently with the effect observed on palmitic fatty acid. The
ASGA0054041G allele leads to a reduction of 0.08 units of the
unsaturation index.

Finally, the analyses on the PUFA/SFA index showed that 7 out
of the 44 SNP associations overcame the threshold q-value of 0.10
(Table A5 in Appendix), the same seven SNPs that were associated
with UI. The ASGA0054041G allele leads to a reduction of the
ratio of 0.03 units as it was supposed to occur upon the observed
effects on palmitic, DBI, and UI.

These results indicate that the effects on the fatty acid indexes
are a direct consequence of the effect detected on the palmitic
fatty acid, the most abundant SFA. Moreover, the overall results
obtained for palmitic fatty acid, DBI, UI, and PUFA/SFA indexes
support the relevance of PCTP as the main candidate gene to
regulate the palmitic fatty acid content in IMF.

MARKER-ASSISTED ASSOCIATION TESTS
The classical QTL detection and the association analyses con-
ducted in the present study show complementary results. A highly
significant QTL for IMF palmitic fatty acid content has been iden-
tified by linkage analysis around position 30 Mb on SSC12, and
the standard association analyses have detected effects of SNPs
from two candidate genes mapping in this chromosomal region
(ACACA and PCTP) on palmitic fatty acid content and other
related indices (UI, DBI, PUFA/SFA). In addition, the associa-
tion analyses have revealed another chromosomal region, around
11–21 Mb on SSC12, associated with the linolenic fatty acid con-
tent and not identified previously by the linkage analyses, although
there is not a clear candidate gene to underlay this effect on IMF
linolenic acid.

The aim of positional candidate analyses is to verify whether
a particular mutation underlies or, at least, is closely linked to
the QTL. Experimental designs based on intercrosses between
divergent lines have a great power to detect QTL provided by
extensive linkage disequilibrium (LD) generated by the cross but
they also make it difficult to distinguish between causative and
neutral mutations (Varona et al., 2005). Therefore, we performed
additional analyses using a model which jointly tests QTL and
SNP of candidate genes, in order to reduce the rate of spurious
associations. Zhao et al. (2003) outlined that this marker-assisted

association test can exclude, in some cases, the confounding effect
of the extensive between-breed LD characteristic of intercrosses.

The three SNPs (ASGA0054039 T > C, ASGA0054041 A > G,
ASGA0054044 A > T) of the PCTP gene and the one located in the
ACACA gene (ALGA0066302 G > A) were tested using this model
for the traits showing significant associations. These mutations
display a similar frequency pattern in the parental breeds: fixation
of one allele in the Iberian line and segregation of the other two
alleles in the Landrace breed, with frequencies of the alternative
allele ranging from 0.42 to 0.75. The results of these additional
analyses are presented in Table 4. The significance of all the SNP
effects was increased compared to the results of standard associ-
ation analyses. In contrast, the results of the QTL scan (Table 2)
shows that the inclusion in the model of the ACACA SNP reduced
the significance of QTL effect on C16:0 (dropped from 10−5 to
10−3). Similarly, PCTP SNPs effects reduced the significance of
QTL effects for all the analyzed traits. The QTL for PUFA/SFA dis-
appeared when the PCTP : ASGA0054041 A > G polymorphism
was included in the model (Figure 4).

Moreover, high LD between the PCTP SNPs was observed
(Figure 5) using Haploview software v4.2 (Barrett et al., 2005).
Three different haplotypes could be distinguished: TAA, CGT
and CAT with frequencies of 0.40, 0.44, and 0.16 respectively.
Additional association analyses with both standard animal and
marker-assisted models were carried out for these haplotypes and
the palmitic content. The results showed that although haplotypes
were significantly associated with the trait, the significance was
lower than those performed with the individual SNPs. Moreover,
the analysis with the joint QTL and haplotype model showed that
the inclusion in the model of the haplotype effects reduced the
significance of QTL effects much less than those observed with the
individual SNPs. These results suggest a close linkage of these SNPs
to the causative mutation that could be particularly remarkable

FIGURE 4 | QTLs significance profiles for C16:0 fatty acid across SSC12

using different models. For each test, on the y -axis are −log10 of P -values
and on the x -axis, the position in cM. Each line represents one QTL test
using a different model. The continuous red line represents the test using a
model of one QTL and the different red dash lines represent different tests
using the model of marker-assisted association with four SNPs, three of
them located within PCTP gene (ASGA0054039T > C, ASGA0054041A > G,
ASGA0054044A >T) and one in ACACA gene (ALGA0066302G >A).
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Table 4 | Marker-assisted association tests: Results for ACACA and PCTP SNPs significantly associated for fatty acid composition in previous

analyses.

SNP Trait aSNP (SE) P -value cM aQTL (SE) P -value

ACACA: ALGA0066302 G >A C16:0 −0.43 (0.14) 0.0065 60 0.56 (0.19) 0.0040

PCTP: ASGA0054039 T > C C16:0 0.47 (0.16) 0.0029 60 0.54 (0.23) 0.0162

UI −0.09 (0.03) 0.0044 60 −0.10 (0.05) 0.0195

PCTP: ASGA0054041 A > G C16:0 −0.34 (0.13) 0.0070 60 0.68 (0.21) 0.0019

UI −0.09 (0.03) 0.0006 60 −0.09 (0.04) 0.0015

DBI −0.02 (0.01) 0.0005 60 −0.02 (0.01) 0.0740

PUFA/SFA −0.03 (0.01) 0.0005 60 0.03 (0.02) 0.1050

PCTP: ASGA0054044 A >T C16:0 0.38 (0.16) 0.0140 60 0.71 (0.25) 0.0041

aSNP, additive effect of the SNP; aQTL, additive effect of QTL.

FIGURE 5 | Haplotype diagram of the region located between 59.4 and

61.29 cM. Description of linkage block of PCTP SNPs (ASGA0054039 T > C,
ASGA0054041A > G, ASGA0054044A >T) is described below.

for the ASGA0054039 SNP of the PCTP gene because the mag-
nitude of the SNP effect on C16:0 is the highest and the SNP
inclusion in the marker-assisted test produces a greater decrease
in the LR maximum value of the QTL than the other SNPs tested
(Table 4).

These results contrast with those obtained in our previous
study conducted on BF where the most significant associations
were found for two ACACA SNPs with stearic, palmitoleic, and
vaccenic fatty acid concentrations (Muñoz et al., 2007). Gal-
lardo et al. (2009) also detected significant associations between
two linked ACACA SNPs and percentages of saturated (myristic,

palmitic, and stearic) and polyunsaturated (linoleic) fatty acids in
the longissimus thoracis and lumborum muscle of Duroc pigs. These
results support the hypothesis that there is a different genetic con-
trol of fatty acid composition acting at IMF and BF tissues. This
is the first time that significant and consistent effects on the IMF
fatty acid composition are described for the PCTP gene.

