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Abstract: Oxaliplatin is a third-generation platinum drug and is widely used as a first-line therapy for
the treatment of colorectal cancer (CRC). However, a large number of patients receiving oxaliplatin
develop dose-limiting painful neuropathy. Here, we report that αO-conotoxin GeXIVA[1,2], a highly
potent and selective antagonist of the α9α10 nicotinic acetylcholine receptor (nAChR) subtype, can
relieve and reverse oxaliplatin-induced mechanical and cold allodynia after single and repeated
intramuscular (IM) injections in rats. Treatments were started at 4 days post oxaliplatin injection
when neuropathic pain emerged and continued for 8 and 16 days. Cold score and mechanical
paw withdrawal threshold (PWT) were detected by the acetone test and von Frey test respectively.
GeXIVA[1,2] significantly relieved mechanical and cold allodynia in oxaliplatin-treated rats after
a single injection. After repeated treatments, GeXIVA[1,2] produced a cumulative analgesic effect
without tolerance and promoted recovery from neuropathic pain. Moreover, the long lasting analgesic
effect of GeXIVA[1,2] on mechanical allodynia continued until day 10 after the termination of the
16-day repeated treatment procedure. On the contrary, GeXIVA[1,2] did not affect acute mechanical
and thermal pain behaviors in normal rats after repeated injections detected by the von Frey test and
tail flick test. GeXIVA[1,2] had no influence on rat hind limb grip strength and body weight after
repeated treatments. These results indicate that αO-conotoxin GeXIVA[1,2] could provide a novel
strategy to treat chemotherapy-induced neuropathic pain.

Keywords: αO-conotoxin GeXIVA[1,2]; α9α10 nAChR; oxaliplatin-induced neuropathic pain;
mechanical allodynia; cold allodynia

1. Introduction

Cancer is a major threat to human health, and chemotherapy is one of the most effective treatments.
However, a variety of chemotherapeutics including oxaliplatin can cause severe side effects during
treatments, leading to painful symptoms that might result in the interruption of cancer treatment [1].
Unfortunately, few strategies are available for treating this kind of neuropathy, partially due to the
complexity of its pathogenesis [2]. Therefore, it has great significance to develop analgesic drugs with
novel mechanisms.
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nAChRs are pentameric ligand-gated ion channels composed of different subunits (α1-α7, α9,
α10, β1-β4, δ, ε, and γ) that can form various subtypes [3]. The diversity of nAChR subtypes enables
them to regulate a variety of important physiological or pathological processes [4] including cancer [5],
neurological disease [6], addiction [7], inflammation [8], pain [9], etc. The α9α10 nAChR is a newly
discovered subtype, recently verified as a novel analgesic target to treat neuropathic pain [10,11].
Previous studies indicated the potency of multiple α9α10 nAChR antagonists in alleviating neuropathic
pain in different kinds of rodent models, including trauma (chronic constriction injury, CCI) [12],
disease (diabetes) [13], and inflammation (formalin) [14] induced neuropathic pain. Moreover, several
of these antagonists produce a cumulative anti-nociceptive effect after repeated treatment that promotes
recovery from neuropathy [15]. Recent studies on α-conotoxin RgIA, an antagonist of α9α10 nAChR,
and its analogue RgIA4 verifiedα9α10 nAChR as a promising target for oxaliplatin-induced neuropathic
pain treatment [16–18].

αO-conotoxin GeXIVA, a short peptide isolated from conus generalis, a kind of cone snail distributed
in the South China Sea, was recently identified. This peptide is composed of 28 amino acids including
four Cys residues that can form three different disulfide bond connection isomers, i.e., GeXIVA[1,2],
GeXIVA[1,3], and GeXIVA[1,4], as previously described. Among them, GeXIVA[1,2] was the most
potent antagonist of α9α10 nAChR (IC50 = 4.61 nmol at rat α9α10 nAChR) with a high specificity [19].
Previous studies have indicated the anti-hypersensitive effect of GeXIVA[1,2] in the rat CCI-induced
neuropathic pain model. Repeated intramuscular (IM) injection of GeXIVA[1,2] produced a long-lasting
cumulative analgesic effect that could continue for 2 weeks after termination of a 14-day daily treatment
procedure [20].

