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The use of whole genome sequencing (WGS) data generated by the long-read
sequencing platform Oxford Nanopore Technologies (ONT) has been shown to provide
reliable results for Salmonella serotype prediction in a previous study. To further meet
the needs of industry for accurate, rapid, and cost-efficient Salmonella confirmation and
serotype classification, we evaluated the serotype prediction accuracy of using WGS
data from multiplex ONT sequencing with three, four, five, seven, or ten Salmonella
isolates (each isolate represented one Salmonella serotype) pooled in one R9.4.1 flow
cell. Each multiplexing strategy was repeated with five flow cells, and the loaded samples
were sequenced simultaneously in a GridION sequencer for 48 h. In silico serotype
prediction was performed using both SeqSero2 (for raw reads and genome assemblies)
and SISTR (for genome assemblies) software suites. An average of 10.63 Gbp of clean
sequencing data was obtained per flow cell. We found that the unevenness of data
yield among each multiplexed isolate was a major barrier for shortening sequencing
time. Using genome assemblies, both SeqSero2 and SISTR accurately predicted all
the multiplexed isolates under each multiplexing strategy when depth of genome
coverage ≥50× for each isolate. We identified that cross-sample barcode assignment
was a major cause of prediction errors when raw sequencing data were used for
prediction. This study also demonstrated that, (i) sequence data generated by ONT
multiplex sequencing can be used to simultaneously predict serotype for three to
ten Salmonella isolates, (ii) with three to ten Salmonella isolates multiplexed, genome
coverage at ≥50× per isolate was obtained within an average of 6 h of ONT multiplex
sequencing, and (iii) with five isolates multiplexed, the cost per isolate might be reduced
to 23% of that incurred with single ONT sequencing. This study is a starting point
for future validation of multiplex ONT WGS as a cost-efficient and rapid Salmonella
confirmation and serotype classification tool for the food industry.

Keywords: whole genome sequencing, Oxford Nanopore Technologies, multiplex, Salmonella, subtyping,
foodborne pathogens, serotyping, food industry
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INTRODUCTION

Salmonella is a genus of rod-shaped, Gram-negative bacteria
which has imposed great risk on food production and public
health (GMA, 2009; Scallan et al., 2011; Oh and Park, 2017; EFSA
and ECDC, 2019a,b). As one of the most common foodborne
pathogens, non-typhoid Salmonella contributes the second most
cases of infections in the U.S. (Tack et al., 2020). Contamination
often results in significant financial loss throughout the food
supply chain, which makes effective surveillance and control
of this pathogen necessary. Although there are only two
species of Salmonella, over 2,600 serotypes have been reported
to date (Issenhuth-Jeanjean et al., 2014). Thus, accurate and
rapid identification of Salmonella serotypes is important for
efficient source tracking during incident investigation and
Salmonella surveillance.

The widely used White-Kauffmann-Le minor scheme defines
Salmonella serotypes mainly by 46 somatic (O) and 114 flagella
(H1/H2) antigens, and an antigenic formula with specific
combination of O and H antigens is used to differentiate
serotypes (Grimont and Weill, 2007). Traditional serotyping
methods that use this scheme involve the use of specific antisera
(Herikstad et al., 2002), with some serotypes further defined by
biochemical characteristics. Reliable serotyping with traditional
methods is time consuming, and requires careful maintenance
of a large number of different antisera (Wattiau et al., 2011; Shi
et al., 2015). Several molecular methods have been developed to
overcome the drawbacks of traditional serotyping methods (Foley
et al., 2007; Wattiau et al., 2011; Diep et al., 2019); for example,
PCR (Herrera-León et al., 2007) and microarray-based subtyping
methods (McQuiston et al., 2011) have been widely used. Due
to increasing utilization of next generation sequencing (NGS),
in silico subtyping through whole genome sequencing (WGS)
data is gradually becoming mainstream. Several in silico methods
have been developed to predict Salmonella serotypes from WGS
sequencing data (Zhang et al., 2015; Ashton et al., 2016; Yoshida
et al., 2016; Zhang et al., 2019), among which SISTR (Yoshida
et al., 2016), SeqSero (Zhang et al., 2015), and its recent upgrade
SeqSero2 (Zhang et al., 2019) have been substantively validated
and shown to deliver accurate predictions (Diep et al., 2019;
Banerji et al., 2020; Cooper et al., 2020). Such methods are now
being accepted and used by regulators, industry, and academia
for source attribution, outbreak investigation, surveillance, and
research purposes (Didelot et al., 2016; EFSA Panel on Biological
Hazards et al., 2019).

Illumina sequencing platforms1, which use short read
sequencing approaches have been used commonly to provide
WGS data for surveillance of foodborne pathogens, including
Salmonella (Allard et al., 2016; Ashton et al., 2016; CDC,
2006, 2018). While Illumina sequencing has advantages of low
error rate and high throughput, its short reads have limited
capability for the closed assembly of genomes. Oxford Nanopore
Technologies (ONT) offers comparable sequencing platforms
with extra-long reads, real time sequencing, and rapid processing