GENE EXPRESSION ANALYSIS
The combination of gene expression with linkage and association
data offers new options to maximize the success in the selection of
candidate genes. In the present study, we have evaluated the longis-
simus muscle differential gene expression following two strategies:
(a) conditional on the QTL genotype at the 60-cM genetic posi-
tion of SSC12, and (b) conditional on the genotype of the most
relevant SNPs according to the previous analyses.

In the first analysis, individuals were classified into two groups
based on their probability of being Qq or qq for the QTL detected
at 60 cM in SSC12. All the animals could be classified in one of
the groups. This was considered a discontinuous effect in the sta-
tistical analysis model with two levels: (1) if the probability of
being Qq was >0.9 and (2) if the probability of being qq was
>0.9. Note that the gene expression analyses were carried out in
samples of longissimus muscle from the BC2 pigs, which corre-
sponds to the backcross of F1 animals (Qq) with Landrace (qq),
therefore only Qq and qq genotypes could be used. A total of 18
differentially expressed (DE) probes were detected with posterior
probability (PP) lower than 0.001 and an expression ratio over
1.1 (Table A6 in Appendix). All except one of the DE probes were
annotated to known genes; 11 out of them were assigned to SSC12.
Moreover, three of these genes map close or within the CI of the
QTL, and one of them, the PCTP gene, is related to the fatty acid
metabolism. This PCTP probe (Ssc.22988.1.S1_at) displayed an
expression ratio between Qq and qq genotypes of 0.77.

The second strategy for the analysis of the gene expres-
sion was based on the genotype of one SNP located in
the ACACA gene (ALGA0066302 G > A) and three SNPs in
the PCTP gene (ASGA0054039 T > C, ASGA0054041A > G,
ASGA0054044A > T). The genotype was introduced as a covari-
ate into the statistical model that assumes values 0, 1, or 2 for
the number of allelic copies. The analyses of the differential gene
expression conditional on the ACACA SNP (ALGA0066302 G > A)
showed 13 DE probes with a PP < 0.001 and an expression ratio
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over 1.1. All the probes were annotated but none of the genes have
been biologically related with fatty acid metabolism (Tables A7 in
Appendix and Table 5).

The analyses of the differential gene expression conditional on
the three PCTP SNPs showed consistent results. Note that, the
SNPs PCTP ASGA0054044A > T and ASGA54039T > C appeared
cosegregating in the BC2 animals used for the expression analyses.
The analysis conditional on the PCTP ASGA54039C allele copy
number showed seven DE probes with PP < 0.001 and an expres-
sion ratio over 1.1 (Table A8 in Appendix). All the seven DE probes
could be annotated and mapped. Among the identified genes, two
map on SSC12 close to the CI of the QTL at 60 cM, which were
Cytochrome C oxidase assembly homolog gene (COX11) and again
the PCTP gene. Moreover, the PCTP gene resulted the most sig-
nificantly DE. The expression ratio in the untransformed scale of
1.21 for PCTP transcript indicates an increase in expression of
21% produced by 1 SD (σ = 0.51 copies), therefore one copy of
the ASGA54039C allele would lead to an increased expression of
up to 41% (Table 5).

Similar results were obtained in the analysis performed accord-
ing to the PCTP ASGA54041G allele copy number. A total of
21 probes showed differential expression with PP < 0.001 and an
expression ratio over 1.1 (Table A9 in Appendix). All the probes
could be annotated and six genes were assigned to SSC12, from
which five map on the region close to CI of the QTL at 60 cM.
Again PCTP and COX11 probes resulted the most significantly
DE (Table 5). The expression ratio of 1.34 for the PCTP tran-
script indicates an increase of its expression (+31%) produced by
1 SD (σ = 0.66 copies), therefore one copy of the ASGA54041G
allele would lead to an increased expression of up to 50% and two
copies would duplicate the effect (Table 5).

In human both genes, PCTP and COX11, map very close to
each other and also to a third gene, the hepatic leukemia fac-
tor (HLF) that codes the transcription factor HLF. Flowers et al.
(2008) compared the DE of healthy mice to that of mice deficient
in stearoyl-CoA desaturase-1 (Scd1) and observed that the latter
displayed reduced expression levels for genes involved in detox-
ification and several facets of fatty acid metabolism including
biosynthesis, elongation, desaturation, oxidation, transport, and
ketogenesis. Among them, the HLF gene was one of the repressed
genes. In addition, it is known that the coexpression of closing
mapping genes involved in a similar mechanism could indicate a

participation of a shared common transcription factor in the reg-
ulation of such genes. Our expression results could indicate that
a common expression regulation mechanism, as a transcription
factor such as HLF, could regulate both PCTP and COX11 gene
expressions.

In order to validate the results of the microarray analy-
sis, PCTP gene expression was quantified by using Real Time
PCR in 28 BC2 pigs classified according to their genotypes for
ASGA54039T > C and ASGA54041A > G SNPs. The three geno-
types of ASGA54041A > G were represented in the sample set but
for ASGA54039T > C only CC homozygous and CT heterozygous
were available. The analysis of the expression data confirmed the
results obtained with the microarray assay. The expression of the
PCTP transcript was higher in ASGA54039CC animals than in
CT ones (P < 0.05). Moreover, the analysis conditional on the
ASGA54041A > G genotype revealed an increase of the PCTP
transcript expression with each copy of the G allele (P < 0.001;
Figure 6).

In the association analysis, the false discovery rate applied for
correcting multiple test only took into account the number of
tested SNPs, although a more rigorous analysis should also con-
sider the number of analyzed traits, which are very correlated.
Nevertheless, the magnitude of the observed effects of PCTP and
ACACA SNPs, let us to perform further analyses that supported
the reliability of our analyses. The joint results obtained from the
association and expression analyses point out the PCTP gene as a
powerful gene to carry the mutation underlying the QTL detected
in the present study for IMF palmitic fatty acid content at 60 cM in
SSC12. Since all the analyzed PCTP SNPs map in intronic regions it
is unlikely that they have any functional effect. However we cannot
discard the possibility that intronic polymorphisms could affect
transcriptional regulation if they reside in enhancer regions or
might create alternative splicing sites and thereby change protein
structure or function if they were near exon–intron boundaries.
Another possibility, according to the expression results, may be
that the causal mutation, in LD with the analyzed SNPs, would be
localized in a nearby regulatory element shared by both PCTP and
COX11 genes, such as the HLF transcription factor. In any case, a
comprehensive analysis of the PCTP gene including characteriza-
tion of his coding, untranslated, and promoters/enhancers regions
is needed in order to identify the causal mutation underlying the
QTL affecting IMF fatty acid composition.

Table 5 | Relevant DE genes on longissimus muscle according to the SNP genotypes of ACACA and PCTP genes affecting palmitic acid content.

