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Abstract: Polyglycerol polyricinolate (PGPR) and polyglycerol-2 dioleate were selected as model sur-
factants to construct water-in-oil (W/O) emulsions, and the effect of interfacial rheological properties
of surfactant film on the stability of emulsions were investigated based on the interfacial dilatational
rheological method. The hydrophobicity chain of PGPR is polyricinic acid condensed from ricinic
acid, and that of polyglycerol-2 dioleate is oleic acid. Their dynamic interfacial tensions in 15 cycles
of interfacial compression-expansion were determined. The interfacial dilatational viscoelasticity
was analyzed by amplitude scanning in the range of 1–28% amplitude and frequency sweep in the
range of 5–45 mHz under 2% amplitude. It was found that PGPR could quickly reach adsorption
equilibrium and form interfacial film with higher interfacial dilatational viscoelastic modulus to
resist the deformation of interfacial film caused by emulsion coalescence, due to its branched chain
structure and longer hydrophobic chain, and the emulsion thus presented good stability. However,
polyglycerol-2 dioleate with a straight chain structure had lower interfacial tension, and it failed to
resist the interfacial disturbance caused by coalescence because of its lower interfacial dilatational vis-
coelastic modulus, and thus the emulsion was unstable. This study reveals profound understanding
of the influence of branched structure of PGPR hydrophobic chain on the interfacial film properties
and the emulsion stability, providing experimental reference and theoretical guidance for future
design or improvement of surfactant.

Keywords: interfacial dilatational rheology; dynamic interfacial tension; interfacial viscoelasticity;
water-in-oil emulsion; emulsion stability

1. Introduction

Polymeric surfactants are now used to control the emulsion rheology and applied in
various industries like oil recovery [1,2], cosmetics [3] and drug delivery [4]. Generally, the
stability of emulsion limits its application. The emulsion instability is usually caused by
emulsion flocculation, coalescence, Ostwald ripening, creaming, sedimentation and phase
inversion. Emulsion destabilization occurs more frequently for those water-in-oil (W/O)
emulsions such as margarine [5], sunscreen [6], since the low electrical conductivity of the
continuous phase cause only steric forces are expected to stabilize the emulsions [7].In
order to prepare stable W/O emulsions, the newly formed emulsion droplets are need
to be protected by surfactants from these instability factors. The ideal surfactant requires
short interfacial adsorption duration, strong ability to reducing interfacial tension, and
high coverage over water-oil interfacial after adsorption [8,9]. The rapid adsorption of
surfactant helps the interfacial tension reach a lower equilibrium value speedily to pro-
mote the droplets formation during emulsifying. A high coverage interfacial film on the
surface of dispersed droplets formed by the surfactant can prevent the coalescence of
emulsion droplets.
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The interfacial properties of surfactant are mainly determined by its molecular struc-
ture [10]. Therefore, the investigation of effects of the molecular structure of surfactant
on emulsion stability, especially from the perspective of molecular structure affecting
the interfacial film properties, is beneficial to design and select surfactant properly and
reasonably. For example, emulsion coalescence is related to the thinning and rupturing
of interfacial liquid film between emulsion droplets. The fluid mechanics of droplet co-
alescence is essentially determined by the interfacial rheological properties of droplet
film, particularly affected by its dilatational viscoelasticity [11–13], where the viscoelastic
interface with high interfacial dilatation viscoelasticity facilitates the inhibition of flocculat-
ing droplets coalescence and resists the deformation of liquid film due to the mechanical
disturbance [14]. In addition, the Ostwald ripening process, although mainly drove by the
solubility of dispersed liquid, is also affected by surfactant and the rheological properties of
droplet interface [15]. The compression−expansion of surfactant layers is slow in Ostwald
ripening, so low frequency oscillation can be applied to investigate the response of droplet
interface to the Ostwald ripening of emulsion. Above all, the dynamic interfacial tension
and interfacial dilatation rheology are feasible methods to characterize and explore the
mechanical properties of emulsion droplet interface film, including the deformation of
interface film upon the mechanical disturbance during emulsification, flocculation, coales-
cence and Ostwald ripening, which are essentially important to illustrate the instability
mechanism of emulsion.

