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1  | INTRODUC TION

Although simple models of population genetics often assume that 
population size is constant, the size of natural populations is thought 
to change recurrently through time. This notion seems intuitively 
obvious, but there are also many observations that support it. For 
example, Kendall, Prendergast, and Bjørnstad (1998) estimated that 

approximately 30% of animal populations exhibited statistically sig-
nificant periodicity in size. In addition, fossil records have demon-
strated that organismal populations shrank and expanded in the past 
due to environmental changes or other reasons (Bennett, 1997). 
Such changes would affect levels and patterns of genetic variation, 
evolution of genes, and consequently the processes of organismal 
evolution (Ohta, 1972). Therefore, it is important to know how 
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Abstract
Recurrent changes in population size are often observed in nature, influencing the 
efficiency of selection and consequently affecting organismal evolution. Thus, it is 
important to know whether such changes occurred in the past history of a focal 
population of evolutionary interests. Here, we focused on cyclic changes in popula-
tion size and investigated the distributional properties of Tajima’s D and its power to 
distinguish a cyclic change model compared with the standard neutral model, chang-
ing the frequency and magnitude of the cyclic change. With very low or very high 
frequencies of the cycle, the distribution of Tajima’s D was similar to that in a con-
stant size population, as demonstrated by previous theoretical works. Otherwise, its 
mean was negative or positive, and its variance was smaller or larger depending on 
the time of sampling. The detection rate of the cyclic change against the constancy in 
size by Tajima’s D depended on the sample size, the number of loci, and the time of 
sampling in addition to the frequency and amplitude of the cycle. Using sequence 
data of several tens of loci, the detection rate was fairly high if the frequency was 
intermediate and the sampling was made when population size was large; otherwise, 
the detection rate was not high. We also found that cyclic change could be discrimi-
nated from simple expansion or shrinkage of a population by Tajima’s D only if the 
frequency was in a limited range and the sampling was made when the population 
was large.
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changes in population size affect the evolution of genes and to infer 
the history of size change in natural populations.

By tradition, population genetics have addressed changes in 
population size using a notion of effective population size (see a 
review by Charlesworth, 2009). In particular, if population size 
changes through time, neutral genetic variation in the popula-
tion can be computed by considering a surrogate population with 
its size being the harmonic mean of the past population sizes. 
Although we can compute a certain quantity, such as the average 
heterozygosity, using the effective size thus defined, the validity 
of the assumption of using a surrogate population with a constant 
size to understand the dynamics of genetic variation in a popula-
tion with varying size is dependent on the timescale of the changes 
(Nordborg & Krone, 2002).

Indeed, Sjödin, Kaj, Krone, Lascoux, and Nordborg (2005) demon-
strated that the coalescent process of neutral alleles in a model with 
stochastic changes in population size converges to that in a model 
with constant size as the rate of the size change approaches zero or 
infinity; otherwise, there is no corresponding model with constant 
size that results in the same genealogical process. In addition, using 
simulation, they computed the expectation of one of the neutrality 
statistics, Fu & Li’s F* (Fu & Li, 1993), as a benchmark to measure 
deviation from the constant size model and investigated effects of 
the change in population size on the statistic. From the results, they 
suggested that the population behaves as a constant size popula-
tion if the rate of size change with the time measured in units of the 
present population size is very low or high, that is, in general, smaller 
than 1/10 or larger than 10. The genealogy under the model with 
recurrent size changes was further analyzed by Erikkson, Mehling, 
Rafajlovic, and Sagitov (2010). They derived a general formula to 
compute the moments of the total branch length in the genealogy. 
Assuming a sinusoidally varying population size as a concrete exam-
ple, they computed the mean and other moments up to the fourth of 
the total branch length and demonstrated how these moments in a 
population with varying size deviate from those in the constant size 
population as the frequency of size change varies.