SNP D.E. genes

Affymetrix probe ID Gene Posterior probability Ratioa

ACACA: ALGA0066302 G >A – – – –

PCTP: ASGA0054039 T > C Ssc.22988.1.S1_at PCTP
†
3.34 × 10−11 1.21

Ssc.5902.1.A1_at COX 11
†
1.16 × 10−8 0.83

PCTP ASGA0054041 A > G Ssc.22988.1.S1_at PCTP
†
4.25 × 10−14 1.34

Ssc.5902.1.A1_at COX 11
†
7.40 × 10−9 0.78

aEffect on expression of the SD of the SNP allele copy number in the untransformed scale; σ = 0.51 for ASGA0054039 T > C and σ = 0.66 for ASGA0054041

A > G † FDR < 0.10.
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FIGURE 6 | Phosphatidylcholine transfer protein gene expression using

RT-qPCR conditional on the genotypes of PCTP SNPs (ASGA0054039

T > C, ASGA0054041A > G). PCTP gene expression conditional on
genotypes of (A) ASGA0054039 T > C and (B) ASGA0054041 A > G).

CONCLUSION
Different approaches have been conducted employing the SNPs
information of SSC12 contained in the high-density 60K porcine
SNP array with the aim of identifying SSC12 regions affecting the
IMF fatty acid composition. The different methods have yielded
consistent results. A significant QTL at the 60-cM position of
SSC12 has been detected, mainly affecting the IMF palmitic fatty
acid (C16:0) percentage. This QTL does not match any of the
ones reported in our own previous study concerning BF fatty acid
composition, suggesting different genetic control mechanism act-
ing at both tissues. The overall association analyses results suggest
that the PCTP gene is a powerful candidate to carry the mutation
underlying this QTL. Particularly remarkable is the significant
association of the PCTP ASGA0054039 SNP with palmitic fatty
acid percentage. Gene expression analyses conditional on the QTL
genotypes as well as conditional on PCTP SNP genotypes have
revealed differential expression of the own PCTP transcript. Since
all the analyzed PCTP SNPs are located in intronic regions it is
unlikely that they have any functional effect, therefore the poten-
tial causative mutation would probably be located in a regulatory
region of PCTP gene.

MATERIALS AND METHODS
ANIMAL SAMPLES AND GENOTYPING
Animals from an experimental cross of Iberian × Landrace pig
lines, known as IBMAP material (Ovilo et al., 2000, 2010), were

used. Animal management and experimental assays were per-
formed with standard procedures following internationally recog-
nized guidelines and with the approval of the funding institutions
ethics committee. The population was established from 3 F0 Iber-
ian sires and 30 F0 Landrace dams and includes 70 F1, 403 F2,
56 F3, and 227 individuals from two backcrosses (79 from BC1
and 148 from BC2). Intramuscular fatty acid composition records
were measured by gas chromatography in 200 g of longissimus
dorsi samples taken from F3 and backcrosses animals (Table 1).
Indexes (UI, AC, DBI, PI, and C20:4/C18:2 ratio) were calculated
as described in Pamplona et al. (1998). A total number of 416
animals, from 62 families, belonging to the F3 and backcross gen-
erations of the IBMAP experimental cross were genotyped with
the PorcineSNP60 Genotyping Bead Chip (Illumina) using the
Infinium HD Assay Ultra protocol (Illumina). Raw individual data
had high-genotyping quality (call rate > 0.99). The SNPs with call
rates less than 0.85, those with a minor allele frequency less than
0.15, those located in sex chromosomes or those not mapped in the
Sscrofa10 assembly were removed. Genotype quality filtering was
performed using GenomeStudio software and the SNPs selection,
filtering by allele frequency and position was done using PLINK
software (Purcell et al., 2007).

LINKAGE MAPPING AND QTL DETECTION
A sex-averaged SSC12 linkage map was constructed using the
option Fixed of the updated CRI-MAP v2.5021 (Green et al.,
1990) as described in Muñoz et al. (2011). The order given to
the SNPs within the chromosome followed the physical order of
the Sscrofa10 assembly. QTL scanning was performed with the
following models:

yi = sexi + batchi + βcci + PaiaQTL + PdidQTL + ui + ei

yi = sexi + batchi + βcci + PaiaQTL + ui + ei

yi = sexi + batchi + βcci + PdidQTL + ui + ei

where y i is the i-th individual record; batch is the slaughter batch
(eight in total); βc is a covariate coefficient with c i being car-
cass weight; aQTL is the QTL additive effect; Pai is the additive
coefficient calculated as Pai = Pr(QQ) − Pr(qq), the probability of
the i-th individual being homozygous for alleles of Iberian origin
minus the probability of being homozygous of alleles of Landrace
origin; dQTL is the QTL dominant effect; Pdi is the additive dom-
inant calculated as Pdi = Pr(Qq); ui is the infinitesimal genetic
effect; and e i is the random residual. A similar model fitting two
different QTL effects was used for performing complementary
analyses to check the hypothesis of a second QTL mapping in the
same chromosome:

yi = sexi + batchi + βcci + Pa1iaQTL1 + Pa2iaQTL2 + ui + ei

All the statistical analyses were performed using the Qxpak
v.5.1 software (Perez-Enciso and Misztal, 2011). A total number
of 374 markers were employed for calculating Pai and Pdi coef-
ficients. Likelihood ratio tests (LRT) were calculated comparing

1http://www.animalgenome.org/bioinfo/tools/share/crimap/
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the full model and a reduced model without the corresponding
QTL effect. The nominal P-values were calculated assuming a χ2

distribution of the LRT with the degrees of freedom given by the
difference between the number of estimated parameters in the
reduced and full models. The procedure of Benjamini and Yeku-
tieli (2005) based on the P-values of the multiple tests was used
for controlling the false discovery rate (FDR) at a desired level. As
it is recommended for QTL analysis, the chromosome positions
with FDR < 0.05 were considered harboring significant QTL and
those with FDR < 0.10 would fit suggestive QTL.

SNP ASSOCIATION ANALYSIS
For the association analysis of the 374 available markers, the
following standard animal model was used:

yi = sexi + batchi + βcci + λikgk + ui + eik

where λik is a vector 374 × 1 that includes an indicative variable
related with the number of copies of one of the alleles of the kth
SNP, which takes values of 1 or −1 when the i-th animal was
homozygous for each allele or 0 if the animal was heterozygous;
g k represented the additive effect of kth SNP. Multiple testing was
performed and the number of tests (374) was the same as the num-
ber of analyzed SNPs. False discovery rate (FDR) was applied for
correcting the multiple testing. The Q-value 1.0 software (Storey
and Tibshirani, 2003) was used to calculate a FDR-based q-value
in order to measure the statistical significance at the chromosome-
wide level. The cut off of significant association at chromosome
level was set at q-value ≤ 0.10. Additional analyses were performed
for specific SNPs with significant association results in the previous
analysis, using the following model of marker-assisted association
test proposed by Zhao et al. (2003) in which both the QTL and
SNP effects are considered:

yi = sexi + batchi + βcci + PaiaQTL + λik gk + ui + eik

Likelihood ratio tests for QTL and SNP effects were separately
calculated comparing the appropriate full and reduced models.
The SNPs significantly associated were mapped in the Sscrofa10
assembly. Gene annotations were retrieved from the Ensembl
Genes 62 Database and confirmed after BLAST search against the
human database2.

