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Abstract

This article focus on the analysis of the reliability of multiple identical systems that can have

multiple failures over time. A repairable system is defined as a system that can be restored

to operating state in the event of a failure. This work under minimal repair, it is assumed that

the failure has a power law intensity and the Bayesian approach is used to estimate the

unknown parameters. The Bayesian estimators are obtained using two objective priors

know as Jeffreys and reference priors. We proved that obtained reference prior is also a

matching prior for both parameters, i.e., the credibility intervals have accurate frequentist

coverage, while the Jeffreys prior returns unbiased estimates for the parameters. To illus-

trate the applicability of our Bayesian estimators, a new data set related to the failures of

Brazilian sugar cane harvesters is considered.

1 Introduction

In view of the opportunity to increase production and reduce costs, with a focus on the new

industrial models, the failures that appear in processes and equipment, have to be analyzed,

preventive actions must be taken and control must be constant. Failure analysis and preven-

tion makes it a crucial factor within a more productive demand that focuses on reducing oper-

ating costs and increasing the quality as well as it is essential that a repair action occurs as soon

as possible after each failure. In order to study the analysis of the failures and repair actions, an

area of reliability called repairable systems emerged.

In this area, the object of study is the system, which can be machinery, software or elec-

tronic equipment, and Ascher and Feingold [1] defined that a system can be considered repair-

able if its activity is resumed satisfactorily through repair after a failure without the need to

replace all the components of the system, that is, repairable systems data are recurrent event
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data. It is very important to notice the difference between repairable and non-repairable sys-

tems because one can draw erroneous conclusions if this difference is not noticed.

Several models emerged with the idea of modeling the effect of the repair action performed

on the systems. Aalen [2] was the first author who developed the statistical models based on

counting processes for recurrent events. Tomazella [3] described the wide literature of models

based on counting processes uses for recurrent event data. Cox and Isham [4] and Cox and

Lewis [5] are examples of these models where covariates are present.

The most well-known models are the Minimal Repair (MR), Perfect Repair and Imperfect

Repair. The MR is the most analyzed assumption in the literature which describe situations

where the repair action is only for the purpose of the system returns to its functionality, so

after the repair the system is in the same condition as just before the failure, and this is known

in the literature as ABAO—As Bad as Old. This assumption was discussed by [6–10], among

others.

The MR is an assumption that the repair maintains the system in the same condition as it

was before and it is reasonable for systems that consist of several components and each compo-

nent has its own failure mode [11]. The failure followed by a repair occurs several times within

the study period, and therefore the occurrence of failures has an associated counting process

that can be characterized by a Non-Homogeneous Poisson process (NHPP), in which the prob-

ability of failure in a short time depends only the system’s age, not on the failure history [12].

The parameter estimates of multiple identical repairable systems have been widely dis-

cussed using the maximum likelihood approach and its asymptotic properties, as in Berman

and Turner [13], Zhao and Xie [8] and Rigdon and Basu [14]. There are some disadvantages in

the frequentist context, since the estimators under the MLEs are biased for small samples and

the confidence intervals relies in the asymptotic theory, returning non reliable results. To over-

come this problem Bayesian inference can be used, several papers have considered this

approach, such as Guida et al. [15] who used several choices of informative and noninforma-

tive priors, Sen [16], Yu et al. [17] and de Oliveira et al. [18] that use non-informative prior,

and as Kim et al. [19] and Huang [20] that use conjugate prior distribution. dos Reis et. al. [21]

used an empirical Bayes approach to modeling power law process for the analysis of repairable

systems considering hierarchical model whereas Almeida [22] and Pollo et. al. [23] have con-

sidered objective prior to model repairable systems in the context of competing risks. On the

other hand, the existing papers do not explore which prior leads to unbiased estimates neither

if they have good frequentist performances. It is important to point out that, in many cases the

prior distribution may differ according to the choice of the ordination of the parameters, on

the other hand, we are interested in estimate all the parameters simultaneously. Objective pri-

ors are proposed in the literature as in Jeffreys [24] and Bernardo [25]. The differential of this

work is to use these tools with focus on the analysis of multiple repairable systems and also we

will use to model the power law process.