The present study aimed to discover the possibility of applying GeXIVA[1,2] to control
oxaliplatin-induced neuropathic pain. GeXIVA[1,2] was administered through single or repeated
intramuscular (IM) injections in animals treated with oxaliplatin. Two common pain measurement
methods, the von Frey test and the acetone test, were utilized to test the representative symptoms,
mechanical and cold allodynia of this neuropathy. In normal rats, the influence of GeXIVA[1,2] on
acute pain perception was detected by the von Frey test and tail flick test, and a grip strength test was
performed to evaluate muscle strength following repeated treatments.

2. Results

2.1. Development of Neuropathic Pain in Oxaliplatin-Treated Rats

Rats receiving oxaliplatin developed neuropathic pain between 4–7 days post injection while the
pain threshold of the glucose solution (GS) group did not change. The mechanical paw withdrawal
threshold (PWT) decreased from 20.54 g ± 0.80 g (before) to 2.71 g ± 0.04 g (after). The cold score
increased from 1.42 ± 0.19 (before) to 5.98 ± 0.15 (after). These results are similar to those obtained in
previous research.

2.2. Analgesic Effects of GeXIVA[1,2] on Oxaliplatin-Induced Mechanical Allodynia

2.2.1. Analgesic Effect of GeXIVA[1,2] by Single Administration

As shown in Figure 1, both GeXIVA[1,2] and gabapentin increased mechanical PWT after single
injection (F(4,310) = 6.11, P = 0.0003). Gabapentin at 50 mg/kg produced analgesia from 1 h post
injection and it lasted until 4 h post injection (P < 0.05). The mechanical PWT of the normal saline (NS)
group did not change significantly during this whole period. A single IM injection of GeXIVA[1,2]
produced dose-dependent analgesia on oxaliplatin-induced mechanical allodynia. Starting at 2 h
post injection, GeXIVA[1,2] 128 nmol/kg increased mechanical PWT significantly and persisted to 4 h
post injection (P < 0.001). The medium dose of GeXIVA[1,2] (64 nmol/kg) also significantly increased
mechanical PWT at 4 h post injection (P < 0.001).
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produced a significant increase in AUC (P < 0.05).  

 
Figure 1. Analgesic effect of GeXIVA[1,2] on oxaliplatin-induced mechanical allodynia by single 
intramuscular (IM) injection. (A) Time–effect relationship of GeXIVA[1,2] on mechanical paw 
withdrawal threshold (PWT). Each point indicates the mean ± SEM at the time point, (NS, n = 13; 
GeXIVA[1,2], n = 13 (32 nmol/kg, 64 nmol/kg), n = 14 (128 nmol/kg); Gabapentin 50 mg/kg, n = 14). (B) 
Area under curve (AUC) of the corresponding dose within 6 h after injection indicating the 
dose–effect relationship. *P < 0.05, **P < 0.01, ***P < 0.001, compared with the normal saline (NS) 
control group. 

2.2.2. Acute Analgesic Effect of GeXIVA[1,2] Following Repeated Injections 

As indicated in Figure. 1, both GeXIVA[1,2] and gabapentin increased mechanical PWT after 
single injection. Aiming to study the acute analgesic effect by repeated treatments, the mechanical 
PWTs of different drug treated rats were detected at 4 h post injection during a 16-day repeated 
treatment procedure (Figure. 2) (F(4,315) = 10.07, P < 0.0001). The analgesic effect of GeXIVA[1,2] at 
128 nmol/kg increased during the 16-day repeated treatment procedure and displayed a significant 
difference from the NS group between day 7 and day 16 (P < 0.05). The mechanical PWT of the 
GeXIVA[1,2] 64 nmol/kg-treated group displayed an upward trend and showed a significant 
difference at day 16 compared with the NS group (P < 0.05). The low dose of GeXIVA[1,2] at 32 
nmol/kg showed little effect in mechanical PWT. Gabapentin at 50 mg/kg exhibited a stable analgesic 
effect at 4 h post treatment from day 1 and this lasted until the end of the trial except for day 13 (P < 
0.05). The NS treatment had no effect on the paw withdrawal threshold at any time point during the 
experiment period. 