The dynamic interfacial tension and interfacial dilation rheological properties of sur-
factants can be studied via the interfacial dilatation rheometer based on the Langmuir
trough method. To investigate the macroscopic deformation [16] of droplet interface, the
barriers expand or compress the interface at a constant rate or repeatedly, and subsequently
the interfacial tension-area (π-A) isotherm is recorded to analyze the dynamic interfacial
tension and interfacial adsorption characteristics. The interfacial dilatational rheology [17]
characterizes a series of sinusoidal waves parallel to the interface and measures the interfa-
cial dilatational viscoelasticity during oscillation, analyzing the resistance of interfacial film
to mechanical disturbance. The change of amplitude or oscillation frequency of barriers
are analogous to producing different mechanical disturbances. For details, the change
of interfacial area caused by emulsion droplet coalescence can be studied by amplitude
sweep [18], and the effects of different amplitudes on interface dilatational viscoelasticity
help to explore and clarify the influence of interfacial film properties on the resistance to
droplet coalescence. On the other hand, the compression-expansion changes of interface
film during aging can be reflected by frequency sweep (within 0.2 Hz), and the analysis
of effects of different frequencies on the interfacial dilatational viscoelasticity benefits to
illustrate how the interfacial film properties resisting the emulsion Ostwald ripening [19].
The microscopic properties of interfacial film, which can be illustrated by its interfacial
dilatational viscoelasticity investigated under different amplitude and frequencies, are
of great significance to explain the mechanism of emulsion stability and demulsification,
to understand the adsorption of surfactants onto droplet interface and the interaction
between surfactants. Based on these investigation, the effects of surfactants structure on
the emulsion stability are consequently elucidated and clarified.

Polyglycerol polyricinoleate (PGPR), obtained by esterification of polyglycerol and
polyricinic acid, is a polymeric and bulkier semi-synthetic lipophilic surfactant, widely
used to stabilize W/O emulsions. To meet consumers’ growing needs for health care,
the search for natural ingredients which may completely or partially replace PGPR is
becoming a new research focus [20]. Partial replacement of PGPR were studied using
lecithin and the effects on the properties of W/O emulsion were investigated [21], and
using inorganic nanoparticles as emulsifying agents to obtain stable Pickering emulsions
was another solution [22]. Above all, analyzing the relationship between structure and
emulsifying properties of PGPR is the basis to successfully design and develop the alterna-
tives. Therefore, W/O emulsion was constructed with PGPR and polyglycerol-2 dioleate
to illustrate the structure-activity relationship of surfactant. Both of them take polyglycerol
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as hydrophilic head group, while their structural difference is the hydrophobic chain. The
hydrophobic chain of PGPR is a polyricinoleic acid [23] synthesized by the condensation
of ricinoleic acid, whereas the hydrophobic chain of diglyceryl dioleate is oleic acid only
(Figure 1). Ricinoleic acid has a hydroxyl group which is absent in oleic acid, however,
there are many branched chains formed onto the hydrophobic chain of polyricinoleic acid
through condensation, and the length of the longer carbon chain is several times to that
of oleic acid. It is conceivable that the branched chains and the longer hydrophobic chain
of PGPR should significantly affect the micro-properties of interfacial film formed at the
water-oil interface, and induce cascading effects onto the emulsion stability. The aim of
this work was to study the effect of surfactant molecular structure on the properties of
interfacial film through the investigation of dynamic interfacial tension of surfactants and
interfacial dilatational viscoelasticity of the interfacial film based on amplitude sweep and
frequency sweep. The relationship between surfactant molecular structure and emulsion
stability was further studied to provide experimental reference and theoretical guidance
for designing surfactant structure or improving surfactant properties.
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Figure 1. Chemical structure of polyglycerol (A); oleic acid (B) and polyricinoleate (C).