1https://www.illumina.com/systems/sequencing-platforms.html

time2, but has higher rates of sequencing errors than Illumina
(Fox et al., 2014; Rang et al., 2018). Raw ONT reads are
long enough to be treated as “contigs” by SeqSero2, and this
serotype prediction tool offers two options for ONT data: (i) raw
ONT reads using SeqSero2 raw reads workflow (ii) raw ONT
reads using SeqSero2 assembly workflow (Zhang et al., 2019).
In SeqSero2 v1.1.23, a single nanopore workflow is available
for both raw ONT reads and their genome assemblies. This
workflow algorithmically unifies the processing of both ONT
raw reads and ONT assemblies by taking advantage of the long
lengths of ONT reads, which are usually similar to those of
contigs assembled from short reads (i.e., Illumina reads). With
the serotype prediction tool SISTR, ONT raw reads have to
first be assembled to correct base call errors, which have been
reported to compromise SISTR prediction results (Zhang et al.,
2019). Our previous evaluation of ONT sequencing based on
sequencing a single Salmonella strain per flow cell and data
analyzed by both the SeqSero2 raw reads workflow and SISTR
revealed that a total of 2 h of ONT sequencing data were
sufficient for successful Salmonella serotyping (Xu et al., 2020).
This represents a considerable time saving compared to short-
read-sequencing-based approaches. The ONT platforms have
the capability for simultaneously sequencing multiple strains by
applying DNA indexing (multiplex sequencing) (Karamitros and
Magiorkinis, 2018). Combined with the continuously growing
sequencing data yield of ONT sequencers, multiplex sequencing
allows large quantities of complexed samples to be sequenced
in one run (Piper et al., 2019; Kennedy et al., 2020). Several
studies have successfully performed species identification by
Multi Locus Sequence Typing (MLST) analysis from multiplexed
sequencing data using the multiplex sequencing system provided
by ONT (Imai et al., 2020; Liou et al., 2020). However,
mis-assignment or cross-contamination of barcodes was also
observed (Xu et al., 2018).

This study aimed to evaluate the efficiency, accuracy, and
economic value of serotype prediction from ONT sequencing
data generated from multiplexing up to ten Salmonella isolates.
A combination of common, rare, and difficult-to-differentiate
isolates were selected to (i) investigate whether correct antigenic
formulae are assigned to isolates, (ii) determine whether mis-
assignment or cross-contamination occurs during the process,
and (iii) find the best combination of isolate number for
multiplexing and the total sequencing time for the most efficient
and accurate serotype prediction.

MATERIALS AND METHODS

Bacterial Strains
Ten Salmonella isolates representing 10 different serotypes
were assessed in the current study (Table 1). Seven isolates
represented some of the most common serotypes, which included
Salmonella serotype Typhimurium (including Typhimurium
O5−), 4,[5],12:i:-, Paratyphi B (dt+), Enteritidis, Mbandaka, and

2https://nanoporetech.com/products
3https://github.com/denglab/SeqSero2
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TABLE 1 | Salmonella strains used for evaluating the performance of multiplex ONT sequencing for serotype prediction from whole genome sequencing data.

No. Category Strain ID Recorded
serotypea

Antigenic profileb Source Barcode no.c

1 Most common FSL S5-0483 Enteritidis 1,9,12:g,m:- Human 07

2 FSL R8-4405 Mbandaka 6,7,14:z10:e,n,z15 Human, clinical 02

3 FSL S5-0658 Senftenberg/Dessau 1,3,19:g,[s],t:- Human 03

4 Common and difficult to
differentiate serovars
(genetically similar)

FSL R9-3346 Typhimurium 1,4,[5],12:i:1,2 Human, clinical 01

5 FSL R8-3714 Typhimurium (O5−) 1,4,[5],12:i:1,2 Human, clinical 05

6 FSL S5-0580 4,[5],12:i:- 4,[5],12:i:- Bovine 04

7 Common, and difficult to
predict serovar correctly

FSL S5-0447 Paratyphi B (dt +) 1,4,[5],12:b:1,2 Human 08

8 Species and subspecies that
are distinct from common
Salmonella subspecies (i.e.,
S. enterica subspecies enterica

FSL R9-0514 S. enterica subsp.
Salamae

55:z39:- − 10

9 FSL R9-0518 S. bongori 66:z41:- ATCC 43975 11

10 Rare FSL S5-0549 Havana 1,13,23:f,g,[s]:- Bovine 09

aFood Safety Lab, Cornell University, provided the information of recorded serotype for each isolate, which was determined by conventional serotyping method with
Kauffman-White scheme
bWe listed the antigenic profiles of the strains in use based on the serotype information from “Antigenic Formulae of the Salmonella Serovars 2007 9th edition” (Grimont
and Weill, 2007)
cThe barcode No. 01–11 correspond to the barcode RB01–RB11 in the ONT Rapid Barcoding Sequencing kit (SQK-RBK004).

Senftenberg. These were selected from i) the top 20 serotypes
reported by the U.S. national Salmonella surveillance system
(CDC, 2006, 2018) and ii) the top 20 serotypes causing human
infections worldwide as reported to the WHO (Galanis et al.,
2006). One isolate representing a rare serotype (serotype Havana)
found in the food industry (information obtained by personal
communication) was also included. Six isolates represented
six serotypes that may be difficult to identify with molecular-
level serotyping methods such as MLST and Pulsed-Field Gel
Electrophoresis (PFGE). These six serotypes included (i) serotype
Typhimurium, its O5− variant, and serotype 4,[5],12:i:-, which
are difficult to differentiate by MLST and phylogenetic analysis
due to their close relatedness (Ranieri et al., 2013); (ii) serotype
Paratyphi B (dt +), which has been incorrectly predicted
by other molecular subtyping methods such as PFGE (Bailey
et al., 2002; Soyer et al., 2010; Zou et al., 2012), and (iii)
one strain of S. enterica subspecies salamae, and one strain of
S. bongori; these two strains represent subspecies and species
distinct from the most common Salmonella subspecies (i.e.,
S. enterica subspecies enterica). Detailed isolate information,
including all sequence data associated with a given isolate, can
be found at www.foodmicrobetracker.com under the isolate ID
(e.g., FSL S5-0393).