Although these studies clarified the genealogical structure in 
populations with size change, there are still some gaps between 
their results and their application in the interpretation of real poly-
morphism data, especially in detecting past recurrent changes in 
population size. First, we can only observe sequence differences 
among sampled alleles and cannot directly estimate their genealogy. 
Therefore, we want to know properties of the statistics calculated 
from sequence data. Second, to detect past changes in population 
size from polymorphism data, we need to know the distributional 
property (the variance at a minimum) of the statistics. Sjödin et al. 
(2005) computed the mean of Fu & Li’s F* but did not calculate the 
variance. At last, simple expansion or shrinkage of a population re-
sults in deviations of statistics from those in the population with a 
constant size. Therefore, we would like to know whether such sim-
ple changes in population size could be discriminated from recurrent 
changes in population size using some of the statistics of polymor-
phism data.

To narrow the gaps mentioned above, we consider a population 
with cyclic change in size and investigate the distributional proper-
ties of Tajima’s D (Tajima, 1989a) and the possibilities of detecting 
recurrent changes in population size using polymorphism data at a 
few dozen loci. There are a few reasons why we choose a simple 
cyclic change model from a variety of possible models with recurrent 
size changes. First, a significant proportion of animal populations ex-
hibit cyclic change in population size (Kendall et al., 1998). Second, 
some abiotic and biotic environmental changes are cyclic; for ex-
ample, temperature and humidity change with a periodicity of ap-
proximately one hundred thousand years in glacial cycles (Bennett, 
1997). In addition, host–parasite interaction often results in cyclic 
changes in population size (e.g., Stahl, Dwyer, Mauricio, Kreitman, 
& Bergelson, 1999). Depending on the generation time of the or-
ganism, the frequencies of those environmental changes measured 
in units of one generation vary among organisms. Third, although 
changes in population size are typically not exactly cyclic but involve 
some elements of stochasticity, we cannot employ the stochastic 
model used by Sjödin et al. (2005) because we want to consider 
cases where samples of alleles at multiple loci are taken from a pop-
ulation whose size at each past time point takes a specific value. If 
we employ their model, the variance of a statistic involves not only 
that from genetic drift but also that from the stochastic change in 
population size. At last, we can observe the effects of the rate of size 
change on genetic diversity most easily by employing cyclic change.

In this study, we investigate the following questions assuming a 
model with cyclic change in population size using simulation, chang-
ing the frequency and amplitude of the cycle. First, we investigate 
the effects of the frequencies and amplitude of the cycle and the 
timing of sampling on the distribution of Tajima’s D. Second, we 
study the effects of the number of loci, the mutation rate, and the 
parameters of the cyclic change on the power of a test based on the 
mean of Tajima’s D to discriminate the cyclic change model from the 
constant size model, which is hereafter referred to as the standard 
neutral model. We also investigate the power of a likelihood ratio 
test using a model- based inference method for the demographic 
history developed by Excoffier, Dupanloup, Huerta- Sánchez, Sousa, 
and Foll (2013) and compare the powers of the two tests. Third, be-
cause deviation of Tajima’s D is also observed in models with sim-
ple population expansion or shrinkage (Tajima, 1989b), we compare 
the mean and variance of Tajima’s D in the cyclic change model with 
those simple size change models. We find that the distribution of 
Tajima’s D approaches that under the standard neutral model when 
the frequency of the cycle is very low or very high as noted by previ-
ous theoretical works (Erikkson et al., 2010; Sjödin et al., 2005), but 
the approach depends on the timing of sampling in addition to the 
frequencies and amplitude of the cycle. If the sampling is made when 
the population size is large, deviation of the cyclic change model with 
intermediate frequencies from the standard neutral model can be 
detected using data of several tens of loci, and discrimination from 
simple expansion may be possible under some condition. Otherwise, 
detection becomes more difficult, and the cyclic change is indistin-
guishable from simple shrinkage. Considering the importance of past 
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population structure on the consequences of natural selection and 
ease of obtaining data at more than dozens of loci in nonmodel or-
ganisms (Lascoux & Petit, 2010), examining neutrality statistics, such 
as Tajima’s D, to obtain knowledge of past population size in addition 
to levels of genetic diversity and differentiation will be helpful as a 
first step for understanding the evolution of a target species.