In this paper, the main aim is to obtain objective priors for the parameters of the PLP inten-

sities for multiple identical repairable systems. We obtained two different posterior distribu-

tions where the posterior obtained with the Jeffreys prior leads to unbiased estimators for the

parameters while the overall reference prior returns marginal posterior intervals with accurate

frequentist coverage. The obtained posterior distributions are proper and have one-to-one

invariance property (for a detailed discussion see Datta and Ghosh [26]. Besides theoretical

proofs, a simulation study is conducted to compare the different proposed estimators. Overall,

the simulation study confirms that Jeffreys posterior returned unbiased estimators while the

reference posterior returned posterior distributions with accurate confidence intervals. The

obtained results outperform the ones obtained by classical approach and should be used to

compute the estimates of the proposed model.
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To exemplify the practical applicability of the proposed modeling, we will present and ana-

lyze a new data set consisting of the failure times of sugarcane harvesters machines during a

harvest. These machines are subject to failure during their execution and, generally, only the

part that broke is replaced when the failure occurs, leaving it in the same stage as before the

failure, so minimal repairs are carried out. In addition, during a harvest, each machine is sub-

ject to several failures, requiring a model that includes several repairs and therefore we will use

modeling for multiple repairable systems.

The paper is outlined in six sections. Section 2 is dedicated to present some useful charac-

teristics and definitions of repairable systems and the minimal repair model. We describe the

objective Bayesian theory and the inference of the parameters of the model analyzed assuming

objective Bayesian inference in Section 3. We present the simulation study to verify the proper-

ties of the founded estimators in Section 4 and we present a real application in Section 5. Some

concluding remarks are presented in Section 6.

2 Model formulation

2.1 Repairable systems

In repairable systems, after the failure occurs, the system is repaired and continues to be

observed. Lindqvist [27] states that in modeling the implicit assumption is that the system is

repaired and restarted immediately, this means that the repair time is considered so small that

it can be discarded. We denote 0< T1 < T2 < . . . the system failure times measured in global

time, that is, accumulated times from the beginning of the system operation.

An important concept in repairable systems is truncation. A commonly used truncation is

time truncation, where the data set ends at a pre-set time limit τ. Let ti,j, for i = 1, 2, . . ., k and

j = 1, 2, . . ., ni, be the observations of the random variable T which represents the failure times

for the ith system, recorded as the time since the beginning of the system

ð0 < ti;1 < ti;2 < . . . < ti;ni
Þ. If the ith system is truncated by time, it is observed until the pre-

determined time τ, where 0 < ti;1 < ti;2 < . . . < ti;ni
< t, where τ is fixed, ni is random and

ti;ni
< t. An example of failure time representation can be found in Fig 1.

The level of repair to be executed depends on the type of failure observed and on the type of

system. There are several levels of repairs, from those that correct only the origin of the failure

to those that end up improving the system leaving it as good as a new one. Thus, models were

constructed that take into account this type of repair. The usual models of the literature are

minimal, perfect and imperfect repair.

2.2 Minimal repair

The MR focuses on correcting only the cause of the failure, leaving the system in the same con-

dition as it was before. Using the concept of MR, it is possible to simply describe the fact that

many real-life repairs bring the system to a condition that is basically the same before failure.

This assumption can be used to model a data set where a system component is replaced or

repaired. The idea of the MR is just letting the system run as fast as possible and, consequently

it is possible to note that the state of the system has not changed.

The NHPP can describe the occurrence of failure, in which the probability of failure in a

short period of time does not depend on the previous pattern of failures, but on the system

(Muralidharan [12]. Thus, the MR model is a process with intensity function being the actual

intensity of NHPP.

One parametric form of NHPP widely used in repairable systems is the power law process.

Let N(t) be the number of failures (NOF) from the beginning of the observation of the system
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until a time t, then, if N(t) follows a PLP, its function of intensity and the cumulative intensity

function [28], are specified by

λðtÞ ¼
b

Z

t
Z

� �b� 1

ð1Þ

and

LðtÞ ¼
t
Z

� �b

; b; Z > 0; ð2Þ

where β and η refer to the shape and scale parameters, respectively.

The cumulative distribution function of this model is given by

FðtÞ ¼
LðtÞ
LðtÞ

¼

t
Z

� �b

t

Z

� �b ¼
t
t

� �b

; ð3Þ

where this function can be used to simulate values of this model.

According to de Oliveira et al. [29] interpreted η as the time during which it is expected

that there is exactly one failure since E½NðZÞ� ¼ 1, while β is a measure that represents the

deterioration of the system, so the system is deteriorating when β> 1 and the system is

improving when β< 1.