MICROARRAY DATA ANALYSIS
Expression data were obtained of longissimus dorsi muscle sam-
ples from 100 RC2 individuals, using GeneChip Porcine Genome
arrays (Affymetrix, Boston, MA, USA). Total RNA extraction,
microarray hybridization, and scanning were performed according
to Affymetrix protocols by Casellas et al. (2011). Expression data
were generated with Affymetrix GCOS 1.1.1 software. Microarray
data quality evaluation was carried out with AffyPLM software
(Bioconductor)3. Data normalization was conducted to reduce
technical variations between chips through Gene Chip Robust
Multi-Array Average algorithm using BRB-Array Tools software

2http://blast.ncbi.nlm.nih.gov/Blast.cgi
3http://www.bioconductor.org

(version 3.6.0)4. Normalized microarray expression data (back-
ground corrected and base-2 logarithmic-transformed) were ana-
lyzed through Bayesian inference using the GEAMM v.1.6 program
(Casellas et al., 2008). The following model was used for searching
the effects on expression data of different QTL or SNP genotypes:

y = Xa +
n∑

i=1

ZiDi+
m∑

j=1

cjβj + e

where y (pq × 1 elements) is the vector of gene expression data
sorted by array (q = 100) and probe within array (P = 24,123),
and influenced by the overall effect of each array (a), as well as
discrete (Di), and continuous (βj) within-probe effects both with
dimensions 1 × P. Sex and batch discrete effects and carcass weight
continuous effect are fitted in the model for all the performed
analyses. Different classifications were adopted conditional on the
QTL genotypes (as discrete effect) and on SNP genotypes (as con-
tinuous effect with values 0, 1, or 2 according to the number of
copies of the most frequent allele). A priori distribution for Di and
βj are assumed multivariate normal and a priori distributions for
the remaining parameters in the model are assumed flat. All the
unknowns in the model were sampled from their joint posterior
distribution by Gibbs sampling (Gelfand and Smith, 1990). Addi-
tional details of the performed Bayesian procedure are reported
by Casellas et al. (2008).

Inferences were made on the probe-specific difference between
Di levels or on the regression coefficients in βj from the appropriate
posterior distributions summarized by its mean, SD, and PP above
(negative mean) or below (positive mean) zero. Posterior probabil-
ities were treated as P-values for calculating their maximum value
under multiple testing within the FDR approach of Benjamini
and Hochberg (1995). The probes that displayed FDR < 0.10,
PP < 0.001, and whose expression ratio in the untransformed scale
was over 1.10 were assumed to present differential expression.

Expression probe annotation was conducted using the updated
data file of Tsai et al. (2006). A functional assignation of the DE
genes was performed using gene ontology (GO) information. The
resulting list was assessed through database for annotation, visual-
ization, and integrated discovery (DAVID)5 in order to investigate
their functional implications.

RNA ISOLATION AND QUANTITATIVE REAL-TIME PCR ANALYSIS
Longissimus dorsi samples were used to obtain total RNA using
the RiboPure™RNA isolation kit (Ambion, Austin, TX, USA) fol-
lowing the manufacturer’s recommendations. RNA obtained was
quantified using NanoDrop equipment (NanoDrop Technologies,
Wilmington, DE, USA) and RNA quality was assessed with an
Agilent bioanalyzer device (Agilent Technologies, Palo Alto, CA,
USA). The RNA integrity number (RIN) values obtained were in
the range of 8.0–9.0, assuring the homogeneity and high quality
of the samples.

Quantitative Real Time PCR was used to validate microarray
expression data of PCTP gene. A subset of 28 individuals was

4http://linux.nci.nih.gov/BRB-ArrayTools.html
5http://david.abcc.ncifcrf.gov
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analyzed. First-strand cDNA synthesis was carried out with Super-
script II (Invitrogen, Carlsbad, CA, USA) and random hexamers in
a total volume of 20 μl containing 1 μg of total RNA and following
the supplier’s instructions. Quantitative Real Time PCR was run
on an MX3000P sequence detector (Stratagene, La Jolla, CA, USA)
using cycling parameters defined by the manufacturer. Reactions
consisted of 1× SYBR Green PCR master mix (Takara), 0.15 mM
of each primer (Forward 5′-GTTGGGGATGTTGAAGGGATAAT-
3′; Reverse 5′-GAGAAAAGTAGGACACGGGAAGC-3′), 2.5 μl of
1/20 dilution cDNA, and 0.4 μl of ROXII reference dye in a reac-
tion volume of 20 μl. A no-template control was also included.
Cycling conditions were 95˚ for 10 min followed by 40 cycles of
95˚ (15 s) and 60˚ (1 min). Finally a dissociation curve to test PCR
specificity was generated by one cycle at 95˚ (15 s), 60˚ (1 min), and
was ramped up (0.01˚/s) to 95˚. Data were analyzed with MxPro
software (Stratagene). All points and samples were run in triplicate
as technical replicates and dissociation curves were carried out for
each individual replicate. Specific amplification was confirmed by
single peaks observation on dissociation curves. PCR efficiency of
each gene was estimated by standard curve calculation using four
points of 10-fold cDNA serial dilutions. All PCR efficiencies were

greater than 95%. Ct values were transformed to quantities using
the comparative Ct method, setting the highest relative quanti-
ties for each gene to 1 (Qty = 10−ΔCt/slope). Data normalization
was carried out using Glyceraldehyde-3-Phosphate Dehydrogenase
(GAPDH ) and Beta-2 Microglobulin (B2M ) as reference genes.
Gene expression relative measures obtained by RT-qPCR were ana-
lyzed conditional on genotypes of the PCTP ASGA0054039T > C
and ASGA0054041A > G SNPs with a t -test.
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APPENDIX

Table A1 | Association analysis.