2  | METHODS

We chose Tajima’s D (Tajima, 1989a) as a statistic to detect recurrent 
changes in population size. We also examined distributional proper-
ties of various other statistics, such as Fu & Li’s F* (Fu & Li, 1993) and 
Fay & Wu’s H (Fay & Wu, 2000), for a small number of parameter sets 
that characterize recurrent changes, but Tajima’s D generally exhib-
ited the smallest variance when the population size was altered (data 
not shown). Tajima’s D was originally developed to detect signals of 
selection, but it has been often used for inferring the demographic 
history (Ramos- Onsins & Rozas, 2002). Tajima’s D measures the dif-
ference between two unbiased estimators of the population muta-
tion rate (θ), k and �̂�W (Tajima, 1989a), where k is the average number 
of pairwise nucleotide differences, and �̂�W is an unbiased estimator 
of θ (Watterson, 1975) calculated from the number of segregating 
sites, S. Tajima’s D is defined by

where e1 and e2 are calculated from the sample size n. Tajima’s D 
tends to be negative in expanding populations and positive in shrink-
ing populations (Tajima, 1989b).

We assumed the infinite site neutral Wright–Fisher model. We 
generated sample sequences under the standard neutral model, 
cyclic change model, population expansion model, and population 
shrinkage model for a panmictic population using the ms program 
(Hudson, 2002).

The cyclic change model used here is presented in Figure 1. 
Population size is N0 for t0 generations, suddenly changes to N1 
(N0 > N1), and remains at that size for t1 generations. This is one 
cycle, and this process is repeated indefinitely. At a certain point in 
one of the cycles, n alleles are sampled. We set the mutation rate so 
that the expectations of k at the sampling point were the same when 
different models were compared.

In the simulation, we used N0/N1 = 5, 10, and 20 by varying the 
value of N1 but N0 = 100,000. The length (t0) of the period during 
which the size was N0 in a cycle was the same as that (t1) of the pe-
riod during which the size was N1. We defined the frequency of cycle 
i as the number of cycles per N0 generations such that t0 = t1 = N0/
(2i). The value of i examined ranged from 0.01 to 1,000. For exam-
ple, when N0 is 100,000, i = 1 indicates that the length of one cycle 
is 100,000 generations. We examined four sampling points, point 1 
(at the end of the large phase), point 2 (at the midpoint in the large 
phase), point 3 (at the end of the small phase), and point 4 (at the 
midpoint in the small phase) as shown in Figure 1.

First, to assess effects of the frequency of the cycle (i) and the 
amplitude (N0/N1) of changes in population size and the timing 
(point x) of sampling on the distribution of Tajima’s D, we generated 
100,000 datasets of n sequences under the cyclic change model 
using ms. We first set E[k], the expectation of k, to 5.0 per locus 
at the sampling point. We computed the mutation rate for a spec-
ified E[k] at the sampling time using the formula (10) in Chakraborty 
(1977). We used a sample size of n = 50. We computed the distribu-
tion, mean, and variance of Tajima’s D.

Next, we investigated the power to discriminate the cyclic 
change model from the standard neutral model using the mean of 
Tajima’s D when data from multiple loci were available. We followed 
the fixed S procedure of Hudson (1993) to test the generated data-
sets against the standard neutral model. The fixed S procedure sim-
ulates samples by fixing the number of segregating sites S instead 
of using the unknown parameter θ. This procedure seems reliable 
in cases without recombination (Wall & Hudson, 2001). We calcu-
lated the power in the following manner. (a) Generate a dataset of 
n samples at each of a specified number of loci assuming the cyclic 
change model. (b) Calculate the mean of Tajima’s D across the loci. 
(c) Generate a dataset of n samples at each of the specified number 
of loci with the observed S assuming the standard neutral model. (d) 
Calculate the mean of Tajima’s D across the loci. (e) Repeat (c) and (d) 
1,000 times to obtain the null distribution of the mean of Tajima’s D. 