Figure 1. Analgesic effect of GeXIVA[1,2] on oxaliplatin-induced mechanical allodynia by single
intramuscular (IM) injection. (A) Time–effect relationship of GeXIVA[1,2] on mechanical paw
withdrawal threshold (PWT). Each point indicates the mean ± SEM at the time point, (NS, n = 13;
GeXIVA[1,2], n = 13 (32 nmol/kg, 64 nmol/kg), n = 14 (128 nmol/kg); Gabapentin 50 mg/kg, n = 14). (B)
Area under curve (AUC) of the corresponding dose within 6 h after injection indicating the dose–effect
relationship. *P < 0.05, **P < 0.01, ***P < 0.001, compared with the normal saline (NS) control group.

The area under curve (AUC) of different treatment groups was calculated including data at 0, 1, 2,
4, and 6 h post drug injection (Figure 1B) (F(4,62) = 11.06, P < 0.0001). The AUC of GeXIVA[1,2] at
128 nmol/kg significantly increased compared with the NS group (P < 0.001), which is comparable to
that of the gabapentin 50 mg/kg group (P < 0.001). The minor dose of GeXIVA[1,2] at 64 nmol/kg also
produced a significant increase in AUC (P < 0.05).

2.2.2. Acute Analgesic Effect of GeXIVA[1,2] Following Repeated Injections

As indicated in Figure 1, both GeXIVA[1,2] and gabapentin increased mechanical PWT after single
injection. Aiming to study the acute analgesic effect by repeated treatments, the mechanical PWTs
of different drug treated rats were detected at 4 h post injection during a 16-day repeated treatment
procedure (Figure 2) (F(4,315) = 10.07, P < 0.0001). The analgesic effect of GeXIVA[1,2] at 128 nmol/kg
increased during the 16-day repeated treatment procedure and displayed a significant difference
from the NS group between day 7 and day 16 (P < 0.05). The mechanical PWT of the GeXIVA[1,2]
64 nmol/kg-treated group displayed an upward trend and showed a significant difference at day 16
compared with the NS group (P < 0.05). The low dose of GeXIVA[1,2] at 32 nmol/kg showed little effect
in mechanical PWT. Gabapentin at 50 mg/kg exhibited a stable analgesic effect at 4 h post treatment
from day 1 and this lasted until the end of the trial except for day 13 (P < 0.05). The NS treatment had
no effect on the paw withdrawal threshold at any time point during the experiment period.
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mg/kg, n = 10 ). * P < 0.05, ** P < 0.01, *** P < 0.001, compared with the NS control group. 
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24 h post injection were identified (F(4,270) = 4.12, P = 0.0063). Supportive evidence for the 
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Figure 2. Acute analgesic effect of GeXIVA[1,2] on oxaliplatin-induced mechanical allodynia following
repeated injections. Each data point indicates the mean ± SEM of mechanical PWT at 4 h post injection,
(NS, n = 10; GeXIVA[1,2], n = 10 (32 nmol/kg, 64 nmol/kg, 128 nmol/kg), Gabapentin 50 mg/kg, n = 10).
* P < 0.05, ** P < 0.01, *** P < 0.001, compared with the NS control group.