2. Materials and Methods
2.1. Materials

Caprylic/capric triglyceride (ODO) was purchased from Zhengtong Chemical Co.,
Ltd. (Zhengzhou, China). PGPR (HLB: 1.5–2; complex with minimum 75% n-glycerols with
n = 2, 3, and 4; maximum 10% m-glycerols with m ≥ 7) was purchased from Danisco Co.,
Ltd. (Suzhou, China). Polyglycerol-2 dioleate (HLB: 3–4, MW: 695.0 g/mol, purity ≥ 9%)
was purchased from KarmaChem (Shanghai, China). Fluorescein–Sodium was purchased
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Emulsions Preparation

W/O emulsions were prepared by magnetic stirring and high-speed shearing, respec-
tively. In order to avoid interference of α-gel [24] to the emulsions stability and make
sure the emulsions were mainly stabilized by the adsorption of surfactant to the water-oil
interface, the addition of surfactant was found to be 3% of the mass of ODO. In a 50 mL
beaker, 18 g of ODO containing 3% PGPR or polyglycerol-2 dioleate were mixed by mag-
netic stirring at a speed of 1600 rpm. The magnetic-stirring W/O emulsions were prepared
by adding 6 g aqueous phase containing 10 mg/L sodium fluorescein to the oil mixture
and stirring continuously for 5 min. The high-speed-shearing emulsions were obtained
from magnetic-stirring emulsions after high-speed shearing at 6000 rpm for 1 min. The
W/O emulsions were added into 5 mL glass vials to observe the storage stability.

2.3. Emulsions Microstructure

The microstructure of aqueous phase in the emulsions were observed by confocal
laser scanning microscopy (CLSM, Leica Microsystems, Inc., Heidelberg, Germany). The
microstructure of fresh prepared W/O emulsions were dropped on slides, sealed with
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cover slides, and observed with a 20× objective lens and an Ar/Kr laser with an excitation
line of 488 nm. All observation were finished in 30 min.

2.4. Interfacial Tension-Area (π-A) Isotherm

A Teflon Langmuir trough (908 mm × 370 mm, (KSV Instruments, Helsinki, Finland)
with two Teflon barriers was used to characterize the properties of surfactants. Before each
measurement, the trough and barrier were thoroughly cleaned with detergent, ethanol, and
deionized water. The interfacial π-A isotherm of PGPR and polyglycerol-2 dioleate at the
water-oil interface were performed in a Langmuir trough with Wilhelmy-type film balance
(KSV Instruments, Helsinki, Finland). When the surfactant was present at the interface, the
interfacial tension (π) was calculated from the interfacial pressure without the surfactant
(σ0) and the real-time interfacial pressure (σ) as describe by Equation (1):

π = σ0 − σ (1)

The trough was then filled with 400 mL deionized water and was swept clean by
vacuum device. Then, 200 mL ODO oil solution containing 1% surfactant was carefully
added as the upper phase.

Barriers were used to slowly compress the surface film at a rate of 10 mm/min while
measuring the interface pressure as a function of area until the interface area came to
200 cm2. The barriers were then opened at the same speed until the interface area came to
400 cm2 and the interface pressure was also recorded. This isotherm was repeated 15 times.
The water-oil interface pressure without surfactant was measured to be 21.7 mN/m.