D=

k− �̂�W
√

e1S−e2S(S−1)
,

F IGURE  1 Cyclic change model. Population size cyclically 
changes between N0 and N1 over time. The sampling point, point i, 
is shifted by (i−1)/4 cycles from point 1. The size at sampling is N0 at 
point 1 and point 2 and N1 at point 3 and point 4. The length of the 
period when the size is N0 is the same as that when the size is N1, 
that is, t0 = t1
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(f) Examine whether the mean of Tajima’s D under the cyclic change 
model is outside the 95% critical region. (g) Repeat (a)–(f) 1,000 times 
to calculate the power of Tajima’s D for detecting cyclic change. The 
power depends on the number of loci, sample sizes, E[k] at the sam-
pling time and the demographic parameters. We investigated the 
cases with the number of loci = 10, 20, 50 and 100, E[k] = 0.5, 1.0 
and 5.0 and the frequency of the cycle i = 0.05, 0.1, 0.5, 1, 5, 10, 
50 and 100. For sample size n, we examined only the case of n = 50 
because Tajima’s D is not sensitive to deviations if n is less than 30 
(Tajima, 1989a). As sample size increases, the probability of detect-
ing deviations from the standard neutral model increases (Simonsen, 
Churchill, & Aquadro, 1995; Sjödin et al., 2005). Therefore, we also 
expect that the power of Tajima’s D to detect cyclic change increases 
with sample size.

To compare this simple method of using Tajima’s D to detect cy-
clic change with more sophisticated model- based methods for infer-
ence of the demographic history, we used the likelihood ratio test 
implemented in fastsimcoal2 (Excoffier et al., 2013) and examined its 

power to detect cyclic change against the standard neutral model. 
Because it took a long time for each testing using fastsimcoal2, we 
repeated the test only 100 times to calculate its power with the 
number of loci set to 100.

At last, we compared the mean and variance of Tajima’s D across 
100,000 loci in the cyclic change model with those in simple popula-
tion expansion and shrinkage models. Simulations under these mod-
els were performed using methodology similar to that used for the 
cyclic change model. In the population expansion (shrinkage) model, 

F IGURE  2 The distribution of Tajima’s D in each sampling point. 
For each combination of a sampling point and frequency of the 
cycle, 100,000 datasets were generated with sample size n = 50, 
amplitude N0/N1 = 20, and E[k] = 5.0. Monomorphic datasets 
were excluded. The upper- right inset indicates the color used for 
the number of cycles per N0 generations. Red lines indicate the 
distributions under the standard neutral model

frequency of
the cycle (  )i

frequency of 
the cycle (  )i

(a)   point 1 

(b)   point 3

F IGURE  3 The mean and variance of Tajima’s D depending 
on the frequency of the cycle. For each sampling point, 100,000 
datasets were generated with sample size n = 50, amplitude 
N0/N1 = 20 (solid line) and 10 (short dashed line), and E[k] = 5.0. 
Monomorphic datasets were excluded in the calculation. Symbols 
indicating some of the frequencies are explained in the lower- right 
inset. (a) Red and blue lines represent sampling at point 1 and point 
2, respectively. (b) Red and blue lines represent sampling at point 3 
and point 4, respectively
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the size was N1 (N0) in the past but suddenly changed to N0 (N1) at t 
generations ago. In the simulation, we used N0/N1 from 1 to 1,000. 
The time until the change t/N0 (t/N1) was set to values from 0.00005 
to 50 (from 0.005 to 50) in the population expansion (shrinkage) 
model.

In evaluating the power of the tests, we included monomorphic 
data obtained from the simulation; otherwise we excluded mono-
morphic data.

3  | RESULTS

3.1 | Effects of cyclic size changes on Tajima’s D

Figure 2 presents the change of the distribution of Tajima’s D when 
the frequency of the cycle was changed. When sampling was made 
at point 1, the distribution first shifted toward negative as the fre-
quency increased from zero and then reversed its direction as the 
frequency further increased, ultimately approaching that of the 
standard neutral model. When sampled at point 2, the distribution 
exhibited similar behavior (not shown). On the other hand, when 
sampling was made at point 3, it shifted toward positive and reversed 

its direction as the frequency increased, ultimately approaching that 
under the standard neutral model. A similar result was obtained 
when sampling was performed at point 4. Of note, the mean and the 
variance varied depending on the frequency in all cases.