SNP MAF Position (Mb) Gene aSNP P -value

M1GA0016816 A > G 0.47 46.00 – −0.049 0.000110

ALGA0065344 A > G 0.29 17.46 C17orf 57 −0.057 0.000118

ALGA0065346 A > G 0.29 17.51 ITGB3 0.057 0.000118

ASGA0053496 C >T 0.29 17.55 ITGB3 −0.057 0.000118

H3GA0033448 C >T 0.46 11.41 – −0.056 0.000124

MARC0112715 A > G 0.34 16.78 – −0.053 0.000141

ASGA0055028 C >T 0.17 53.09 PITPNM3 −0.056 0.000151

ALGA0065461 C >T 0.38 19.41 C1QL1 0.046 0.000286

ALGA0066217 C >T 0.27 36.47 – −0.039 0.000300

ALGA0066658 A > G 0.19 46.86 NLK −0.040 0.000325

MARC0026665 A > G 0.22 20.74 DHX 8 0.051 0.000442

ALGA0066707 C >T 0.16 50.29 RPA1 −0.090 0.009930

H3GA0034580 A > C 0.16 50.41 – −0.090 0.009930

CASI0009186 C >T 0.17 49.89 – −0.082 0.020300

ASGA0054824 A > G 0.35 47.70 – −0.059 0.021500

ALGA0065841 C >T 0.26 29.86 – 0.057 0.028100

ASGA0054669 A > G 0.46 43.93 – −0.049 0.028300

ASGA0052681 A > G 0.40 7.20 – −0.060 0.040100

ASGA0098632 C >T 0.39 16.24 – 0.039 0.048600

H3GA0034686 G >T 0.40 53.14 – −0.042 0.049000

SNPs with significant effects on linolenic fatty acid (P-value < 0.05).
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Table A2 | Association analysis.

SNP MAF Position (Mb) Gene aSNP P -value

MARC0054687 A > G 0.37 29.03 – −0.094 0.000698

MARC0008574 C >T 0.47 32.88 – −0.077 0.001240

ASGA0054041 A > G 0.47 33.17 PCTP −0.077 0.001240

ASGA0089300 G >T 0.46 33.64 – −0.077 0.001240

MARC0044696 A > C 0.48 31.48 – −0.078 0.001260

ASGA0054453 A > C 0.26 40.82 – −0.084 0.001330

ALGA0065826 G >T 0.48 29.09 – 0.081 0.001560

DRGA0011659 C >T 0.30 22.74 – −0.082 0.003150

ALGA0065995 A > C 0.18 33.73 ANKFN1 0.09 0.004470

CASI0006966 A > C 0.45 28.38 – −0.073 0.004820

H3GA0034677 A > G 0.45 53.04 PITPNM −0.074 0.005770

DIAS0001882 A > G 0.32 24.70 NPEPPS 0.072 0.005980

M1GA0017195 C >T 0.33 61.50 – −0.071 0.007330

ALGA0104556 C >T 0.27 29.65 – −0.079 0.008700

ALGA0065925 A > G 0.28 32.63 – −0.078 0.009050

DRGA0011696 G >T 0.25 31.74 – 0.081 0.009270

ALGA0065904 A > G 0.25 32.08 – 0.081 0.009270

M1GA0017119 A > G 0.39 61.17 – −0.063 0.009550

ALGA0065876 C >T 0.28 31.61 – 0.078 0.00960

H3GA0034902 A >T 0.31 58.50 – −0.067 0.01080

ASGA0053778 A > G 0.25 24.99 – −0.072 0.01160

MARC0021670 A > G 0.44 36.97 – 0.061 0.01220

ALGA0065773 A > G 0.26 27.79 MYCBPAP −0.071 0.01670

H3GA0033984 C >T 0.26 27.81 SPATA20 −0.071 0.016700

H3GA0033980 A > G 0.26 27.85 CACNA1G 0.071 0.016700

ALGA0065691 A > G 0.32 25.90 – −0.071 0.019300

MARC0093870 A > G 0.33 14.16 – 0.060 0.021100

ASGA0101438 C >T 0.26 59.22 – 0.055 0.022100

ALGA0065527 A > G 0.24 20.61 – −0.065 0.024300

ASGA0053456 C >T 0.23 16.70 MARCH10 −0.068 0.026600

ASGA0053428 A > C 0.38 15.90 – 0.063 0.027200

ALGA0066610 C >T 0.30 45.55 – 0.088 0.028900

MARC0009546 C >T 0.25 59.17 – 0.066 0.030100

M1GA0016745 A > G 0.44 43.74 – 0.066 0.030400

DIAS0004710 A > G 0.46 15.87 – −0.051 0.030800

MARC0037857 A > G 0.26 34.77 – −0.061 0.030900

DIAS0003416 A > G 0.38 59.53 – 0.052 0.031200

ALGA0067326 C >T 0.18 63.85 – 0.069 0.032200

ASGA0053830 C >T 0.29 26.00 TTLL6 −0.070 0.032400

ASGA0055015 A > G 0.33 52.89 – −0.067 0.032600

MARC0045984 C >T 0.37 34.38 – −0.054 0.035100

SIRI0000304 A > C 0.48 13.47 – 0.055 0.035500

ASGA0054044 A >T 0.25 33.19 PCTP −0.062 0.036500

MARC0055851 G >T 0.39 23.80 – −0.055 0.036600

MARC0013841 C >T 0.30 15.85 – −0.066 0.037300

ASGA0053899 A > G 0.34 27.97 – 0.059 0.038100

MARC0040976 A > G 0.21 16.67 MARCH10 0.066 0.039700

M1GA0016298 C >T 0.45 15.73 FTSJ3 0.049 0.039900

H3GA0033448 C >T 0.46 11.41 – −0.060 0.042600

ASGA0088871 A > G 0.24 53.43 – 0.058 0.044300

H3GA0033801 A > G 0.33 20.20 – −0.053 0.044500

ASGA0053416 A > G 0.43 15.65 SCN4A 0.052 0.044800

(Continued)
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Table A2 | Continued

SNP MAF Position (Mb) Gene aSNP P -value

DIAS0004787 A > G 0.39 23.99 – 0.053 0.045800

H3GA0034675 A > G 0.38 52.96 KIAA0753 −0.060 0.046000

ALGA0065337 A > C 0.44 17.24 – −0.050 0.047500

MARC0053916 C >T 0.44 17.28 C17orf 57 −0.050 0.047500

MARC0053916 C >T 0.44 17.28 C17orf 57 −0.050 0.047500

MARC0036876 A > C 0.44 17.53 ITGB3 0.050 0.047500

ASGA0053505 A > G 0.44 17.58 – 0.050 0.047500

ALGA0065366 A > G 0.44 17.59 MYL4 −0.050 0.047500

ASGA0053547 C >T 0.44 17.99 – 0.050 0.047500

DRGA0011754 G >T 0.46 39.92 GGNBP2 0.052 0.047900

H3GA0035092 A > G 0.16 63.77 – 0.064 0.048400

ASGA0055477 C >T 0.16 63.80 – 0.064 0.048400

SNPs with significant effects on palmitic fatty acid (P-value < 0.05).
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Table A3 | Association analysis.