Genomic DNA Extraction
All Salmonella isolates were cultured on Trypticase Soy Agar
at 37◦C for 20∼22 h. Genomic DNA was extracted from
single colonies using the QIAamp DNA mini kit (Qiagen,
Hilden, Germany). The DNA quality and quantity were assessed
with the NanoDrop 2000 (Thermo Fisher Scientific, Delaware,
United States) for absorbance value (A) and the Qubit 3.0
fluorimeter (Life Technologies, Paisley, United Kingdom) for
double strand DNA quantity, based on the guidance for

qualification requirements for successful sequencing provided by
ONT. The genomic DNA samples that met the following criteria
were used for library construction: (i) A 260/280 between 1.8 and
1.9; (ii) A 260/230 between 2.0 and 2.2. The total input DNA was
about 400 ng for each flow cell (FC).

Oxford Nanopore Library Preparation
and Sequencing
The rapid Barcoding Sequencing kit (SQK-RBK004) was used
according to the manufacturer’s instructions. Libraries were
multiplexed and sequenced with qualified FLO-MIN106 flow
cells (R9.4.1, active pore number ≥800) for 48 h on GridION
(Oxford Nanopore Technologies, Oxford, United Kingdom)
following the workflow described in Figure 1. Basecalling was
performed in real time using Guppy with a basecalling model
modified for 6 mA dam/5 mC dcm and CpG, which was
integrated in the MinKNOW software v3.5.40 installed on
GridION. Ten barcodes were assigned to ten isolates (Table 1).
Five multiplexing strategies were tested, including multiplexing
three (barcode No. 01 ∼ No. 03), four (barcode No. 01 ∼ No.
04), five (barcode No. 01 ∼ No. 05), seven (barcode No. 01 ∼
No. 05 and No. 07 ∼ No. 08), or ten (barcode No. 01 ∼ No. 05
and No. 07 ∼ No. 11) isolates on one flow cell. Repeats of each
multiplexing strategy were tested on five flow cells, which were
sequenced simultaneously on one GridION.

Genomics Analysis and Data Distribution
Analysis
Basecalled reads were demultiplexed using qcat v1.1.04, the
argument “--min-score” was set to a default value of 60 for
general analysis, and various values were manually defined for the

4https://github.com/nanoporetech/qcat
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FIGURE 1 | An example of the workflow of multiplex ONT sequencing library
preparation and sequencing. After extracted from colonies on an agar plate,
Salmonella genome DNA of three isolates were multiplexed and sequenced in
one flow cell with five repeats. The same workflow was also used for
multiplexing four, five, seven, or ten isolates in one flow cell.

purposes of error analysis. Demultiplexed reads were classified
based on the barcode qcat identified, reads of each barcode were
applied to a modified genomic analysis workflow derived from
our previous study (Xu et al., 2020). Porechop v0.2.35 was used
to trim adaptor sequences, and the quality of trimmed data
was assessed using NanoPlot v1.18.1 (De Coster et al., 2018).
A total of approximately 500 Mbp of high-quality long reads
(minimum length > 1,000 bp) were selected through Filtlong
v0.2.06. Filtered raw reads were subsequently applied to an
initial serotype prediction by SeqSero2 v1.0.27 under a preset of

5https://github.com/rrwick/Porechop
6https://github.com/rrwick/Filtlong
7https://github.com/denglab/SeqSero2/releases

arguments specifically designed for ONT raw data. Wtdbg2 v2.4
(Ruan and Li, 2020)8 was then used for initial genome assembly
followed by one round of correction through Racon v1.3.3 (Vaser
et al., 2017)9.

To assess the influence of barcode and isolate (as one barcode
was always assigned to one isolate in this study, we combined
these two factors into one as the barcode/isolate factor) on the
distribution of data yield among multiplexed isolates in each
flow cell, a one-way analysis of variance (ANOVA) was carried
out to compare if the proportion of data yield of each barcoded
isolate was significantly different from the other barcoded isolates
multiplexed in the same flow cell. As the data yield per isolate
was diverse within one flow cell, we calculated the coefficient of
variation for the proportion of data yield per multiplexed isolate
in each flow cell to compare the degree of diversity of data yield
per multiplexed isolate between different multiplexing strategies.
A one-way ANOVA was carried out to compare if this coefficient
of variation for a given multiplexing strategy (e.g., three isolates)
was significantly different from the other multiplexing strategies
(e.g., four, five, seven, and ten isolates). Statistical significance for
the ANOVA was assigned at α = 0.05.

Serotype Prediction Analysis
The nanopore workflow available in SeqSero2 v1.1.2 (see text
footnote 3) was used for genome assemblies from ONT reads
for serotype prediction analysis. To avoid any possible impact of
barcode cross-assignment on serotype prediction, the nanopore
workflow of SeqSero2 v1.1.2 was not used on ONT raw reads for
the purpose of serotype prediction. Instead, it was used to detect
cross-assigned reads. ONT raw reads were also first assembled
to correct basecall errors that were reported to compromise
SISTR prediction (Zhang et al., 2019) and then used for further
serotype prediction using SISTR_cmd (The Salmonella in silico
Typing Resource Command-line Tool) v1.1.0 (Yoshida et al.,
2016) under a default setting of arguments for assembled data.
A brief data analysis pipeline for serotype prediction is shown in
Figure 2.