2.2.3. Short-Term Analgesic Effect of GeXIVA[1,2] by Repeated Treatments

As demonstrated in Figure 3, the short term analgesic effects of GeXIVA[1,2] and gabapentin at
24 h post injection were identified (F(4,270) = 4.12, P = 0.0063). Supportive evidence for the cumulative
effects of GeXIVA[1,2] was found, indicated by the significant increase in mechanical PWT after
repeated treatments. The mechanical PWT of the GeXIVA[1,2] 128 nmol/kg group exhibited an upward
trend from day 4 and showed significant differences at day 13 and day 16 post drug injection compared
with the NS group (P < 0.01). The lower dose of GeXIVA[1,2] at 64 nmol/kg exhibited a similar trend
and showed a significant difference from the NS group at day 16 post drug injection (P < 0.05). On the
contrary, gabapentin 50 mg/kg did not show analgesia at any time point. During the whole period,
there was no significant difference in the mechanical PWT of the NS group (P > 0.05).
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Figure 3. Short-term analgesic effect of GeXIVA[1,2] on oxaliplatin-induced mechanical allodynia by
repeated treatments. Each data point represents the mean ± SEM of mechanical PWT at 24 h since last
injection (NS, n = 10; GeXIVA[1,2], n = 10 (32 nmol/kg, 64 nmol/kg, 128 nmol/kg); Gabapentin 50 mg/kg,
n = 10). * P < 0.05, ** P < 0.01, *** P < 0.001, compared with the NS control group.
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2.2.4. Long-Term Analgesic Effect of GeXIVA[1,2] by Repeated Treatments

For the purpose of studying the long-term analgesic effects of GeXIVA[1,2] and gabapentin
after drug withdrawal from repeated treatments, the mechanical paw withdrawal thresholds of
different treatment groups were continuously monitored for another 16 days after the 16 day treatment
procedure was terminated. As described in Figure 4 (F(4,315) = 6.62, P = 0.0003), the GeXIVA[1,2]
128 nmol/kg group produced long-lasting analgesia after drug withdrawal, which lasted until day
10 after treatment termination (P < 0.05). After treatment finished, mechanical PWT for the lower
dose of GeXIVA[1,2](64 nmol/kg) fluctuated and no significant difference was found compared to the
NS group. The low dose of GeXIVA[1,2] (32 nmol/kg) or gabapentin at 50 mg/kg did not affect the
mechanical PWT after drug withdrawal at any time point. There was no significant difference in the
mechanical PWT of the NS group during the whole period.
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Figure 4. Long-term analgesic effect of GeXIVA[1,2] on oxaliplatin-induced mechanical allodynia.
Mechanical PWT was observed after drug withdrawal from a 16-day repeated treatment. Each data
point indicates the mean ± SEM of mechanical PWT at different time points, (NS, n = 10; GeXIVA[1,2],
n = 10 (32 nmol/kg, 64 nmol/kg, 128 nmol/kg); Gabapentin 50 mg/kg, n = 10). * P < 0.05, ** P < 0.01,
*** P < 0.001, compared with the NS control group.

2.3. Analgesic Fffects of GeXIVA[1,2] on Oxaliplatin-Induced Cold Allodynia

2.3.1. Analgesic Effect of GeXIVA[1,2] by Single Administration

As described in Figure 5A (F (4,210) = 2.48), P = 0.0586), gabapentin at 50 mg/kg was able to
attenuate oxaliplatin-induced cold allodynia at 2 h post drug injection (P < 0.001), while there was no
significant change in the cold score of the NS group at any time point. On the contrary, GeXIVA[1,2] is
inferior in alleviating cold allodynia, since only the 32 nmol/kg GeXIVA[1,2] group exhibited analgesia
at 6 h post injection (P < 0.05). For the AUC (Figure 5B) (F (4,42) = 2.396, P = 0.0655), only the gabapentin
50 mg/kg group decreased compared with the NS group (P < 0.05); no significant difference between
the NS group and all the GeXIVA[1,2] groups was observed.
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Figure 5. (A) Analgesic effect of GeXIVA[1,2] on oxaliplatin-induced cold allodynia by single IM
injection. Time–effect relationship of GeXIVA[1,2] in acetone stimulation cold score. Each point
indicates the mean ± SEM at the time point, (NS, n = 10; GeXIVA[1,2], n = 9 (32 nmol/kg), n = 10,
(64 nmol/kg, 128 nmol/kg); Gabapentin 50 mg/kg, n = 8). (B) AUC of corresponding dose within 6 h
after injection indicating the dose–effect relationship. * P < 0.05, *** P < 0.001, compared with the NS
control group.