To present the cases under different parameter values, we 
summarized the distributional property using the mean and vari-
ance and plotted these data in Figure 3 for various frequencies of 
the cycle and sampling points with the amplitude N0/N1 = 10 and 
20. When sampling was performed at time point 1 or point 2 (when 
population size was N0), the mean and variance of Tajima’s D exhib-
ited a clockwise rotation (negative mean and smaller variance) as 
the frequency of the cycle increased from zero (Figure 3a). As the 
frequency further increased, the mean and variance of Tajima’s D 
both increased and finally approached those under the standard 
neutral model. Of note, the same mean was observed at two dif-
ferent frequencies but the variances were different. When sam-
pling was performed at time point 3 or point 4 (when population 
size was N1), a clockwise rotation was also observed, but the mean 
and variance both increased first and then decreased (Figure 3b). 
In all cases, if we decreased the amplitude, the oval became smaller 
(Figure 3).

F IGURE  4 The effects of the number of loci and expected genetic diversity at sampling points on the power to detect cyclic change. For 
each sampling point, the power was calculated with n = 50, N0/N1 = 5 and E[k] = 0.5, 1.0, and 5.0. (a) Sampling at point 1, number of loci = 10; 
(b) sampling at point 3, number of loci = 10; (c) sampling at point 1, number of loci = 50; (d) sampling at point 3, number of loci = 50

(a) (b)

(c) (d)
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3.2 | Detection of cyclic change using data from a 
finite number of loci

We next examined under what condition cyclic change was detected 
when tested against the standard neutral model using the mean of 
Tajima’s D as a test statistic. Figure 4 presents the effects of the fre-
quency of the cycle, sampling time point, the mutation rate and the 
number of loci on the power to detect cyclic change when the ampli-
tude N0/N1 was 5. Cyclic change was detected when the frequency 
exhibited intermediate values, as noted by Sjödin et al. (2005). The 
power was high when the number of loci was large (Figure 4c,d), the 
mutation rate is high and sampling was performed at point 1 (or point 
2; data not shown). If the number of loci was 10 (Figure 4a,b), the 
power was very low when sampling was performed at point 3. In 
contrast, the power was fairly high when sampling was performed at 
point 1. Thus, data of many loci are required to detect cyclic change 
if sampling is performed when the population size is small.

The effect of changing the amplitude on the power was also in-
vestigated (Figure 5). The amplitude N0/N1 was changed from 5 to 20 
with the number of loci set to 10. When N0/N1 = 20, the cyclic change 
was very likely to be detected if the frequency was between 1 and 
10. Although the large amplitude greatly increased the power when 

sampling was made at point 1, it did not significantly affect the power 
when sampling was performed at point 3 and the probability of detec-
tion was almost nil when the number of loci examined was low (10).

The power of detecting the cyclic change against the standard 
neutral model using the likelihood ratio test implemented in fast-
simcoal2 was also investigated and the results together with those 
using Tajima’s D are shown in Figure 6 (changing E[k]) and in Figure 7 
(changing the amplitude). The power of the test based on Tajima’s D 
was higher (sampling point 1) or comparable (sampling point 3) com-
pared to that of the likelihood test. Moreover, the latter test took sev-
enty times more computational time than the former test. Therefore, 
the test based on Tajima’s D, although it does not provide estimates of 
parameters, is considered to be more efficient than the likelihood test 
to detect cyclic change against the standard neutral model.

3.3 | Comparison between cyclic change and simple 
demographic change models

We compared the mean and variance of Tajima’s D under the cy-
clic change model with those under the population expansion model 
(Figure 8a). The mean and variance of Tajima’s D under the cyclic 

F IGURE  5 Effects of the magnitude and sampling point on the 
power to detect cyclic change. For each sampling point, the power 
was calculated with n = 50, E[k] = 0.5, and the number of loci = 10. 
(a) Sampling at point 1, (b) sampling at point 3

F IGURE  6 Comparison between powers of the tests using 
Tajima’s D and fastsimcoal2 changing E[k]. For each sampling point, 
the power was calculated with n = 50, N0/N1 = 5, the number 
of loci = 100, and E[k] = 1.0 and 5.0. (a) Sampling at point 1; (b) 
sampling at point 3
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change model can exhibit values outside the region of values under 
the population expansion model. Under the cyclic change model 
with high frequencies, if sampling was performed at point 2 (but not 
at point 1), the variance exhibited a value larger than the upper limit 
of the population expansion model with the same mean of Tajima’s 
D. Therefore, in this case, we can discriminate the cyclic change 
model from the population expansion model.