Assessment of the Influence of Sequencing Time and
Depth of Genome Coverage in Serotype Prediction
To assess the influence of sequencing depth and sequencing
time on the accuracy of serotype prediction, serotype prediction
analyses were carried out for each flow cell using different sizes of
sequencing data collected as follows. The raw sequencing reads
were arranged sequentially by their time of generation. For each
flow cell, we first identified the isolate that accounted for the
least amount of sequencing data, then we collected reads up
to the time point when this isolate obtained the desired depth
of genome coverage [average Salmonella genome size: 4.8 Mbp
(McClelland et al., 2001; Parkhill et al., 2001)]. We defined this
depth of genome coverage as Depthmin for this flow cell. For
example, in FC01 (flow cell 01), sequencing data yield for isolates
with BC01 (barcode 01), BC02, and BC03 after 48 h of ONT
sequencing accounted for 29.36%, 34.95%, and 27.85% of the total

8https://github.com/ruanjue/wtdbg2/releases/tag/v2.4
9https://github.com/isovic/racon/releases
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FIGURE 2 | Data analysis pipelines for serotype prediction and identification of cross-assigned reads. Contents in ovals present the type of input data for each
analysis, contents in rectangles present the tools for each analysis. 1Porechop was used to search for middle adaptors from the possible cross-assigned reads;
2NanoPlot was used to assess the sequencing quality of the possible cross-assigned reads.

sequencing data, respectively. If the desired Depthmin of FC01 for
serotype prediction analysis was 15×, we collected sequencing
data until the isolate with BC03 reached 15×depth of genome
coverage (15× 4.8 Mbp = 72 Mbp) since BC03 had the least share
of sequencing data (27.85%) in this case.

Identification of Possible Cross-Assigned Reads and
Influence of Cross-Assigned Reads on the Accuracy
of Serotype Prediction
To further investigate if there were cross-assigned reads among
multiplexed isolates on each flow cell, ONT raw reads was used
as input of SeqSero2 to detect prediction errors caused by single
ONT reads. Raw sequencing reads (at 99×depth of genome
coverage) of the isolate that was predicted as a different serotype
as recorded were aligned against selected serotype determinant
loci using BLAST10. These antigen determinant loci were selected
from the SeqSero2 antigen outputs that did not match the
recorded antigen profile of this isolate. For example, the antigen
profile prediction result using raw reads of isolate FSL R9-
3346 from sample FC19-BC03 (recorded serotype: Senftenberg)
showed its H2 antigen as “e,n,z15,” while serotype Senftenberg did
not have an H2 antigen. We therefore included all four alleles of
the H2 antigen “e,n,z15” from SeqSero2 database to align against
the raw reads of FC19-BC03 for identifying possible cross-
assigned reads. We defined a read as a possible cross-assigned
read if it showed BLAST identity ≥90% and coverage = 100% to
a selected antigen determinant allele.

Porechop v0.2.3 (see text footnote 5) was used to further
assess whether there was a barcode in the middle of these
reads (we choose a -middle_threshold of 60). Sequencing
quality of these putative cross-assigned reads was assessed

10https://blast.ncbi.nlm.nih.gov/Blast.cgi

using NanoPlot v1.18.1 (De Coster et al., 2018). To assess the
influence of the possible cross-assigned reads on the accuracy of
serotype prediction, serotype prediction analyses with SeqSero2
were performed again after removal of these reads for the
aforementioned two isolates. A brief data analysis pipeline for
identification of cross-assigned reads is shown in Figure 2.

Assessment of the Influence of Sequencing Quality
and Barcode Quality on the Accuracy of Serotype
Prediction
To further assess the influence of (i) sequencing quality and (ii)
barcode quality on the accuracy of serotype prediction for the
two isolates FSL R9-3346 and FSL S5-0658 from the two samples
noted in 2.4.2, serotype prediction analyses with SeqSero2 were
performed with the raw reads selected with the following settings
as input: (i) sequencing quality score ≥12, 13, or 14 (selected
by Filtlong v0.2.0), qcat barcode score ≥60 (default setting), and
Depthmin = 99×, as well as (ii) sequencing quality ≥7 (default
setting), qcat barcode score ≥70, 80, or 90, and Depthmin = 99×.

RESULTS AND DISCUSSION

Overview of Nanopore Sequencing Data
and Assembly of Salmonella Genomes
The quality of raw sequencing data from the multiplex ONT
sequencing experiments was analyzed by NanoPlot (version
1.18.1) (Table 2). An average of 10,629 Mbp of clean sequencing
data per flow cell were obtained in 48 h from 25 experiments
(across different numbers of multiplexed isolates). Data outputs
of flow cells ranged from 5,650 to 17,998 Mbp, with the exception
of FC17 which generated only 3,201 Mbp data; the mean
read length and read length N50 varied much less (Table 2).
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TABLE 2 | Summary of quality statistics of multiplexed raw sequencing data.

Flow cell ID Number of isolates
multiplexed

Total clean data
yield (Mbp)

Mean read length
(bp)