SNP MAF Position (Mb) Gene aSNP P -value

MARC0054687 A > G 0.37 29.03 – −0.023 0.000353

MARC0044696 A > C 0.48 31.48 – −0.018 0.000912

DRGA0011659 C >T 0.30 22.74 – −0.021 0.000937

ALGA0065826 G >T 0.48 29.09 – 0.019 0.000937

MARC0008574 C >T 0.47 32.88 – −0.018 0.001030

ASGA0054041 A > G 0.47 33.17 PCTP −0.018 0.001030

ASGA0089300 G >T 0.46 33.64 – −0.018 0.001030

M1GA0017195 C >T 0.33 61.50 – −0.020 0.002330

ALGA0065995 A > C 0.18 33.73 ANKFN1 0.021 0.003170

DRGA0011696 G >T 0.25 31.74 – 0.020 0.003180

ALGA0065904 A > G 0.25 32.08 – 0.020 0.003180

H3GA0034677 A > G 0.45 53.04 PITPNM −0.017 0.005090

M1GA0017119 A > G 0.39 61.17 – −0.016 0.007430

DIAS0001882 A > G 0.32 24.70 NPEPPS 0.019 0.007450

ALGA0104556 C >T 0.27 29.65 – −0.018 0.007530

CASI0006966 A > C 0.45 28.38 – −0.017 0.007870

ALGA0065691 A > G 0.32 25.90 – −0.017 0.007970

ASGA0054453 A > C 0.26 40.82 – −0.017 0.008250

ALGA0065876 C >T 0.28 31.61 – 0.017 0.008380

ALGA0065925 A > G 0.28 32.63 – −0.017 0.008860

ASGA0053778 A > G 0.25 24.99 – −0.016 0.009120

ALGA0067326 C >T 0.18 63.85 – 0.018 0.011200

MARC0055851 G >T 0.39 23.80 – −0.014 0.011800

MARC0021670 A > G 0.44 36.97 – 0.015 0.012100

H3GA0033448 C >T 0.46 11.41 – −0.016 0.012900

ALGA0065527 A > G 0.24 20.61 – −0.015 0.013800

H3GA0035092 A > G 0.16 63.77 – 0.017 0.015500

ASGA0055477 C >T 0.16 63.80 – 0.017 0.015500

DIAS0004787 A > G 0.39 23.99 – 0.014 0.016000

MARC0037857 A > G 0.26 34.77 – −0.014 0.019600

MARC0010590 G >T 0.28 25.89 – −0.017 0.019900

H3GA0034902 A >T 0.31 58.50 C17orf 48 −0.014 0.020600

ASGA0053830 C >T 0.29 26.00 TTLL6 −0.015 0.022100

M1GA0016745 A > G 0.44 43.74 – 0.015 0.022300

ASGA0055015 A > C 0.33 52.89 – −0.014 0.023700

ALGA0065773 A > G 0.26 27.79 MYCBPAP −0.016 0.026700

H3GA0033984 C >T 0.26 27.81 SPATA20 −0.016 0.026700

H3GA0033980 A > G 0.26 27.85 CACNA1G 0.016 0.026700

ASGA0054044 A >T 0.25 33.19 PCTP −0.013 0.026700

ASGA0054864 A > G 0.31 50.31 RPA1 0.013 0.028100

ASGA0053715 A > C 0.26 22.80 KRT 20 0.012 0.028300

H3GA0034675 A > G 0.38 52.96 KIAA0753 −0.013 0.028500

H3GA0033953 A > C 0.25 26.85 – −0.012 0.030400

ALGA0066610 C >T 0.30 45.55 – 0.018 0.032600

H3GA0034044 C >T 0.21 32.32 – 0.016 0.035100

ASGA0101438 C >T 0.26 59.22 – 0.012 0.037400

ALGA0067033 C >T 0.36 56.94 PI3R5 −0.012 0.037700

ASGA0053428 A > C 0.38 15.90 DDX 42 0.015 0.038500

MARC0093870 A > G 0.33 14.16 – 0.013 0.040800

ASGA0098632 C >T 0.39 16.24 – 0.009 0.041700

SIRI0000304 A > C 0.48 13.47 – 0.011 0.044000

H3GA0033801 C >T 0.33 20.20 – −0.013 0.047700

SNPs with significant effects on DBI (P-value < 0.05).
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Table A4 | Association analysis.