If sampling was performed when the population was small, the mean 
and variance of Tajima’s D under the cyclic change model were within 
the region observed under the population shrinkage model (Figure 8b). 
Those values under the population shrinkage model could take any 
points in the region with an appropriate parameter set of t and N0/N1. 
Therefore, when sampling was performed at point 3 or 4, we cannot dis-
criminate the cyclic change model from the population shrinkage model 
by simply estimating the mean and variance of Tajima’s D.

4  | DISCUSSION

If population genomic data with reliable genomic resources are 
available as in model organisms, such as human, Drosophila and 

Arabidopsis (Langley et al., 2012; The 1000 Genomes Project 
Consortium, 2012; The 1001 Genomes Consortium, 2016), we can 
use some of the model- flexible methods (Ho & Shapiro, 2011; Liu & 
Fu, 2015) to infer recurrent changes in population size in the past. 
For many nonmodel organisms of evolutionary and/or ecologi-
cal interests, only limited data of a dozen or up to a few hundred 
short gene segments are available (Lascoux & Petit, 2010). In such 

F IGURE  7 Comparison between powers of the tests using 
Tajima’s D and fastsimcoal2 changing amplitude. For each sampling 
point, the power was calculated with n = 50, N0/N1 = 5 and 20, 
the number of loci = 100 and E[k] = 1.0. (a) Sampling at point 1; (b) 
sampling at point 3

F IGURE  8 Comparison between cyclic change and simple 
demographic changes. (a) The mean and variance under the 
cyclic change model with N0/N1 = 20, and various frequencies 
are indicated by the red (sampling at point 1) and blue (sampling 
at point 2) lines. Those under the simple expansion model with 
various parameter values are confined to the gray- colored region. 
Sample size n = 50 and E[k] = 5.0. (b)The mean and variance under 
the cyclic change model with N0/N1 = 20 and various frequencies 
are presented using the red (sampling at point 3) and blue (sampling 
at point 4) lines, and those under the simple shrinkage model with 
various parameter values are confined to the gray- colored region. 
Sample size n = 50 and E[k] = 5.0
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cases, these model- flexible methods are not suitable for inferring 
recurrent changes in population size. One can use the Extended 
Bayesian Skyline Plot (Heled & Drummond, 2008), but the method 
consumes a large amount of computational time if the number of 
loci is dozens or larger. Instead, one may use model- based methods 
(e.g., Beaumont, Zhang, & Balding, 2002; Excoffier et al., 2013), but 
it takes a fairly large amount of computational time to test cyclic 
changes of a population and the power of detection is not neces-
sarily high as shown here. Indeed, it took 70 times more time to 
test cyclic changes using the likelihood ratio test implemented in 
fastsimcoal2, one of the most frequently used model- based meth-
ods for inference of the demographic history, than using the test 
based on the mean of Tajima’s D as shown here. Therefore, a simple 
method based on a neutrality statistics such as Tajima’s D seems 
still useful for theoretically studying possibilities of detecting cyclic 
changes and also applying it to limited data of nonmodel organisms.

In the present study, assuming cyclic changes in population size, 
we investigated the distributional properties of Tajima’s D. First, its 
power to detect the cyclic change depended on the frequency of 
the cycle. When the frequency was very low or very high, the distri-
bution of Tajima’s D was very similar to that of the standard neutral 
model with its current or harmonic mean effective size, respectively, 
as previously demonstrated analytically by Sjödin et al. (2005) and 
Erikkson et al. (2010). However, when the frequency was intermedi-
ate, the mean and the variance of the statistic deviated from those 
of the standard neutral model. The deviation of Tajima’s D was ob-
served when the frequency measured with time units of N0 gener-
ations was between 1/10 and 100, but the range of the frequency 
in which the deviation was observed depended on the timing of the 
sampling. Second, the power to detect cyclic change using Tajima’s 
D depended on the frequency and amplitude of the cycle, the time 
point of sampling, and numbers of sampled alleles and loci. If we 
obtain 50 sequences at each of 50 loci, the detection rate of cy-
clic change with a frequency between 0.3 and 10 was high if the 
sampling was performed when the population was large. However, 
the detection rate was low if the sampling was performed when 
the population was small. At last, if sampling was performed when 

population was large, cyclic change with a large amplitude and higher 
frequencies might be discriminated from simple expansion by exam-
ining the mean and variance of Tajima’s D. However, it was otherwise 
difficult to discriminate the cyclic change from simple size changes 
by exclusively examining Tajima’s D. These observations, taking a 
typical case of E[k] = 1.0, are summarized in Table 1.