Mean quality
score

Number of reads Read length N50

01 3 13,787 10,368 11.7 1,329,726 18,407

02 3 12,312 8,025 11.5 1,534,118 14,802

03 3 13,694 7,583 11.2 1,805,906 15,665

04 3 11,085 8,207 11.3 1,350,613 15,284

05 3 8,135 8,385 11.3 970,123 15,235

06 4 14,463 8,305 11.7 1,741,442 14,596

07 4 6,332 8,017 11.7 789,817 14,266

08 4 17,100 8,283 11.8 2,064,501 14,731

09 4 15,234 8,226 11.2 1,851,964 15,137

10 4 17,998 7,658 11.8 2,350,186 13,968

11 5 13,715 7,832 10.8 1,751,213 14,332

12 5 7,181 8,018 11.5 895,600 14,680

13 5 8,761 7,600 11.3 1,152,794 14,648

14 5 10,530 7,583 11.1 1,388,584 14,689

15 5 6,833 7,434 11.6 919,206 13,320

16 7 13,513 7,167 12.2 1,885,531 13,479

17 7 3,201 7,831 12.1 408,795 14,618

18 7 8,450 7,542 12.1 1,120,392 14,249

19 7 12,113 7,706 12 1,571,937 14,447

20 7 5,984 8,212 12.3 728,703 14,714

21 10 5,650 9,429 12.1 599,172 17,944

22 10 9,666 9,851 12 981,235 18,013

23 10 7,794 9,370 12.3 831,812 17,038

24 10 10,592 9,770 12.1 1,084,229 18,057

25 10 11,603 10,309 12.2 1,125,520 18,549

Average 10,629.0 8,348.4 11.7 1,289,324.8 15,394.7

Sequencing quality was shown to be highly consistent among
25 experiments, with mean quality scores for a given flow cell
ranging from 10.8 to 12.3. The average quality score was 11.7.

Overview of Demultiplexed Sequencing
Data
An average of 8.02% (N = 25) reads per flow cell failed to
be assigned to any barcode after demultiplexing analysis of
the sequencing data generated with 48 h of ONT sequencing;
these reads were defined as Non-assigned reads. An average
of 0.03% reads per flow cell were assigned to barcodes that
were not included in the flow cell; these reads were defined
as mis-assigned reads (Figure 3 and Supplementary Table 1).
Demultiplexed raw sequencing data of each multiplexed
isolate in each flow cell from 48 h ONT sequencing
(No. = 145) were submitted to NCBI–SRA (Accession
number: PRJNA694442).

The unevenness of data yield among multiplexed isolates
was a major barrier for shortening the total sequencing
time for each flow cell. There was no significant difference
among the data yields for different barcoded samples after
48 h of ONT sequencing when multiplexing three or four
isolates (Figures 4A,B and Supplementary Table 1). However,
ANOVA indicated a significant difference (P < 0.05) in

data yields among isolates when multiplexing five, seven,
or ten isolates (Figures 4C–E and Supplementary Table 1).
For example, post hoc comparisons using the Tukey HSD
test indicated that BC03 showed a significantly lower data
yield (P < 0.05) than some other isolates when multiplexing
five or seven isolates (Figures 4C,D), and BC07 showed
a significantly lower data yield (P < 0.05) than some
other isolates when multiplexing seven or ten isolates
(Figures 4D,E).

We also found that that the level of unevenness of
data yield of each multiplexed isolate is different among
multiplexing strategies (Figure 5). Comparison of the coefficient
of variation of the proportion of data yield per multiplexed
isolate among multiplexing strategies showed that, the level
of isolate-data-yield variation of multiplexing seven or ten
isolates is significantly greater (P < 0.05) as compared to
multiplexing three, four, or five isolates. For example, on
FC01 (three isolates multiplexed), the isolate (BC02) with
the highest data yield accounted for 34.95% of total data
(at 1,004×depth of genome coverage), which was 1.25 times
the data yield of the isolate (BC03) with the smallest data
sharing proportion (BC03 with 27.85% data yield at 800 ×
depth of genome coverage). On the other hand, for FC22
(ten isolates multiplexed), the isolate with the highest data
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FIGURE 3 | Sequencing data distribution within each flow cell (FC) for each barcode (BC). Each color represents one barcode. Within each flow cell, sequencing
reads that were not assigned to any barcode were defined as non-assigned reads, reads assigned to a barcode that was not included in the flow cell were defined
as mis-assigned reads.

FIGURE 4 | Comparison of the data yield of each isolate multiplexed in one flow cell for each multiplexing strategy (sequencing time: 48 h). Based on the statistical
analysis results of Tukey HSD test, barcodes with different letters were significantly different (P-value < 0.05) from each other in data yield. Ideally, data share of each
isolate was expected to be 31, 23, 18, 13, and 9% in (A–E).

yield (BC04) accounted for 16.72% of the total data (at
337 × depth of genome coverage); thus was 7.92 times
the data yield of the isolate with the smallest data sharing

proportion (BC05), which accounted for only 2.11% of
the total data (at 42 × depth of genome coverage), after
48 h ONT sequencing.
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FIGURE 5 | Comparison of the coefficient of variation of the proportion of
data yield per multiplexed isolate in one flow cell under each multiplexing
strategy including multiplexing three, four, five, seven, or ten isolates
(Sequencing time: 48 h). Based on the statistical analysis results of Tukey
HSD test, multiplexing strategies with different letters were significantly
different (P-value < 0.05) from each other in coefficient of variation.

Influence of Sequencing Time and Depth
on Accuracy of Salmonella Serotype
Prediction Using ONT Assembled
Genomes
For flow cells multiplexing three, four, or five isolates, five levels
of Depthmin (15×, 30×, 50×, 75×, 99×) were used to perform
serotype prediction analysis. Using genomes assembled from the
raw reads with (i) sequencing quality ≥7 and (ii) qcat barcode
score ≥60, both SeqSero2 and SISTR generated the same results
at the serotype level as the recorded serotype of each isolate for
all tested Depthmin levels when multiplexing up to five isolates.
The ONT sequencing time for each flow cell at different Depthmin
levels are shown below (Table 3).