PLP is usual in the literature of repairable systems according to Crow [28] and its popularity

is because its function is flexible according to de Oliveira et al. [29]. PLP can accommodate

increasing, decreasing and constant intensities of occurrences, when β> 1, β< 1 and β = 1,

respectively.

Fig 1. Example of failure time representation (failures are represented by the symbol “×”).

https://doi.org/10.1371/journal.pone.0258581.g001
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Rigdon and Basu [14] proposed a reparametrization of the PLP parameters to obtain a bet-

ter interpretation of the parameters. Since the parameter ηmeans the time until the expected

NOF is equal to 1, according to de Oliveira et al. [18] this is an interpretation that is difficult to

understand. Therefore, the following reparametrization was proposed

d ¼
t

Z

� �b

¼ E N tð Þð Þ ¼ LðtÞ: ð4Þ

With this reparametrization, the intensity function is given by

λðtÞ ¼
btb� 1d

tb
; ð5Þ

where β is a measure of improvement or deterioration of the system, and δ is the expected

NOF ahead of time τ.

2.2.1 The likelihood function of minimal repair. For the construction of the likelihood

function (LF), we need to make some assumptions:

• Consider k repairable systems, for k = 1, 2, . . ., where the systems are independent and iden-

tical, that is, the failure patterns are modeled by the same PLP. This assumption of identical

systems is reasonable when all the systems are realizations of the same process, with intensity

function;

• The ith system is truncated by time, being observed until a predetermined time τ, where

0 < ti;1 < ti;2 < . . . < ti;ni
< t;

• ni failures are observed in the ith system, i = 1, 2, . . ., k;

• N ¼
Pk

i¼1
ni is the total NOF observed in the systems;

• Let ti,j, i = (1, 2, . . ., k) and j = (1, 2, . . ., ni), be observations of the random variable T which

represents the failure times for the ith system, recorded as the times from the beginning of

the experiment ðti;1 < ti;2 < . . . < ti;ni
Þ;

• Let μ = (β, η) be the parameter vector to be estimated.

Just combine the joint probability density of the failure times of the k systems to obtain the

LF for this process.

Considering time truncated data (τ), the NOF (N(t)) is random, and so it must be consid-

ered in the construction of the LF, and it can be written as

LðμjtÞ ¼
Yk

i¼1

Yni

j¼1

½λðti;jÞ�e
� LðtÞ; ð6Þ

where t ¼ ðt1;1; ::::; tk;nk
Þ.

Using the reparametrized power law process (5), the LF for time truncation under the

assumption of MR is

LðμjtÞ ¼
Yk

i¼1

Yni

j¼1

btb� 1
i;j d

tb

" #

e� d
( )

ð7Þ
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and the logarithm of the model’s LF is given by

‘ðμjtÞ ¼ N logðbÞ þ ðb � 1Þ
Xk

i¼1

Xni

j¼1

logðti;jÞ þ N logðdÞ � bN logðtÞ � kd: ð8Þ

Maximum likelihood estimates can be easily found, given by

b̂MLE ¼
N

Pk
i¼1

Pni
j¼1

logðt=ti;jÞ
and d̂MLE ¼

N
k
: ð9Þ

3 Bayesian objective estimation for model

The statistical methodology depends on the construction of probabilistic models that represent

the generating mechanism of any random phenomenon under study to deal with the resulting

uncertainty. Nowadays, Bayesian methods are increasingly being used. This methodology usu-

ally requires a great computational effort. The computational advances in the last few decades

have favoured the use of Bayesian methods, which provide a powerful and flexible alternative

to the traditional approaches. Besides their formal interpretation, Bayesian approaches provide

parsimonious descriptions of observed data, good statistical properties of the estimates, predic-

tions for missing data, a computational framework for model estimation, forecasts of future

data, selection, and validation. In this context, the Bayesian approach has become increasingly

easy to be realized and for this reason, new Bayesian techniques have appeared increasingly,

and they are widely used.

Under a Bayesian perspective, the inference of a problem basically depends on the posterior

distribution of the quantity of interest. This posterior distribution combines the available prior

information with the information provided by the data. The elicitation of an appropriate prior

is the main task for applied statisticians in practice. This distribution should portray the prior

knowledge of the researcher regarding the analyzed subject, however, in practice we not always

have some previous knowledge of the subject. Thus, non-informative priors have arisen, which

aim to demonstrate the lack of prior knowledge about the parameters. There are several prior

techniques that are not informative, but we will focus on the objective prior to having several

good properties.