Erikkson et al. (2010) computed up to the fourth moments of 
the total branch lengths of the genealogy assuming cyclic change in 
population size. It is interesting that Figure 4 in their paper demon-
strates that the second and higher moments converge to those of 
the standard neutral model with the harmonic mean population size 
when the frequency of the size change is greater than 1. In contrast, 
the variance of Tajima’s D differed from that of the standard neutral 
model even when the frequency is 10 or greater. Tajima’s D is a func-
tion of the shape of the genealogy characterized by quantities, such 
as the ratio of the lengths of the internal and external branches. This 
finding demonstrates that the distributional properties of statistics 
or random variables associated with the genealogy in a population 
with size change differ from one another, and analyses of various 
statistics directly related to the data are necessary.

In our analyses of cyclic change in population size, we made sev-
eral simplifying assumptions. Here, we discuss a few of them briefly. 
First, we investigated effects of the cyclic change model with only 
equal lengths of the periods of large and small population sizes 
(t0 = t1), but this is not always the case. For example, one glacial cycle 
consists of a long period of a cool and dry climate and a short period 
of a warm and humid climate (Bennett, 1997). If the focal organism 
is adapted to the warmer period, the time when the population size 
is large becomes shorter (t0 < t1). Therefore, we need to consider the 
effects of unequal lengths of the periods. We can predict conse-
quences of the inequality when the frequency of the cycle is low or 
high. If the size change is slow, Tajima’s D is strongly affected by the 
time of the most recent change in population size. Thus, its behavior 
when t0 ≠ t1 would be similar to that of the equal length case (t0 = t1) 
with the same length of time to the most recent size change. Hence, 
detection of cyclic change becomes possible from a lower frequency 
if the size at sampling persists shorter in a cycle and vice versa. On 
the other hand, when the frequency of the cyclic change is high, mul-
tiple cycles occur before the time of the MRCA (TMRCA). The con-
vergence to the standard neutral model as the frequency increases 
results from the averaging over the cycles. Given that coalescences 
occur mostly when the population size is small, the number of cy-
cles before the TMRCA increases as t1 becomes shorter in one cycle. 
Therefore, the convergence occurs at a lower frequency when t0 > t1 
compared with the equal case and at a higher frequency when t0 < t1.

Second, we assumed that sudden changes in population size al-
though natural populations would rarely grow 5 or 10 times larger in 
one generation. We made this assumption given that gradual growth 
in the transitional stage, which seems more realistic, increases the 
number of parameters. If the growth rate is high such that the transi-
tional period is considerably shorter than the length of one cycle, dif-
ferences between the two models would be negligible. Otherwise, 
the result will change. In a study investigating the power of various 