For flow cells multiplexing seven or ten isolates, none of
the flow cells achieved Depthmin = 99 × within 48 h of
ONT sequencing. Hence Depthmin levels 15×, 30×, 50×, 75×,
and/or the maximum Depthmin of each flow cell were used to
perform serotype prediction analysis. One flow cell multiplexing
seven isolates (FC17) generated only 3.20 Gbp trimmed data
after 48 h of sequencing, which was 70% lower than the
average total sequencing data; this flow cell was not included
in the serotype prediction analyses. When multiplexing seven
isolates, earliest accurate serotype predictions for tested isolates
were obtained using sequencing data at Depthmin = 15×.
When multiplexing ten isolates, SISTR identified isolate FSL
S5-0483 (recorded serotype and antigen profile: Enteritidis,
1,9,12:g,m:-) as Gallinarum | Pullorum (predicted antigen profile:
1,9,12:-:-) in one (FC24) of the five replicates/flow cells, while
SeqSero2 reported the correct serotype (with a depth of genome
coverage of 41 × for this isolate in FC24). Earliest accurate
serotype predictions for tested isolates were obtained using
sequencing data at Depthmin = 15 × with SeqSero2 alone, and
at Depthmin = 30× with both SeqSero2 and SISTR.

TABLE 3 | ONT sequencing time for different levels of Depthmin/.

Depthmin

level
Sequencing time (hour) Average

Sequencing
Time (hour)

Multiplexing three isolates

FC01 FC02 FC03 FC04 FC05

99× 3.84 5.80 5.56 5.56 6.77 5.50

75× 2.93 4.41 4.25 4.25 5.09 4.19

50× 2.05 3.02 2.94 2.96 3.47 2.89

30× 1.31 1.93 1.90 1.90 2.19 1.85

15× 0.75 1.06 1.04 1.04 1.20 1.02

Multiplexing four isolates

FC06 FC07 FC08 FC09 FC10

99× 10.36 11.38 5.37 6.71 5.25 7.81

75× 7.81 8.43 4.10 5.10 3.99 5.89

50× 5.29 5.56 2.83 3.47 2.72 3.97

30× 3.27 3.34 1.82 2.14 1.72 2.46

15× 1.71 1.71 1.01 1.12 0.92 1.29

Multiplexing five isolates

FC11 FC12 FC13 FC14 FC15

99× 8.81 13.61 12.25 11.70 15.62 12.40

75× 6.66 9.84 9.01 8.71 11.35 9.11

50× 4.52 6.35 5.92 5.81 7.46 6.01

30× 2.79 3.69 3.62 3.58 4.50 3.64

15× 1.49 1.79 1.87 1.90 2.40 1.89

Multiplexing seven isolates

FC16 FC17 FC18 FC19 FC20

99× 33.35 − >48 >48 >48 −

75× 21.75 − 24.09 41.82 >48 −

50× 13.62 − 12.99 20.37 31.18 19.54

30× 7.94 − 6.91 10.82 9.05 8.68

15× 3.96 − 3.35 5.16 4.00 4.12

Multiplexing ten isolates

FC21 FC22 FC23 FC24 FC25

99× >48 h >48 h >48 h >48 h >48 h −

75× >48 h >48 h 27.52 >48 h 31.01 −

50× 26.58 >48 h 13.20 20.81 17.06 −

30× 10.08 21.85 6.51 11.66 9.26 11.87

15× 4.13 9.54 3.16 5.60 4.41 5.37

While molecular serotyping does not typically identify
serotype variants caused by ancillary O antigens, Typhimurium
var. O5- (FSL R8-3714) was consistently (across flow cells)
correctly identified by SeqSero2 [as SeqSero2 targets a mutation
that causes the O5- phenotype (Hauser et al., 2011)]; SISTR, on
the other hand, identified FSL R8-3714 as Typhimurium, without
specifying the variant O5-.
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In summary, for all multiplexing strategies tested in the
current study, (i) with SeqSero2 alone, the earliest accurate
serotype predictions were obtained using genomes assembled
from sequence data at Depthmin 15 × as input, generated
from 1.02 to 5.47 h of ONT sequencing for multiplexing three
to ten isolates; (ii) with SISTR alone, the earliest accurate
serotype predictions were obtained using genomes assembled
from sequence data Depthmin at 30 × as input, generated from
1.85 to 11.87 h for multiplexing three to ten isolates (Table 3);
(iii) both SISTR and SeqSero2 correctly predicted Salmonella
serotypes from genomes assembled using multiplexed ONT raw
data with 50× genome coverage (please note that this is an actual
coverage of a given isolate, not a Depthmin indicating the lowest
genome coverage that each one of the multiplexed isolates can
reach on one flow cell).

Higher quality of the assembled genome was shown to be
associated with higher sequencing depth for both the WGS
and ONT platforms in our previous study (Xu et al., 2020),
while here we demonstrated a genome coverage of 50× is
generally sufficient for assembling genomes to support accurate
serotyping. An average sequencing duration of approximately 6 h
for multiplexing five isolates was sufficient to reach this genome
coverage. The majority of previous evaluations of WGS-based
Salmonella serotype prediction used Illumina data (Zhang et al.,
2015, 2019; Yachison et al., 2017; Uelze et al., 2020), since Illumina
platforms can generally yield high quality sequencing data.
Currently, a minimum of 30 × genome coverage (≥10 kb reads)
of ONT sequencing data is recommended for bacteria assembly11.

Multiplexing several isolates inevitably caused variations in
size of data allocation for each isolate, unlike sequencing a single
isolate on a single flow cell. It is thus important to manage
multiplex sequencing to allow each isolate to reach at least
the genome coverage of 50 × for reliable serotype prediction,
hence sequencing duration for multiplex runs will necessarily
be longer than the sequencing duration required for a single
isolate. Our results from pooling 3–10 isolates demonstrated
that the unevenness of data yield among multiplexed isolates
increased significantly and sequencing times required for
accurate serotyping exceeded 19 h when multiplexing more than
five isolates. Consequently, multiplexing more than five isolates
may potentially undermine the benefit of the relatively short time
required for ONT sequencing. Based on these observations, we
conclude that multiplexing five isolates represents the optimum
for obtaining the sequencing depth required for reliable serotype
prediction within a reasonable time frame.