3.1 Jeffreys prior

The Jeffreys prior is a non-informative prior proposed by Jeffreys [24], widely used because it

is invariant to any one-to-one reparametrization. The Jeffreys prior for a parameter vector θ is

defined in terms of the Fisher information:

pJðθÞ / jHðθÞj
1=2
:

To find the Fisher information matrix (FIM), we must find the first and second derivatives

of the log-LF (8), given by

@‘ðμjtÞ
@b

¼
N
b
þ
Xk

i¼1

Xni

j¼1

log ti;j
� �

�
Xk

i¼1

Xni

j¼1

log tð Þ;

@‘ðμjtÞ
@d

¼
N
d
� k;
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@
2
‘ðμjtÞ
@d@b

¼
@

2
‘ðμjtÞ
@b@d

¼ 0;

@
2
‘ðμjtÞ
@b

2
¼ �

N
b

2
;

and

@
2
‘ðμjtÞ
@d

2
¼ �

N
d

2
:

Then the FIM is

Hðb; dÞ ¼ E
N
b2 0

0 N
d2

2

4

3

5 ¼ k
d

b2 0

0 1

d

2

4

3

5

and the Jeffreys prior for β and δ is

pJðb; dÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðbÞf2ðdÞ

p
¼

1

b
; ð10Þ

where f1(�) and f2(�) are positive functions.

As we know, given the failure times t and the parameter vector μ, the Bayesian inference

procedure is based on the posterior distribution, determined from Bayes’ theorem, which is

given by

pðμjti;jÞ / Lðμjti;jÞpðμÞ; ð11Þ

where L(μ|ti,j) is the LF and π(μ) is the prior function.

From (21), using the Jeffreys prior given in (10) and the LF given in (7), thus we can find

the posterior distribution, given by

pðb; djtÞ /
Yk

i¼1

Yni

j¼1

btb� 1
i;j d

tb

" #

expð� dÞ

( )
1

b

/ exp � b
Xk

i¼1

Xni

j¼1

log
t

ti;j

 !" #( )
b

N

b
d

N expð� kdÞ:

ð12Þ

To identify if the posterior function follows a known distribution function, letting

b
�
¼ N
Pk

i¼1

Pni
j¼1

log t
ti;j

� � be the maximum likelihood estimator of β, the posterior distribution is

given by

pðb; djtÞ / bN� 1 exp
� Nb
b
�

� �

d
N expð� kdÞ;

and then, we can notice that the marginal posterior distributions are

pðbjtÞ / Gamma bjN;
N
b
�

� �

and pðdjtÞ / Gamma djN þ 1; kð Þ; ð13Þ

that is, both posterior functions have a gamma distribution, which facilitates the process of

finding posterior estimators.
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From the marginal distributions (13) we can easily prove that the posterior is proper.

Therefore, the Bayesian estimates according to the posterior mode are

b̂J ¼
N � 1

Pk
i¼1

Pni
j¼1

log t

ti;j

� � and d̂J ¼
N
k
: ð14Þ

It is important to point out that

E½b̂J� ¼ E
N � 1

N
b̂MLE

� �

¼ b and E½d̂J � ¼ E
N
k

� �

¼ d:

3.2 Reference prior

The Jeffreys prior might not be adequate in multi-parameter cases, as noticed by Jeffreys’ him-

self and discussed in details by Bernardo [30, pg. 41] or Kass and Wasserman [31]. To work

around this problem, the reference prior was proposed by Bernardo [25], which is a class of

objective priors that has minimal influence on the posterior estimates. The main idea is to

maximize the expected Kullback-Leibler divergence between the prior and the posterior distri-

bution. In order to find the desirable prior, it is needed to separate the parameters into the

parameters of interest and nuisance parameters, according to their order of inferential impor-

tance Bernardo [25, 30].

Berger et al. [32] proposed an overall prior, that is a unique general reference prior to a mul-

tiparametric model, that is, it is a common prior for all parameters of a model and, indepen-

dently of which parameters of the model were taken to be of interest or of inferential

importance, it is unique in the sense of being the same. To this construction, it is particularly

studied cases that the FIM is diagonal.

Consider the family f(x|θ) and the parameters vector θ = (θ1, . . ., θk). Also consider θ−i =

(θ1, . . ., θi−1, θi+1, . . ., θk).