2.3.2. Short-Term Analgesic Effect of GeXIVA[1,2] by Repeated Treatments

Rats from different treatment groups received repeated administration until day 8. The short-term
analgesic effects of GeXIVA[1,2] and gabapentin were detected at 24 h post injection. As shown
in Figure 6 (F (4,126) = 2.27, P = 0.0773), repeated treatment of either GeXIVA[1,2] or gabapentin
at 50 mg/kg produced analgesia in cold allodynia. These data suggest a cumulative effect since
significant analgesic effects were observed at different doses of GeXIVA[1,2] and gabapentin at day 8
post injection. GeXIVA[1,2] at 32 nmol/kg showed an analgesic effect at day 4 (P < 0.05) and day 8
(P < 0.01), 128 nmol/kg produced an analgesic effect at day 8 post injection (P < 0.05). Gabapentin at
50 mg/kg decreased cold score at day 8 (P < 0.01). The cold score of the NS group did not show any
significant difference during this period.
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Figure 6. Short-term analgesic effect of GeXIVA[1,2] on oxaliplatin-induced cold allodynia by repeated
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* P < 0.05, ** P < 0.01, compared with the NS control group.
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2.3.3. Effect of Repeated Treatment of GeXIVA[1,2] in Normal Rats

In order to evaluate the possible side effects of GeXIVA[1,2] after repeated treatments, mechanical
PWT, tail-flick latency, hind limb grip strength and body weight were monitored at day 8 and day 16 in
normal rats after daily treatments. As shown in Figure 7, neither a different dose of GeXIVA[1,2] nor
gabapentin influenced these indicators after repeated treatments compared with the NS group.
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64 nmol/kg, 128 nmol/kg); Gabapentin 50 mg/kg, n = 10).

3. Discussion

Distinct from neuropathic pain induced by trauma and disease, chemotherapy-induced
neuropathic pain is commonly a predictable outcome during cancer treatment due to its high incident
rate (68.1% prevalence of neuropathy during the first month after chemotherapy) [21]. Despite the
fact that numerous strategies have been investigated for treating this kind of neuropathy, currently
only duloxetine is moderately recommended for its treatment [22]. Opioid receptor-targeted drugs are
commonly used analgesics to treat acute pain, but they exhibit limitations in chronic neuropathic pain
treatment (severe side effects including addiction and respiratory depression, etc.) [23,24].

Peptides derived from toxins target various receptors, such as nAChRs, voltage-gated ion channels,
non-opioid G-protein-coupled receptors (GPCRs) and transient receptor potential (TRP) channels.
These have been investigated as novel non-opioid analgesic drugs [25]. Ziconotide (ω-conotoxin
MVIIA, Prialt®) is a peptide identified from the venom of conus magus and approved by the FDA to
treat severe chronic pain in 2004. This peptide functions by blocking N-type, voltage-sensitive calcium
channels and produces less side effects compared with opioid pain relievers. However, ziconotide
could not pass the blood–brain barrier, so it requires an invasive pump for drug delivery to the central
nervous system (CNS) which is costly and inconvenient [26].

On the contrary, α9α10 nAChR antagonists modulate neuropathic pain state by peripheral
administration, thus they are more convenient than ziconotide. Moreover, unlike opioid therapeutics,
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α9α10 nAChR antagonists displayed a good safety profile in rodents and clinical tests, which makes
this receptor a promising target for chronic neuropathic pain treatment.