Identification of Possible
Cross-Assigned Reads and Their
Influence on the Accuracy of Serotype
Prediction
One and two possible cross-assigned reads were identified
for samples FC10-BC01 (isolate FSL R9-3346; serotype:
Typhimurium) and FC19-BC03 (isolate FSL S5-0658; serotype:

11https://nanoporetech.com/sites/default/files/s3/literature/microbial-genome-
assembly-workflow.pdf

Senftenberg), respectively (Supplementary Table 2). Please note
that the analysis method we used could only identify possible
cross-assigned reads leading to serotype prediction errors.
Therefore, it was highly possible that the cross-assigned reads we
identified were just a small fraction of all types of existing cross-
assigned reads. The mean read length and sequencing quality
of these reads were 10.96 Kbp and 12.93 Kbp, respectively. We
did not detect any middle adaptors among these reads. These
possible cross-assigned reads each had a barcode score ≥95.8
at one end of the read (Supplementary Table 2), and < 90 at
the other end, as determined by Porechop (data not shown),
consistent with the fact that the ONT library preparation kit
added barcode adaptors to only one end of each read. Serotype
predictions with raw reads by SeqSero2 after removal of these
possible cross-assigned reads, were consistent with recorded
serotypes of these samples, suggesting that these reads were the
cause of serotype prediction errors for these two isolates. In
addition, we did not identify any possible cross-assigned reads
with our screening criteria from the corresponding isolates on
the other flow cells multiplexing the same number of isolates
but showing correct serotype predictions. As the barcode score
and quality score of these detected cross-assigned reads were
quite high and as no chimeric reads were detected (no evidence
of middle adaptor), we speculated that one of the major causes
of barcode cross-assignment was contamination from free
adapters after pooling the libraries. These reads possibly captured
wrong barcodes after multiplexing during library preparation.
We did not perform cleaning-up to remove short sequences
(< 100 bp) after pooling, hence these free barcodes might have
had opportunities to link to the DNA sequences from multiple
isolates. Tyler et al. (2018) also found erroneously barcoded reads
that standard filtering practices could not remove as they were
of high quality, and suggested running only a single sample at
a time on a flow cell to avoid contaminating reads. It has been
reported that clean-up by a bead-based or gel purification step
could remove free adapters12, therefore a clean-up step after
pooling the indexed libraries might be added in future studies.
This may help alleviate index misassignment.

This study showed that cross-assigned reads might cause
serotyping errors only when raw reads were directly used for
serotype prediction. However, such errors may be avoided by
assembling genomes prior to prediction. Barcode misassignment
(including cross-assignment also known as index hopping)
between multiplexed libraries is a recognized cause of
misidentification (Kircher et al., 2012) for NGS. The Illumina
sequencing technology has been reported to typically generate
0.1–2% barcode misassignment (see text footnote 12). Similarly,
ONT sequencing has been reported to generate 0.02–0.3%
barcode switching or misassignment to an unused barcode when
using the 1D ligation sequencing kit (SQK-LSK108) and the
native barcoding expansion kit (EXP-NBD103) (Tyler et al., 2018;
Wick et al., 2018; Xu et al., 2018). In the current study, using
the Rapid Barcoding Sequencing kit (SQK-RBK004), the index
misassignment level was around 0.04% of the total sequencing
data size (data not shown). Barcode misassignment levels for

12https://www.illumina.com/science/education/minimizing-index-hopping.html
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multiplex sequencing have shown to be highly dependent on the
library preparation kit used, as well as quality and handling of
the library (see text footnote 12). As the mean read length of
the 25 ONT flow cells tested in the current study was above 8
Kbp (Table 2) and the length of an antigen determent loci in
Salmonella is usually between 0.1 and 5 Kbp (data not shown),
a small number of ONT cross-assigned reads can possibly alter
the serotype prediction result. High molecular weight DNA
extraction methods are available for purification of DNA in
the 50 Kbp to 1 Mbp + size range. Reads with greater mean
length may lead to higher quality of genome assembly, yet their
influence on the possible cross-assigned reads and accuracy of
serotype prediction are unknown. With DNA extraction method
generating regular read length of genome DNA (mean read
length around 8 Kbp), we recommend using assembled genomes
for serotype prediction through SeqSero2 with multiplex ONT
sequencing data, if more rapid serotype prediction enabled by
raw reads input [∼5 s/million bases using SeqSero2 nanopore
workflow (Zhang et al., 2019)] is not the primary concern.

Influence of Sequencing Quality and
Barcode Quality on the Accuracy of
Serotype Prediction
Accurate serotype prediction of the two isolates noted above (FSL
R9-3346, FC10-BC01, serotype Typhimurium, and isolate FSL
S5-0658, FC19-BC03, serotype Senftenberg) was obtained when
sequencing quality score was raised to ≥13 and qcat barcode
score was set at ≥60 (default setting) using ONT raw reads as
input of SeqSero2. However, this approach removed about 60%
of the raw sequence data. Setting the quality score to ≥13 may
have removed most of the error-causing reads from the data set,
as the average sequencing quality score of the possible cross-
assigned reads was 12.93. When the sequencing quality score was
set to ≥14, more than 90% of the raw sequence data were lost.
Consequently, the depth of genome coverage of some of the other
isolates multiplexed in the same flow cell dropped to below 10×,
which led to serotype prediction errors for these isolates due to
low genome coverage.