2.5. Interfacial Dilatational Rheology

Dynamic viscoelastic modulus is defined as the ratio of the change in interfacial
tension γ to the change in interface area (A), which can be separated into two components,
i.e., elastic modulus Ed and viscous modulus Eη as described in Equation (2):

π = σ0 − σ (2)

For the viscoelastic interfacial films, when the interfacial area and interfacial tension
change periodically with the periodical expansion and compression of the interface, there
is a certain phase angle θ between the periodic change of interface tension and the periodic
change of interface area. The Ed and Eη can be calculate by the absolute value of dilatational
modulus and phase angle as described in Equations (3) and (4):

Ed = |E|cosθ (3)

Eη = |E|sinθ (4)

The interfacial dilatation rheological properties of interfacial film can be obtained by
changing the amplitude and frequency during interfacial dilatation rheological experiment.

2.5.1. Amplitude Sweep

The barriers were moved to the position where interface area was 140 cm2, the oil
solution containing 1% (w/w) surfactant was added. The barriers were held for 60 min until
the surfactant adsorbed completely to the oil-water interface. The linear viscoelastic region
(LVR) was determined by the amplitude sweep, amplitude was varied from 1% to 28%
of the interface area. The oscillation frequency was set to 10 mHz as Rühs [25] described,
and the amplitude sweep was executed from small to large amplitudes, each amplitude
ran for 10 sinusoidal oscillation periods, and between two oscillations followed by a time
corresponding to 30 cycles without any oscillation [21], making sure the interfacial film
have enough time to recover. The amplitude sweep data were analyzed by calculating the
interface dilatational modulus and drawing Lissajous curves.
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The interface dilatational modulus was calculated basing on the assumption that the
sinusoidal strain would produce a pure sinusoidal stress response. If the strain exceeds the
linear viscoelastic range, the stress response will not be a perfect sinusoidal curve, at this
point, dilatational modulus might with deviation. Lissajous curve is redrawn according
to the relation between the interfacial tension (δπ) and relative strain (δa/a0), where δπ is
the difference between the interfacial tension and the initial interfacial tension, δa is the
difference between the interfacial area and the initial interfacial area a0, and a0 is the initial
interfacial area. Lissajous curve [18,26,27] can be used to quantify the non-sinusoidal strain
response and to analyze the interfacial dilatation rheological properties of the interfacial
film outside the linear viscoelastic region.

2.5.2. Frequency Sweep

According to the results of amplitude sweep, the amplitude was set as 2% of interface
area, and the surfactant was fully adsorbed at the oil-water interface for 60 min, the interface
area was 140 cm2 and the frequency range was 5 to 45 mHz.

2.6. Emulsion Stability

Emulsion stability was determined by measuring backscattering (BS) in a Turbiscan
Lab (Formulaction, Toulouse, France). Emulsion samples were placed without dilution in
the test cells. Backscattered light was monitored as a function of time and cell height for
3 h at 30 ◦C.

2.7. Statistical Analyses

The dilatational elastic modulus (Ed) and dilatational viscosity modulus (Eη) of inter-
facial film were analyzed by KSV NIMA oscillatory Barrier Analysis (Version 3.80, KSV
Instruments, Helsinki, Finland). ImageJ analysis software was used to determine the
emulsion droplet size and distribution from the CLSM images, and the number of droplets
measured per sample was larger than 200. All experiments were repeated at least twice.