SNP MAF Position (Mb) Gene aSNP P -value

MARC0054687 A > G 0.37 29.03 – −0.094 0.000698

MARC0008574 C >T 0.47 32.88 – −0.077 0.001240

ASGA0054041 A > G 0.47 33.17 PCTP −0.077 0.001240

ASGA0089300 G >T 0.46 33.64 – −0.077 0.001240

MARC0044696 A > C 0.48 31.48 – −0.078 0.001260

ASGA0054453 A > C 0.26 40.82 – −0.084 0.001330

ALGA0065826 G >T 0.48 29.09 – 0.081 0.001560

DRGA0011659 C >T 0.30 22.74 – −0.082 0.003150

ALGA0065995 A > C 0.18 33.73 ANKFN1 0.09 0.004470

CASI0006966 A > C 0.45 28.38 – −0.073 0.004820

H3GA0034677 A > G 0.45 53.04 PITPNM −0.074 0.005770

DIAS0001882 A > G 0.32 24.70 NPEPPS 0.072 0.005980

M1GA0017195 C >T 0.33 61.50 – −0.071 0.007330

ALGA0104556 C >T 0.27 29.65 – −0.079 0.008700

ALGA0065925 A > G 0.28 32.63 – −0.078 0.009050

DRGA0011696 G >T 0.25 31.74 – 0.081 0.009270

ALGA0065904 A > G 0.25 32.08 – 0.081 0.009270

M1GA0017119 A > G 0.39 61.17 – −0.063 0.009550

ALGA0065876 C >T 0.28 31.61 – 0.078 0.00960

H3GA0034902 A >T 0.31 58.50 – −0.067 0.01080

ASGA0053778 A > G 0.25 24.99 – −0.072 0.01160

MARC0021670 A > G 0.44 36.97 – 0.061 0.01220

ALGA0065773 A > G 0.26 27.79 MYCBPAP −0.071 0.01670

H3GA0033984 C >T 0.26 27.81 SPATA20 −0.071 0.016700

H3GA0033980 A > G 0.26 27.85 CACNA1G 0.071 0.016700

ALGA0065691 A > G 0.32 25.90 – −0.071 0.019300

MARC0093870 A > G 0.33 14.16 – 0.060 0.021100

ASGA0101438 C >T 0.26 59.22 – 0.055 0.022100

ALGA0065527 A > G 0.24 20.61 – −0.065 0.024300

ASGA0053456 C >T 0.23 16.70 MARCH10 −0.068 0.026600

ASGA0053428 A > C 0.38 15.90 – 0.063 0.027200

ALGA0066610 C >T 0.30 45.55 – 0.088 0.028900

MARC0009546 C >T 0.25 59.17 – 0.066 0.030100

M1GA0016745 A > G 0.44 43.74 – 0.066 0.030400

DIAS0004710 A > G 0.46 15.87 – −0.051 0.030800

MARC0037857 A > G 0.26 34.77 – −0.061 0.030900

DIAS0003416 A > G 0.38 59.53 – 0.052 0.031200

ALGA0067326 C >T 0.18 63.85 – 0.069 0.032200

ASGA0053830 C >T 0.29 26.00 TTLL6 −0.070 0.032400

ASGA0055015 A > G 0.33 52.89 – −0.067 0.032600

MARC0045984 C >T 0.37 34.38 – −0.054 0.035100

SIRI0000304 A > C 0.48 13.47 – 0.055 0.035500

ASGA0054044 A >T 0.25 33.19 PCTP −0.062 0.036500

MARC0055851 G >T 0.39 23.80 – −0.055 0.036600

MARC0013841 C >T 0.30 15.85 – −0.066 0.037300

ASGA0053899 A > G 0.34 27.97 – 0.059 0.038100

MARC0040976 A > G 0.21 16.67 MARCH10 0.066 0.039700

M1GA0016298 C >T 0.45 15.73 FTSJ3 0.049 0.039900

H3GA0033448 C >T 0.46 11.41 – −0.060 0.042600

ASGA0088871 A > G 0.24 53.43 – 0.058 0.044300

H3GA0033801 A > G 0.33 20.20 – −0.053 0.044500

(Continued)

Frontiers in Genetics | Livestock Genomics January 2012 | Volume 2 | Article 101 | 16

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Livestock_Genomics
http://www.frontiersin.org/Livestock_Genomics/archive


Muñoz et al. SSC12 and fatty acid composition

Table A4 | Continued

SNP MAF Position (Mb) Gene aSNP P -value

ASGA0053416 A > G 0.43 15.65 SCN4A 0.052 0.044800

DIAS0004787 A > G 0.39 23.99 – 0.053 0.045800

H3GA0034675 A > G 0.38 52.96 KIAA0753 −0.060 0.046000

ALGA0065337 A > C 0.44 17.24 – −0.050 0.047500

MARC0053916 C >T 0.44 17.28 C17orf 57 −0.050 0.047500

MARC0036876 A > C 0.44 17.53 ITGB3 0.050 0.047500

ASGA0053505 A > G 0.44 17.58 – 0.050 0.047500

ALGA0065366 A > G 0.44 17.59 MYL4 −0.050 0.047500

ASGA0053547 C >T 0.44 17.99 – 0.050 0.047500

DRGA0011754 G >T 0.46 39.92 GGNBP2 0.052 0.047900

H3GA0035092 A > G 0.16 63.77 – 0.064 0.048400

ASGA0055477 C >T 0.16 63.80 – 0.064 0.048400

SNPs with significant effects on UI (P-value < 0.05).
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Table A5 | Association analysis.

SNP MAF Position (Mb) Gene aSNP P -value

MARC0054687 A > G 0.37 29.03 – −0.040 0.000204

DRGA0011659 C >T 0.30 22.74 – −0.036 0.001040

ALGA0065826 G >T 0.48 29.09 – 0.033 0.001140

MARC0044696 A > C 0.48 31.48 – −0.030 0.001670

MARC0008574 C >T 0.47 32.88 – −0.029 0.001840

ASGA0054041 A > G 0.47 33.17 PCTP −0.029 0.001840

ASGA0089300 G >T 0.46 33.64 – −0.029 0.001840

DIAS0001882 A > G 0.32 24.70 NPEPPS 0.032 0.003450

M1GA0017195 C >T 0.33 61.50 – −0.028 0.006550

CASI0006966 A > C 0.45 28.38 – −0.027 0.006580

MARC0021670 A > G 0.44 36.97 – 0.025 0.006740

ALGA0065995 A > C 0.18 33.73 ANKFN1 0.032 0.009190

M1GA0017119 A > G 0.39 61.17 – −0.025 0.009980

ASGA0053778 A > G 0.25 24.99 – −0.026 0.015200

H3GA0033801 A > G 0.33 20.20 – −0.024 0.017800

ASGA0054453 A > C 0.26 40.82 – −0.025 0.018200

H3GA0034677 A > G 0.45 53.04 PITPNM −0.025 0.019600

ALGA0065691 A > G 0.32 25.90 – −0.027 0.020400

ASGA0098632 C >T 0.39 16.24 – 0.020 0.021700

ALGA0104556 C >T 0.27 29.65 – −0.027 0.022700

DIAS0004787 A > G 0.39 23.99 – 0.023 0.023900

ALGA0065773 A > G 0.26 27.79 MYCBPAP −0.026 0.024000

H3GA0033984 C >T 0.26 27.81 SPATA20 −0.026 0.024000

H3GA0033980 A > G 0.26 27.85 CACNA1G 0.026 0.024000

ALGA0065876 C >T 0.28 31.61 – 0.026 0.024000

H3GA0033448 C >T 0.46 11.41 – −0.027 0.024700

MARC0037857 A > G 0.26 34.77 – −0.025 0.025200

DRGA0011696 G >T 0.25 31.74 – 0.027 0.025300

DRGA0011696 G >T 0.25 31.74 – 0.027 0.025300

ALGA0065904 A > G 0.25 32.08 – 0.027 0.025300

ALGA0065925 A > G 0.28 32.63 – −0.026 0.025900

ASGA0053830 C >T 0.29 26.00 TTLL6 −0.026 0.032000

MARC0040976 A > G 0.21 16.67 MARCH10 0.027 0.033800

ASGA0054160 A > G 0.22 34.81 – 0.025 0.036400

MARC0093870 A > G 0.33 14.16 – 0.021 0.040000

MARC0010590 G >T 0.28 25.89 – −0.027 0.045500

ASGA0053715 A > C 0.26 22.80 KRT 20 0.022 0.045900

DIAS0004274 A > G 0.39 13.36 – 0.022 0.047300

ALGA0066043 A > G 0.18 34.13 – −0.029 0.047500

ALGA0065337 A > C 0.44 17.24 – −0.020 0.048200

MARC0053916 C >T 0.44 17.28 C17orf 57 −0.020 0.048200

MARC0036876 A > C 0.44 17.53 ITGB3 0.020 0.048200

ASGA0053505 A > G 0.44 17.58 – 0.020 0.048200

ALGA0065366 A > G 0.44 17.59 MYL4 −0.020 0.048200

ASGA0053547 C >T 0.44 17.99 – 0.020 0.048200

SNPs with significant effects on PUFA/SFA (P-value < 0.05).
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Table A6 | Differentially expressed probes between Qq and qq QTL genotypes with effect on C16:0.