Theorem 3.1. Berger et al. [32] Suppose that the FIM of θ = (θ1, θ2, . . ., θk) is of the form

HðθÞ ¼ diagðf1ðy1Þg1ðθ� 1Þ; . . . ; fkðykÞgkðθ� kÞÞ;

where θ−i = (θ1, � � �, θi−1, θi+1, � � �, θk), diag is a diagonal matrix, fi(�) refers to a positive function
of θi and gi(�) refers to a positive function of θ−i, and i = 1, . . ., k. Hence, the reference prior, for
any ordering of nuisance parameters and any chosen parameter of interest, has the form

pRðθÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðy1Þ . . . fkðykÞ

p
:

It can be see that the parameters β and δ are orthogonal as the FIM is diagonal. Hence, we

can use the Theorem 3.1 to find the overall reference prior.

From Theorem 3.1, the joint reference prior for β and δ is

pRðb; dÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðbÞf2ðdÞ

p
¼

1

b
ffiffiffi
d
p : ð15Þ

PLOS ONE Objective bayesian analysis for multiple repairable systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0258581 November 23, 2021 8 / 19

https://doi.org/10.1371/journal.pone.0258581


From (21), using the reference prior given in (15) and the LF given in (7), thus we can find

the posterior distribution, given by

pðb; djtÞ /
Yk

i¼1

Yni

j¼1

btb� 1
i;j d

tb

" #

expð� dÞ

( )
1

b
ffiffiffi
d
p

/ exp � b
Xk

i¼1

Xni

j¼1

log
t

ti;j

 !" #( )
b

N

b

d
N expð� kdÞ

ffiffiffi
d
p :

ð16Þ

As we did in Section 3.1, to identify if the posterior function follows a known distribution,

letting b
�
¼ N
Pk

i¼1

Pni
j¼1

log t
ti;j

� �, that is the maximum likelihood estimator of β, we have

pðb; djtÞ / bN� 1 exp
� Nb
b
�

� �

d
N� 1=2 expð� kdÞ;

from this it follows that

pðb; djtÞ / Gamma bjN;
N
b
�

� �

Gamma djN þ
1

2
; k

� �

;

and therefore, the marginal posteriors are

pðbjtÞ / Gamma bjN;
N
b
�

� �

and pðdjtÞ / Gamma djN þ
1

2
; k

� �

: ð17Þ

Similar to the Jeffreys prior based on the marginal distributions (17), we can easily prove

that the posterior is proper. Hence, the Bayesian estimates according to the posterior mode are

b̂R ¼
N � 1

Pk
i¼1

Pni
j¼1

log t

ti;j

� � and d̂R ¼
N � 1=2

k
: ð18Þ

3.2.1 Matching priors. Frequentist methods, in general, find confidence intervals through

asymptotic theory, which often does not guarantee a probability of coverage equal to the

desired one for small and moderate samples sizes. To circumvent this problem, formal rules

were presented to derive Bayesian interval estimators in order to guarantee the probability of

coverage error with O(n−1) in the frequentist sense, that is, for the parameters θ1 and θ2, let

y
1� a

1
ðp; tÞjðy1; y2Þ be the (1 − α)th quantile of the posterior distribution of θ1,

P½y1 � y
1� a

1
ðp; tÞjðy1; y2Þ� ¼ 1 � a � Oðn� 1Þ: ð19Þ

The class of priors non-informative π(θ1, θ2) where the credible interval for a parameter of

interest θ1 has a coverage error in the frequentist sense is known as matching priors, see more

in Datta and Mukerjee [33]. According to Tibshirani [34], to find these priors it is necessary to

find a parametrization of the model in order to have orthogonal parameters (υ, φ), on what υ is

the parameter of interest and φ is the nuisance parameter.

Hence, the matching priors have the form

pðu;φÞ ¼ gðφÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iuuðu;φÞ

p
; ð20Þ

where g(φ) > 0 is an arbitrary function and Iυυ(υ, φ) is the υ diagonal entry of the Fisher infor-

mation matrix. To obtain priors with a vector of nuisance parameters follows the same idea.
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The parametrization admitted in this paper is orthogonal, which allows us to find matching

priors.

Proposition 3.2. The Jeffreys prior (10) is a matching prior for β.

Proof. Let υ = β be the parameter of interest and denote by φ = δ the nuisance parameter.

Then,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iuuðu;φÞ

p
¼ 1

b
and g(φ) = 1, therefore, the Jeffreys prior can be written as (20) and the

proof is completed.