3. Results and Discussion
3.1. Interfacial Tension-Area (π-A) Isotherm of Emulsifier

An ideal surfactant requires to efficiently reduce interfacial tension, quickly absorb
onto the interface, and fully cover the water-oil interface [8]. These properties are essen-
tially important to the initial morphology of emulsions, such as the average diameter and
distribution of droplets, as well as the emulsion stability. Figure 2 showed the interfa-
cial tension-area (π-A) isotherms of PGPR and polyglycerol-2 dioleate after 15 cycles of
compression-expansion on the oil-water interface, and both of them reduced the interfa-
cial tension. After six cycles, the adsorption isotherm of PGPR tended to be invariable,
while that of polyglycerol-2 dioleate was unstable until nine cycles. The interfacial ten-
sion of PGPR was stable at ~2.9 mN/m, and that of polyglycerol-2 dioleate decreased to
1.1 mN/m. The arrangement of two surfactants at the interface might cause the difference.
Polyglycerol-2 dioleate molecules occupy smaller average molecular areas with the head
group adsorbing onto the interface and the hydrophobic oleic acid chain extending into the
oil phase. More polyglycerol-2 dioleate molecules were able to adsorb onto the interface
when they adjusted the orientation of hydrophobic chain to reduce the average molecular
area during the compression-expansion cycles, and the interfacial tension consequently
decreased. The hydrophobic chain of PGPR contains many hydrophilic acyl groups and
thus they can adsorb onto the water-oil interface besides the polyglycerol head group,
while other hydrophobic fatty acid chains extend to the oil phase to construct spider-like
conformation [28] and thus larger average molecular area is needed. Due to the large
molecular steric hindrance of PGPR, saturated adsorption was achieved after only six
cycles of compression-expansion and then no more PGPR molecules could adsorbed onto
the interface.
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The smaller interfacial tension promotes the formation of smaller droplets [29]. There-
fore, the emulsion prepared by polyglycerol-2 dioleate was theoretically with smaller
droplet size. The quick adsorption equilibrium PGPR reached during the compression-
expansion cycles suggested that PGPR could quickly adsorb onto the droplets surface [30]
during the emulsion preparation and provide a protective layer to prevent the droplets
coalescence. Day [31] reported that the rapid adsorption of surfactant molecules onto
the interface caused more significant effect on the emulsion stability than the decrease of
interfacial tension. Therefore, the better stability could be predicted for the interfacial film
formed by PGPR.

3.2. Interfacial Dilatational Rheological Properties of Surfactant

In general, surfactant molecules adsorb onto the oil-water interface form a viscoelastic
interface film to resist the coalescence of emulsion droplets. As reported, the long-term
stability of emulsions was critically affected by the strength of interfacial film rather than
the interfacial tension [32]. The dilatational elasticity of interfacial film efficiently reduces
the drainage rate between two droplets and resists the mechanical disturbance when two
droplets flocculated [8]. Therefore, the amplitude and frequency sweeps were executed to
investigate the effect of surfactant molecular structure on the interfacial film properties via
interfacial dilatational rheology.