Affymetrix probe ID Annotation Chromosome Position (Mb) P -value Ratioa

Ssc.24800.2.A1_at LOC100514982 SSC12 27.53 1.10 × 10−6 1.21

Ssc.18579.1.A1_at CDK 5RAP3 SSC12 – 5.00 × 10−6 1.31

Ssc.9883.1.A1_at ADRBK 2 SSC14 47.16 8.07 × 10−6 0.74

Ssc.6484.1.S1_at PNPO SSC12 25.02 2.56 × 10−5 0.70

Ssc.3964.1.S1_at CUEDC1 SSC12 – 4.30 × 10−5 1.36

Ssc.877.1.S1_at SKA2 SSC12 – 4.41 × 10−5 1.24

Ssc.22988.1.S1_at PCTP SSC12 33.17 9.93 × 10−5 0.77

Ssc.30925.1.A1_at DKK 2 SSC8 120.79 0.00016 0.74

Ssc.1286.1.A1_at SUZ 12 SSC12 45.18 0.00016 1.21

Ssc.24930.1.S1_at LTV 1 SSC1 22.45 0.00020 1.18

Ssc.13777.2.S1_at TMEM97 SSC12 – 0.00027 1.26

Ssc.21326.1.S1_at NEO1 SSC7 – 0.00035 1.23

Ssc.7149.3.S1_at CYB5D1 SSC12 – 0.00046 1.15

Ssc.11077.1.S1_at POU2F1 SSC4 87.45 0.00050 1.24

Ssc.12255.1.A1_at FSTL5 SSC8 – 0.00061 1.15

Ssc.24711.1.S1_at SMYD4 SSC12 – 0.00070 1.15

Ssc.428.5.S1_at # NA – – 0.00074 0.83

Ssc.29805.1.A1_at SKA2 SSC12 – 0.00083 1.22

In red probes with FDR < 10%, #NA probes that could not be annotated. Position in Mb, when available, according with Sscrofa10.
aExpression ratio between Qq and qq genotypes in the untransformed scale.

Table A7 | Differentially expressed probes conditional on copy number of ACACA ASGA0066302A allele.

Affymetrix probe ID Annotation Chromosome Position (Mb) P -value Ratiob

Ssc.9782.1.A1_at KRT 10 SSC12 – 6.82 × 10−6 1.19

Ssc.29848.1.A1_at PDE4D SSC16 – 2.76 × 10−5 1.16

Ssc.3709.1.S1_at MRPL10 SSC12 – 2.81 × 10−5 1.17

Ssc.1286.1.A1_at SUZ 12 SSC12 45.18 0.00024 0.86

Ssc.19416.1.A1_at IL21R SSC3 – 0.00027 0.67

Ssc.23484.1.A1_a_at SCARB2 SSC8 75.07 0.00028 0.86

Ssc.19050.1.S1_at DHRS7C SSC12 57.63 0.00038 1.21

Ssc.24698.1.S1_at GCHFR SSC1 – 0.00071 1.17

Ssc.4246.3.S1_at ARHGEF10L SSC6 – 0.00085 1.23

Ssc.15565.1.S1_at LCP2 SSC16 57.11 0.00090 1.16

Ssc.14311.1.A1_at KIAA1407 SSC13 15.14 0.00096 0.87

Ssc.8528.2.S1_at CTSC SSC9 – 0.00097 1.31

Ssc.8528.1.A1_at CTSC SSC9 – 0.00099 1.27

bEffect of the SD of the SNP allele copy number in the untransformed scale (SD = 0.58 copies).

Table A8 | Differentially expressed probes conditional on copy number of PCTP ASGA0054039C.

Affymetrix probe ID Annotation Chromosome Position (Mb) P -value Ratiob

Ssc.22988.1.S1_at PCTP SSC12 33.17 3.34 × 10−11 1.21

Ssc.5902.1.A1_at COX 11 SSC12 – 1.16 × 10−8 0.83

Ssc.17449.1.S1_at OLFM1 SSC1 – 1.63 × 10−8 0.73

Ssc.6525.2.A1_at PPP1R12A SSC5 105.55 1.07 × 10−5 1.78

Ssc.29609.2.A1_at SVIP SSC2 – 2.55 × 10−5 0.78

bEffect of the SD of the SNP allele copy number in the untransformed scale (SD = 0.51 copies).

www.frontiersin.org January 2012 | Volume 2 | Article 101 | 19

http://www.frontiersin.org
http://www.frontiersin.org/Livestock_Genomics/archive


Muñoz et al. SSC12 and fatty acid composition

Table A9 | Differentially expressed probes conditional on copy number of PCTP ASGA0054041G.

Affymetrix probe ID Annotation Chromosome Position (Mb) P -value Ratiob

Ssc.22988.1.S1_at PCTP SSC12 33.17 4.25 × 10−14 1.34

Ssc.5902.1.A1_at COX 11 SSC12 – 7.4 × 10−9 0.78

Ssc.6484.1.S1_at PNPO SSC12 25.02 2.33 × 10−5 1.27

Ssc.1023.1.S1_at RBM35B SSC6 – 3.21 × 10−5 1.21

Ssc.30718.1.A1_at KCNH2 SSC18 – 4.98 × 10−5 1.30

Ssc.10391.1.A1_at MCAM SSC9 – 7.34 × 10−5 0.85

Ssc.19050.1.S1_at DHRS7C SSC12 57.63 7.48 × 10−5 1.19

Ssc.2847.1.S1_at ANKRD9 SSC7 – 0.00010 1.25

Ssc.25859.1.S1_at ANKRD40 SSC12 27.89 0.00029 1.16

Ssc.6978.1.A1_at MAX SSC1 – 0.00030 1.16

Ssc.6382.1.A1_at PPP1R3B SSC8 88.60 0.00031 1.37

Ssc.10549.1.A1_at BOC SSC13 152.01 0.00051 1.18

Ssc.21383.1.A1_at PHOSPHO1 SSC12 58.49 0.00063 1.15

Ssc.16679.1.S1_at BMP1 SSC14 7.29 0.00069 0.78

Ssc.13476.1.A1_at PEG10 SSC9 81.94 0.00074 0.75

Ssc.4895.2.S1_at FBXO25 SSC15 – 0.00075 1.16

Ssc.10675.1.A1_at LNX 1 SSC8 – 0.00085 1.16

Ssc.29510.1.A1_at ZNF780A SSC6 – 0.00090 1.17

Ssc.8295.1.A1_at AGXT 2L1 SSC8 – 0.00094 1.36

Ssc.27429.1.A1_at CPEB2 SSC8 8.30 0.00094 0.81

Ssc.22197.1.S1_at FANCG SSC1 240.61 0.00097 0.84

bEffect of the SD of the SNP allele copy number in the untransformed scale (SD = 0.66 copies).
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