Oxaliplatin treatment can induce acute and chronic neuropathic pain. The acute symptoms occur
during treatment or within days after treatment, related to impaired functions of calcium sensitive
voltage-gated sodium channels. The chronic neuropathic pain symptoms are induced by a cumulative
dose of oxaliplatin, related to platinated compound accumulation in dorsal root ganglia-induced
neurotoxicity [27]. Previous studies about RgIA and its analogue RgIA4 were performed in the chronic
neuropathic pain model; these peptides were repeatedly injected simultaneously with oxaliplatin
treatment [16,17]. These results demonstrated the preventive effect of α9α10 nAChR antagonists in
oxaliplatin-induced neuropathy. However, considering the cost and necessity, therapeutic treatments
are also indispensable. In the present study, we investigated the therapeutic analgesic effect of
GeXIVA[1,2] in the established oxaliplatin-induced acute neuropathic pain model.

αO-conotoxin GeXIVA[1,2] is a selective antagonist of α9α10 nAChR with high affinity, and
our previous research proposed it as a promising analgesic drug. The present study demonstrated
the analgesic efficacy of GeXIVA[1,2] in the oxaliplatin-induced neuropathic pain rat model. We
first studied the time/dose–effect relationship of GeXIVA[1,2] in alleviating mechanical and cold
allodynia by single IM injection; gabapentin was set as a positive control. GeXIVA[1,2] relieved
mechanical allodynia in a dose-dependent manner; 128 nmol/kg GeXIVA[1,2] produced an equivalent
analgesic effect to 50 mg/kg gabapentin. On the contrary, GeXIVA[1,2] was inferior in the alleviation of
oxaliplatin-induced cold allodynia detected by the acetone test, while 50 mg/kg gabapentin decreased
the cold score at 2 h after drug injection. This discrepancy of analgesic efficacy of GeXIVA[1,2] on
mechanical and cold allodynia by single injection could be due to multiple reasons. Previous studies
were performed as preventive strategies in oxaliplatin-induced chronic neuropathic pain models.
In this research, GeXIVA[1,2] was investigated in the established oxaliplatin-induced acute neuropathic
pain model as a therapeutic strategy. In an RgIA study, the cold plate test was applied to test cold
allodynia, while the acetone test was used in this research [16]. Transient receptor potential ankyrin 1
(TRPA1)-expressing and transient receptor potential melastatin 8 (TRPM8)-expressing sensory fibers
mediate mechanical and cold perception respectively [28]. Acute oxaliplatin treatment alters the
expression of ion channels in these neurons; however, there is discrepancy in their mechanisms [29].

The analgesic studies of previously identified α9α10 nAChR antagonists place emphasis on
their disease-modifying effects, proposing that repeated treatments provide more benefit than single
administration [15]. Acute oxaliplatin treatment-induced cold allodynia is reversible, while mechanical
allodynia is long-lasting and can continue for at least 20–25 days post treatment [30]. In this study,
repeated treatments of GeXIVA[1,2] produce cumulative analgesic effects and promote recovery
from oxaliplatin-induced mechanical and cold allodynia. Moreover, the long-term analgesic effect of
GeXIVA[1,2] on mechanical allodynia lasted for 10 days after the 16-day repeated treatment procedure
was terminated, while gabapentin had no cumulative effects. Pain perception to noxious stimuli is a
vital warning signal which should not be affected by pain relievers. GeXIVA[1,2] displayed no effect
on normal pain perception detected by the von Frey test and tail flick test after repeated treatment for
16 days, indicating that these analgesic effects are specific to the pathological state.

Although the aforementioned studies suggest that α9α10 nAChR is a promising target to treat
neuropathic pain, it is still not known exactly how and where this receptor performs these functions.
α9α10 nAChR was initially identified in cochlear hair cells [31,32], and later these subunits’ expression
was detected in bone [33], dorsal root ganglion (DRG) [34], liver [35], lymphocytes [36], etc. A recent
study identified the expression of α9 and α10 nAChR subunits in mouse brains [37], although this
result is controversial [38]. The putative mechanisms involved in the analgesic effect of α9α10 nAChR
antagonists are related to the inhibition of immune cell functions [10,12,16]. Several studies have
described the immune modulatory effect of α9 containing nAChR. In the experimental autoimmune
encephalomyelitis (EAE) model,α9 knockout (KO) mice displayed reduced disease severity and delayed
onset [39]. In monocytes, α9 and α10 subunits containing nAChRs regulate purinergic receptor P2 × 7
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(P2X7R) activation induced pro-inflammatory cytokine interleukin-1β (IL-1β) release [40]. However,
whether these functions are involved in the analgesic effect of GeXIVA[1,2] requires further study.