3.2.1. Amplitude Sweep

The variation of interfacial viscoelasticity of PGPR and polyglycerol-2 dioleate ad-
sorbed onto the water-oil interface dependent on the amplitude was shown in Figure 3.
The interfacial dilatational elastic modulus of the two surfactants increased firstly and
decreased subsequently with the increase of amplitude, moreover, the absolute value of
interfacial dilatational modulus of PGPR (blue full symbol in Figure 3) was larger than
that of polyglycerol-2 dioleate (red full symbol in Figure 3). In addition, PGPR showed
higher interfacial viscosity (blue open symbol in Figure 3), while polyglycerol-2 dioleate
showed almost no interfacial viscosity (red open symbol in Figure 3). The low interfacial
dilatational viscoelasticity under small amplitude (1%) might be limited by the measuring
accuracy of instrument. The decrease of interfacial dilatational viscoelasticity with the
increase of strain amplitude was due to the damage of interfacial film caused by the large
amplitude. The higher interfacial viscoelasticity of PGPR was attributed to the branched
chains on the hydrophobic long chain, resulting in the formation of a disordered entangled
chain-like layer between the PGPR molecules at the interface [33] and enhancing their
inter-molecular interactions to increase the maximum value of dilatational viscoelastic
modulus [34].
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The viscoelastic properties of interface film can be obtained by the shape of Lissajous
curve, which appears a straight line for the pure elastic interface, and an ellipse for that of
the viscoelastic interface [26]. Furthermore, the Lissajous curve can explain the dependence
of interfacial rheological response on the interfacial microstructure. Van [27] studied the
rheological response of air-water interface stabilized by oligofructose fatty acid esters.
The interfacial rheological response was attributed to the 2D soft glass phase structure
formed by the ester, which was strain-softening upon expansion and strain-hardening
upon compression. As shown in Figure 4, the Lissajous curve of PGPR was ellipse at
15% amplitude indicating that the PGPR interface was of certain viscoelasticity, while
the Lissajous curve of polyglycerol-2 dioleate was a straight line demonstrating that the
polyglycerol-2 dioleate interface exhibited elasticity rather than viscosity. The results
were consistent with those of amplitude sweep (Figure 3). Furthermore, the curves’ slope
of PGPR increased with the increase of amplitude upon compression, which points to
strain hardening. In contrast, the curves’ slope decreased with the increase of amplitude
upon extension, which points to strain softening. For polyglycerol-2 dioleate, the similar
observation of the strain-hardening in compression and strain-softening in expansion
was also recorded in the Lissajous curves at higher amplitude, however, the curves were
more irregular. This was on account of the smaller interfacial viscosity of polyglycerol-2
dioleate which leaded to the failure of interfacial film to resist the disturbance caused
by compression and expansion. The coalescence of two perfectly monodisperse droplets
results in a 20% change of emulsion surface area if the total volume remains constant [35].
Therefore, to produce similar disturbance during droplet coalescence, three amplitudes
gradients of 20%, 25% and 28% was applied to investigate the properties of interface film.
The results showed that the interfacial viscosity of PGPR effectively reduced the influence
of interfacial area change on the interfacial structure assembled via surfactants. On the
contrary, for polyglycerol-2 dioleate, the lack of interfacial viscosity seriously broke the
interfacial structure, disturbing the integrity of interfacial film at high amplitudes. The
different resistance of interfacial film formed by the two surfactants could be induced by
the disordered entangled chain layer of PGPR molecules which could avoid the damage of
interfacial film by changing the conformation of molecular chain under strain. However,
the interfacial structure of polyglycerol-2 dioleate was destroyed if raised the strain since
the interfacial area of polyglycerol-2 dioleate only responded to the interfacial area change
by compact packing.
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3.2.2. Frequency Sweeps

The variation of interface dilatational modulus with the oscillation frequency could
reflect the disturbing of interface. The amplitude of 2% was applied in this study according
to the amplitude sweep result to ensure that the amplitude of frequency sweep unchanged
the interfacial structure, and the frequency range of 5–45 mHz was used to simulate the
external disturbance at low frequency of interface film. The dilation modulus change of
interface film with the test frequency was controlled by the interface relaxation. For the
surfactant with lower molecular weight, two types of relaxation are generally suggested.
One is the diffusion of molecules from the bulk phase to the interface, and the other
is the relaxation of molecules at the interface, such as molecular orientation, molecular
rearrangement, and so on [36]. At present, the data of interface dilatational modulus
in most cases is interpreted with diffusion relaxation [37]. The diffusion relaxation time
between the interface and the bulk phase was long enough at lower oscillation frequency,
and the lower dilatational modulus was characterized. However, at higher oscillation
frequency, the shorter detection duration limited the diffusion relaxation of interfacial film
and the interfacial film dilatational modulus was consequently higher.