TABLE  1 Frequencies at which cyclic change can be detecteda

lb N0/N1

Sampling time

Point 1, 2 Point 3, 4

10 5 1.0 None

10 0.5–5.0 None

20 0.5–10.0 None

50 5 0.5–5.0 None

10 0.5–10.0 5.0–10.0

20 0.5–50.0 5.0–10.0

Discriminationc Conditionally possible No

aFrequencies of the cycle at which detection is possible with p > 0.5 are 
shown. E[k] = 1.0 and n = 50. bNumber of loci. cDiscrimination from sim-
ple size change models (point 1, 2, expansion; point 3, 4, shrinkage).
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neutrality statistics in detecting simple population growth, Ramos- 
Onsins and Rozas (2002) reported that the power to detect the 
growth is increased in the sudden growth model compared with the 
logistic population growth model. Although these one- time change 
models may differ from our recurrent change model in various as-
pects in terms of their effects on the genealogy, this may also be the 
case for our model. First, effects of the amplitude of the cycle mea-
sured by the ratio of the maximum and minimum population sizes on 
the genealogy would be smaller in the gradual change model com-
pared with the sudden change model because the ratio of the rates 
of coalescences in the two periods is smaller in the former if the 
amplitudes are the same. Regarding the effects of the frequency of 
size change on detection, we first assume for simplicity that coales-
cences occur only when the population is small and the frequencies 
in the gradual and sudden change models are the same. When the 
frequency is high, the power to detect recurrent changes would be 
reduced in the gradual change model compared with the sudden 
growth model because the number of coalescences in one cycle is 
smaller in the gradual change model. Thus, the number of cycles 
until the TMRCA increases. However, when the frequency is low, 
although the power under the sudden change model is increased 
compared with the gradual change model if sampling is performed 
when the population is large (Ramos- Onsins & Rozas, 2002), it is 
lower if sampling is performed when the population is small because 
the time to the MRCA is reduced compared with the gradual change 
model with the same frequency and amplitude.

Third, we assumed no intragenic recombination in the analysis 
but recombination occurs especially when longer sequences, which 
reflect increased E[k] in our case, are used in analyses of natural 
populations. Given that the effects of introducing intragenic re-
combination are similar to those of increasing the number of loci, 
we would generally be able to detect deviation from the standard 
neutral model in wider ranges of the frequency and amplitude of 
the cycle (see, e.g., table 6 of Rozas, Segarra, Ribó, & Aguadé, 1999). 
However, effects of recombination are not restricted to averaging 
of genealogies along the sequence. As shown by Schaper, Eriksson, 
Rafajlovic, Sagitov, and Mehlig (2012), the covariance between the 
TMRCA of two gene segments does not converge to that of the 
standard neutral model with an effective size of the harmonic mean 
as the frequency of the cycle increases if the recombination rate is 
comparable to the rate of size change. Although the means of the 
neutrality statistics derived from the frequency spectrum, such as 
Tajima’s D, do not change, their variance may be affected. Therefore, 
we need to investigate the effects of intragenic recombination under 
recurrent changes in population size in future studies.

Demographic changes in populations affect the consequences 
of natural selection, often significantly (Brandvain & Wright, 2016). 
For example, nearly neutral mutations (Ohta, 1992) behave like 
neutral alleles in small populations but as selected alleles in large 
populations, and recurrent changes in population size result in ir-
regularities in the molecular evolution of such mutations (Cutler, 
2000). In addition, the total number of advantageous mutations 
appearing in one generation is small in small populations but large 

in large populations, thus facilitating rapid adaptation in large pop-
ulations. These considerations lead us to conclude that the evolu-
tionary paths of populations with recurrent changes in size would 
significantly differ from those with constant size or with one- time 
size change. Therefore, it is important to know whether recurrent 
size changes have occurred in the populations of the target organ-
ism by examining means and variances of neutrality statistics at 
neutrally evolving loci.

However, it is generally difficult to determine whether the loci at 
which the data are collected have been affected by selection or not. 
Of late, Ewing and Jensen (2016) pointed out that inferences on the 
demographic history would be strongly biased by intermediate levels of 
background selection. Background selection poses a serious problem 
in inferring the demographic history especially when population size 
changes because a wide range of fitness effects become intermediate 
sometime in the past. One way to avoid this problem may be to use 
RAD (restriction site- associated DNA) sequencing (Baird et al., 2008) 
or related methods, whose target sites are mostly in noncoding regions 
and possibly neutrally evolving. The simple method using the mean of 
Tajima’s D investigated here may be especially useful for data obtained 
by methods such as RAD sequencing because number of samples at 
each locus is variable and the frequency spectrum required, for exam-
ple, for fastsimcoal2, is sometimes difficult to obtain.

Given the importance of knowing the past demographic history 
but recognizing the difficulty in its inference, we recommend that 
a preliminary analysis for data obtained by a method such as RAD 
sequencing using the mean of Tajima’s D to detect deviation from the 
standard neutral model is carried out. This knowledge will help plan-
ning further studies on the target species using more data in terms of 
number of individuals and read depths of the sequencing, which may 
aim to estimate population parameters using model- based methods 
or evaluate effects of selection on some or all part of the genome.
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