In the grip strength test, GeXIVA[1,2] did not affect hind limb grip strength after repeated
treatments, which is in accordance with our previous data of GeXIVA[1,2] in a rotarod test, indicating
that these analgesic effects are not due to neurotoxicity or muscle relaxation [20]. Previously identified
α9α10 nAChR antagonists both displayed a good safety profile, and also no significant side effects were
observed after single or repeated treatments. RgIA4 had no behavioral, neurological and autonomic
side effects in the Irwin test [18]. ZZ1-61c displayed no effect on motor performance and grip strength
at the analgesic dose [41]. VC1.1(ACV1) has passed a phase 1 clinical test and been verified as
safe for humans [42]. Recently, RgIA4 was licensed to Kineta Inc. (KCP-400) and is in preclinical
development [43].

In this study, GeXIVA[1,2] produced an analgesic effect in an oxaliplatin-induced neuropathic
pain model. Repeated treatments of GeXIVA[1,2] provided a cumulative effect that can accelerate
the recovery from neuropathic pain, which is consistent with previously described α9α10 nAChR
antagonists, and is a huge advantage compared with opioid drugs. Compared with ziconotide,
GeXIVA[1,2] can be effective by peripheral administration, which is much more convenient and less
costly. These results suggest that GeXIVA[1,2] could be a promising drug for chemotherapy-induced
neuropathic pain management.

4. Material and Methods

4.1. Animals

Male Sprague–Dawley rats weighing 180–200 g (Beijing animal center, Beijing, China) were
included in the experiments, housed in groups of 5 in transparent plastic cages in a 12 h light/dark
cycled, temperature and humidity-controlled room and fed with water and food ad libitum. The
animals were given 3–4 days prior to the experiments to adapt to the housing facilities and the testing
procedures. All the experiments were approved by the Ethics Committee and the Institutional Animal
Care and Use Committee of Beijing Institute of Pharmacology and Toxicology, Beijing, China (IACUC
of AMMS-06-2017-001), and were performed according to the ARRIVE (Animal Research: Reporting of
In Vivo Experiments) guidelines [44] and Guide for the Care and Use of Laboratory Animals [45] to
minimize the quantity of animals used and pain inflicted upon them.

4.2. Compounds

Synthesis of αO-conotoxin GeXIVA[1,2] was performed as previously described. Gabapentin
(T0702, TargetMol) and oxaliplatin (T0164, TargetMol) were purchased from Target molecule Corp.

4.3. Oxaliplatin-Induced Neuropathic Pain

Oxaliplatin (T0164, TargetMol) was dissolved in 5% GS to 2 mg/mL and intraperitoneally (IP)
injected at a dose of 6 mg/kg to establish the neuropathic pain model [46]. The control group animals
received a corresponding volume of 5% GS injection. Neuropathic pain then gradually emerged as
previously described.

4.4. Measurement of Mechanical Allodynia

Mechanical allodynia was tested using the von Frey filaments (Aesthesio, Danmic/USA) according
to the up–down method as previously described [47,48]. Firstly, all rats were restrained separately in
plastic cages placed on a shelf with a metal wire mesh floor and given 15 min for adaptation. A series of
von Frey hairs (1–26 g) were applied to the mid-plantar skin of the right hind paw for 2–5 s. A positive
response was considered as an urgent, unexpected withdrawal of the paw, then the filament with
lower grams was applied; otherwise, the next filament with higher grams was applied. After detecting
the first positive and negative response, another 4 pricks were applied. Tests should be avoided when



Mar. Drugs 2019, 17, 265 10 of 13

the animals keep moving or show grooming behaviors, which may cause misleading results. The 50%
mechanical PWT was calculated by using the formula described previously.