When sequencing quality score was set at 7 (default setting)
for filtering raw reads, and qcat barcode score was raised to ≥90
at the same time, accurate serotype prediction was obtained for
these two samples by using raw reads with SeqSero2. However,

these settings still resulted in loss of more than 90% of the raw
sequence data, and reduction of the depth of genome coverage
of some of the other isolates in the same flow cell to below 10×,
again leading to serotype prediction errors for these isolates.

In summary, raising the quality score of raw reads to ≥13
improved serotype prediction accuracy for the isolates tested in
the current study, while removing more than half of the total
sequencing data. On the other hand, raising the barcode score
of raw sequencing reads did improve prediction accuracy, but
resulted in exclusion of 90% of the raw sequencing data, thus
introducing errors due to lack of sequencing depth for some
of the isolates multiplexed in the same flow cell. This approach
could be used to avoid errors caused by cross-assigned reads
when sequencing data depth permits, or where sequencing time
length is not the primary concern. Xu et al. (2018) found that
chimeric reads and low-barcode-score reads were the main causes
of cross sample contamination in their data set. In contrast, we
found the error-causing reads were of high barcode quality and
without evidence of having internal adaptors. Removing all the
reads with middle adaptors from the raw sequencing data did
not alter the prediction results generated by using ONT raw
reads (data not shown). This discrepancy in the cause of cross
contamination may be attributed to the difference in library
preparation and barcoding kits used in the current study and Xu’s
study (Xu et al., 2018).

Recommendation for Cost-Effective
Multiplexing Strategy and Limitations of
the Current Study
Multiplexing has the advantage of higher time and cost
efficiencies compared to sequencing single isolates, particularly
in a practical scenario where large numbers of samples are
routinely analyzed. The sequencing kit (RBK004) used in this
study has the capability of multiplexing up to 12 different isolates
in one flow cell, which will yield considerable costs savings
relative to sequencing a single isolate on a flow cell. Multiplexing
three isolates could reduce consumable cost per isolate by 64%
compared to the cost of sequencing a single isolate, and the
cost reduction can be increased to 87% when ten isolates are
multiplexed. However, the total sequencing time needs to be
increased above the 1∼2 h required for single isolate sequencing,s

TABLE 4 | Summary of turnaround time and cost for each multiplexing strategy.

Multiplexing isolate number 1 3 4 5 7 10

Cost per isolatea $910 $330 $255 $210 $159 $120

Average sequencing time to obtain at
least 50 × depth of genome coverage
for each multiplexed Salmonella isolate

<1.0 h 2.9 h 4.0 h 6.0 h 19.5 h >25.1

Data analysis time <1.0 h <2.0 h <2.0 h <2.0 h <3.0 h <3.0 h

DNA extraction + quality control 3.5 h 3.5 h 3.5 h 4.0 h 4.5 h 4.5 h

Library construction 1.0 h 1.5 h 1.5 h 1.5 h 2.0 h 2.0 h

Total time 6.5 h 9.9 h 11.0 h 13.5 h 29.0 h 34.6 h

aCost per isolate was calculated based on the market price of DNA extraction and ONT consumables in China in Dec. 2019.
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so that sufficient data are obtained for each multiplexed isolate
to allow for correct serotype prediction. Also, the unevenness
of data yield between each multiplexed isolate increases as the
number of isolates being multiplexed increases. The total number
of multiplexed isolates, therefore, should be carefully considered.
In this study 50 × depth of genome coverage (∼ 5 Gbp of raw
data) could be obtained within an average of 6.0 h of ONT
sequencing when multiplexing five isolates, while multiplexing
seven isolates took an average of 19.5 h to reach equivalent
depth (Table 4). Hence multiplexing seven to ten isolates resulted
in only a small cost benefit compared with multiplexing five
isolates (Table 4). Moreover, our previous study showed that
both the data yield and quality started to decline after 12 h
of sequencing on the flow cells of GridION, and the flow cells
usually showed remarkably low numbers of active pores after
48 h of sequencing (Xu et al., 2020). These data suggest that
multiplexing five isolates is likely to be more efficient overall, than
multiplexing greater numbers of isolates. Total turnaround time
is of critical importance in the practical application of serotype
prediction in the food industry; multiplexing five isolates will
allow serotyping results to be obtained within one day. Increasing
the number of isolates being multiplexed resulted in increased
sequencing time, and more total time for DNA extraction, library
construction and data analysis (Table 4).

It is not known if certain strains of Salmonella would alter
the accuracy of serotyping under the recommended settings,
as only Ten serotypes were involved in the current study.
Further validation with more Salmonella serotypes is necessary
to operationalize the serotyping of Salmonella through multiplex
ONT WGS, for example in the food industry or in public health.

CONCLUSION

This study demonstrated that accurate serotype prediction results
could be obtained when multiplexing five or less Salmonella
isolates with an average of 6 h of multiplex ONT sequencing,
where each multiplexed isolate received at least 50 × depth
of genome coverage of sequencing data after demultiplexing.
Multiplexing up to five isolates in one flow cell is recommended
to achieve high coverage of the genome and high accuracy
of prediction within one day. Multiplexing five isolates results
in a cost reduction to 23% of the cost of ONT sequencing
of a single isolate per flow cell. Our study helps to identify
the optimal combinations of isolate multiplexing number and
sequencing time to achieve the most accurate, rapid, and cost-
efficient Salmonella serotype prediction with multiplex ONT

sequencing. This study also sets a starting point for the future
validation of multiplex ONT WGS as a cost-efficient, rapid
Salmonella confirmation, and serotype classification tool for
the food industry.
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