The frequency sweeps (Figure 5) showed that the elasticity modulus of two surfactants
was larger than the viscosity modulus in the detected range of oscillation frequency,
suggesting that the surfactants were more elastic at the interface. With the frequency
increased, the dilatational elastic modulus of PGPR increased slightly, while its dilatational
viscosity modulus stabled at 2 mN/m. Both dilatational elastic modulus and dilatational
viscos modulus of polyglycerol-2 dioleate were lower at low oscillation frequency, which
gradually increased to similar values to those of PGPR when frequency increased.
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The significant change in the dilatational elasticity modulus of polyglycerol-2 dioleate
in the range of oscillation frequency was observed. The interfacial viscoelastic modulus
was reported mainly affected by the density of surfactant molecules at the interface [9,38].
When the interface expanded, the density of surfactant molecules at the interface decreased,
improving the interface tension. At the same time, molecules from the bulk phase would
spread to the newly formed interface to eliminate the interfacial tension gradient. The
straight hydrophobic chain of polyglycerol-2 dioleate hydrophobic chain only brought
weak interaction between the hydrophobic chains, thus, it could diffuse during low-
frequency oscillation since the energetic barrier overcoming interfacial and bulk phase
diffusion was quite low. What’s more, the relatively low molar mass might promote the
diffusion [39]. Thus it reduced the change of interface tension and increased the density, and
the viscoelastic modulus generally declined. For PGPR, the disordered entangled chain-like
structure was formed via the hydrophobic chains of PGPR built stronger interaction among
them, and the acyl groups on PGPR could be embedded in the oil-water interface [28] which
produced higher energetic barrier when desorbing from the interface, which hindered
the diffusion between the phase and the interface and led to a larger change of interface
tension and density, thus higher dilatational elasticity modulus was observed during the
whole detected frequency range. Moreover, the lower interfacial dilatational modulus of
polyglycerol-2 dioleate at low frequency might further led to the instability of interfacial
film during storage, resulting in the macro-phase separation of emulsion.

3.3. Emulsion Stability

This study was aimed to discuss the influence of surfactant molecular structure on the
emulsion stability, so the emulsion was only prepared by relatively low-energy procedures,
i.e., magnetic stirring and high-speed shearing. Compared with the emulsion prepared
through high-energy procedures like high pressure homogenization, the size distribution of
prepared emulsion in our study was larger, and the emulsion instability could be observed
within several days, which was beneficial to detect the influence of surfactants on the
stability of emulsion interfacial film and emulsion. Emulsion stability could be evaluated
by calculating the t25 as Atanase [9] did for emulsions destabilize in few hours, or be
determined using LUMiSizer [40] to accelerate sedimentation by centrifugation. Turbiscan
Lab [41] gives kinetic information on the process leading to phase separation. Thus, it was
applied in this work.

The stability of W/O emulsions prepared by two surfactants were significantly dif-
ferent as the backscattering profile shown. The destabilization of emulsions prepared by
polyglycerol-2 dioleate was dominated by coalescence in the initial period, which was evi-
denced by a progressive decrease in backscattering. The coalescing droplets grew rapidly
and led to the phase separation. For the two emulsions, the one prepared by magnetic
stirring destabilized faster. Emulsions stabilized by PGPR underwent totally different
destabilization process. The magnetic-stirring emulsion coalesced at first, as the coalescing
droplets became bigger, then they migrated from the top to the bottom of the emulsion,
causing a fall in backscattering at the sample top due to the clarification of emulsion as
droplets fallen down and an increase in backscattering at the sample bottom due to the
increase of droplets concentration as sediment formed. The high-speed-shearing emul-
sion was more stable, and the coalescence of emulsion during the test period due to an
insignificant sedimentation.

The droplet size and distribution of fresh prepared emulsion were analyzed based
on their CLSM images using ImageJ. The particle sizes of emulsions emulsified with
polyglycerol-2 dioleate were 2.1 ± 1.6 µm prepared by magnetic stirring and 1.2 ± 0.8 µm
prepared by high-speed shearing, respectively. If emulsified with PGPR, the corresponding
sizes were 1.7 ± 1.4 µm and 1.5 ± 0.6 µm, respectively. Apparently, the droplets prepared
by two surfactants were similar in size and size distributions if under the same preparation
procedure, meanwhile, smaller and more uniform droplets were achieved in the emulsion
undergoing high-speed shear. The results showed that the two surfactants could help
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the inner water phase well-dispersed during the preparation of emulsion. However,
the rapid destabilization of emulsions prepared by polyglycerol-2 dioleate were quickly
observed, which was also clearly showed in CLSM observation that there were fewer
droplets dispersed comparing with the emulsion prepared by PGPR. As shown in Figure 6c,
the droplets were fewer than that in Figure 6d and more than that in Figure 6a, it means
emulsions using PGPR as surfactant showed better stability and it was improved by high
speed shearing.
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3.4. Influence of Surfactant Molecular Structure on Emulsion Stability