4.5. Measurement of Cold Allodynia

Cold allodynia was measured by the acetone test [47,49]. Rats were placed in a transparent
plastic box on a shelf with a metal wire mesh floor and given 15 min for habituation. After the rats
calmed down and stopped grooming activities, 50 µL acetone was ejected to the mid-plantar skin
surface with a syringe, which causes cooling of the skin to a non-nociceptive temperature of 15–21 °C.
The behaviors of rats after the acetone spray was monitored within 30 s and scored according to the
following criteria: 0 for no response; 1 for mild paw withdrawal or flicking; 2 for prolonged flicking of
hind paw or stomping; 3 for repeated flicking with licking hind paw. This test was repeated 3 times
with two-minute intervals and the total scores were recorded.

4.6. Measurement of Tail-Flick Latency

The nociceptive perception of heat was detected using a tail-flick analgesia meter (1430, Columbus
Instruments, USA). Briefly, the rat was lightly restrained on a platform, and radiant heat was applied
to the ventral surface of the tail (4 cm from the distal end of tail); afterwards, the tail-flick latency was
recorded automatically. The intensity of heat stimulation was adjusted to obtain a baseline latency of 2
to 5 s; 10 s was set as the cut-off time to avoid tissue damage [20].

4.7. Measurement of Grip Strength

In order to evaluate the effect of the test drug on muscle strength, the grip strength test was
performed using the grip strength meter (YLS-13A, Yiyan, China). Briefly, the operator grasped the
back and the tail of the rat and supported its body against palm, the rat was set at a vertical position
and its hind paws were lowered to grasp the grip-bar. After the rat held the grip-bar firmly with both
its hind paws, the rat was lowered to a horizontal position and pulled backward slowly. The grip
strength was automatically recorded in grams when the rat loosened its grip [50].

4.8. Drug Administration Procedure

Based on preliminary results, 32 nmol/kg, 64 nmol/kg and 128 nmol/kg were set as the low,
medium, and high dose of GeXIVA[1,2]. To reach these concentrations, GeXIVA[1,2] was dissolved in
normal saline to 48 nmol/mL, 96 nmol/mL and 192 nmol/mL and IM injected at a volume of 0.2 mL/300 g
body weight. Gabapentin (T0702, TargetMol) was dissolved in NS to 50 mg/mL and IP injected at a
volume of 1 mL/kg. On the day of experiment, the animals that developed neuropathic pain symptoms
were selected and assigned to different treatment groups randomly. Mechanical or cold sensitivity
was monitored at 0, 1, 2, 4, and 6 h after single injection. Afterwards, rats received daily repeated
administration for one week, and acetone tests were performed 24 h after the last administrations
on day 4 and day 8. In a separate experiment, animals received daily injections of normal saline,
GeXIVA[1,2] and gabapentin up to day 16; von Frey tests were performed at 4 h and 24 h since last
injection. After drug withdrawal, mechanical PWT was detected for another 16 days. In normal rats,
all the test drugs were repeatedly injected for 16 days; mechanical PWT, tail-flick latency, hind paw
grip strength and body weight were recorded at day 8 and day 16 before drug injection. The examiner
was blinded to drug treatments.

4.9. Statistical Analysis

All data were represented as mean ± SEM and analyzed using Graphpad Prism 5. Data including
multiple time points were analyzed by two-way ANOVA (time, drug) with Bonferroni post-tests. AUC
was calculated by the AUC function of the software, analyzed by one-way ANOVA with Tukey’s
multiple comparison. P < 0.05 was set as the standard of significance. The acute experiment data
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represent the pain threshold at 4 h post injection in a repeated treatment process. The short-term effect
represents the pain threshold at 24 h since last injection. The long-term analgesic effect represents the
pain threshold after drug withdrawal from repeated treatments.
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