The emulsions with well-dispersed inner aqueous phase were successfully prepared
by both PGPR and polyglycerol-2 dioleate, however, the emulsion produced by the latter
rapidly destabilized, which was mainly related to the flocculation, coalescence and Ostwald
ripening of emulsion during preparation and storage and affected by the difference of
molecular structure.

Emulsion coalescence refers to the coalescence of two droplets into a single droplet
and relates to the thinning and rupture of liquid film between droplets, which is intensively
influenced by the interfacial properties of adsorption layer. Coalescence in emulsion
may occur as a result of collision between moving droplets or flocculation. The rapid
adsorption of PGPR at the interface favored the resistance of coalescence between the
newly formed droplets and prevented the rapid destabilization of emulsion (Figure 6).
The interfacial rheological properties of interfacial film were particularly important when
discussing the rupture of liquid film or coalescence of droplets from the view of fluid
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mechanics. The dilatational viscoelasticity was of incredible importance, to be more
specific, the high interfacial dilatational viscoelasticity effectively reduced the coalescence
between flocculating droplets to resist the deformation of liquid interfacial film responded
to the mechanical disturbance. The higher stability of emulsion prepared from PGPR was
attributed to the higher interfacial dilatation viscoelasticity of interfacial film assembled
by PGPR which obtained stronger resistance to interfacial disturbance during amplitude
sweeps. The emulsion Ostwald ripening is a partial dissolution of dispersed liquid phase
caused by capillary pressure, resulting in mass transfer from small droplets to large droplets.
Although it is mainly driven by the solubility of dispersed liquid, it is also influenced by the
presence of surfactants and the rheological properties of interfacial film. During Ostwald
ripening, the slow compression-expansion rate of interface was recorded. The deformation
of interface film during Ostwald ripening was studied by low frequency oscillation, in
which the diffusion of polyglycerol-2 dioleate between the interface and the bulk phase
decreased the interfacial dilatational viscoelasticity, and consequently the emulsion was
destabilized if Ostwald ripening occurred.

The adsorption rate of surfactants at the interface and their dilatational rheological
properties varied mainly attributing to the difference of the hydrophobic chain structure
of the two emulsifiers. The branched chains grafted on the hydrophobic chain of PGPR
provided higher intermolecular interaction at the water-oil interface, at the meanwhile,
more acyl groups in the molecule embedded in the interface prevented the diffusion of
surfactants to generate faster adsorption rate and higher interfacial dilatation viscoelasticity
of the interfacial film.

4. Conclusions

This work investigated the effect of different hydrophobic chain structure in PGPR
and polyglycerol-2 dioleate on the interfacial film properties based the surface dilatational
rheology, and the cascading effect on the emulsion stability was also discussed. The re-
sults indicated the branched hydrophobic chains of PGPR, compared with the straight
hydrophobic chain on polyglycerol-2 dioleate, was critically important to affect the interfa-
cial adsorption rate and the interfacial dilatational viscoelasticity. PGPR quickly adsorbed
onto the water-oil interface during emulsification to maintain the stability of newly formed
emulsion droplets, and its higher dilatational viscoelasticity helped the emulsion resist the
disturbance of interfacial film caused by coalescence and Ostwald ripening during storage
and exhibited higher emulsion stability. This study reveals profound understanding of
the influence of surfactant molecular structure on the interfacial tension and interfacial
viscoelasticity and their cascading effects on the emulsion stability, providing experimental
reference and theoretical guidance for the design and selection of proper surfactants.
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