Proposition 3.3. The overall reference prior (15) is a matching prior for all the parameters.
Proof. If β is the parameter of interest and φ = δ, then the proof is analogous to that for the

Jeffreys’ prior when considering gðφÞ ¼ 1ffiffi
d
p . If δ is the parameter of interest and φ = β is the

nuisance parameter. Then,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iddðd; bÞ

p
¼ 1ffiffi

d
p and gðbÞ ¼ 1

b
. Then, the overall reference prior can

be expressed as (20) and the proof is completed.

There is another interesting point to note about the choice of the prior distribution. As

shown in Llorente et. al. [35], an important quantity for model selection purpose is the Bayes-

ian evidence, also known as marginal likelihood, which is given by the following expression

pðtÞ ¼
Z

Y

LðθjtÞpðθÞdθ; ð21Þ

where θ 2 Θ The Bayesian evidence is important to model selection and hypothesis testing

because it suffers the dependence on the priors choice (much more than the posterior).

In this respect, the choice of the prior distribution is an crucial issue, because even with

strong data, the Bayesian evidence is highly sensitivity to the choice of prior density than the

posterior. In Llorente et. al. [35], Spiegelhalter and Smith [36] and Piironen [37], there are

interesting discussions of strategies about the choice of the prior, such as the likelihood-based

priors, the so-called partial Bayes factors (which uses tempered likelihood-based priors) and

the posterior predictive approach. In this sense, the robust priors that are used in this work are

also good for model selection and hypothesis testing.

4 Simulation study

We conducted a simulation study to compare the different approaches discussed previously.

The purpose of this simulation study is to examine numerically the properties of the proposed

estimators. More specifically, we will assess the impact of the sample size on the properties of

the estimators through metrics such as bias, mean square error and coverage probability.

In this study, the different scenarios were chosen to assess the following aspects: small and

large sample sizes (sample size, in multiple repairable systems context, is the number of sys-

tems), increasing and decreasing intensity function, more and fewer failures in each system.

The comparison between methods was performed using the bias and the mean square error

(MSE) that are computed by

BiasðbÞ ¼
XM

i¼1

b̂i � b

M
and MSEðbÞ ¼

XM

i¼1

ðb̂ i � bÞ
2

M

BiasðdÞ ¼
XM

i¼1

d̂ i � d

M
and MSEðdÞ ¼

XM

i¼1

ðd̂ i � dÞ
2

M
;

where M is the number of replicates considered and b̂ i and d̂ i are the estimators given in (9),

(14) and (18) for MLE, Jeffreys and reference priors, respectively.
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Based on these metrics, it is expected that the best estimation method returns both bias and

MSE closer to zero. The coverage probabilities (CP) of the parameters are also computed,

hence, assuming 95% confidence level, the confidence/credibility intervals should include the

true value with the proportion of 0.95. Therefore, the CP is a measure to evaluate the quality of

the interval estimates. For the maximum likelihood interval, we considered the asymptotic var-

iances obtained from the FIM to construct the intervals. From the Bayesian approach, we

obtained the interval values directly from the quantile function of the gamma distribution.

We consider two scenarios for the different parameters:

• Scenario 1: we assume a decreasing intensity function, that is, systems in process of

improvement and a situation with more failures, adopting β = 0.5 and δ = 10;

• Scenario 2: we assume an increasing intensity function, that is, the systems are deteriorating

and a situation with fewer failures, adopting β = 3 and δ = 5.

For each scenario, we consider different sample sizes: k = 2, 5, 10 and 20 systems. In all

cases, we assume that the systems are observed in a fixed period of time, that is, they are trun-

cated at time τ = 50. Moreover, in each scenario, M = 50,000 replicates were generated.

Considering that the failures follow a NHPP, based on Rigdon and Basu [14], we used the

following data simulation algorithm:

Step 1: We set the parameter values;

Step 2: For each system, we generate the NOF ni ~ Poisson(δ), i = 1, . . ., k;

Step 3: In the ith system, the failure times ti1; ti2; . . . ; tini
were generated through the inverse of

the intensity function, that is, tij ¼ tU
1=b

ij , where Uij are random numbers from the Uniform

(0,1) distribution;

Step 4: We repeat steps 2 and 3 M times.

The software R [38] was used to compute the results. The MLEs are compared with the

Bayesian estimates that are computed in closed-form expressions, therefore, we did not have

to consider the use of Markov Chain Monte Carlo methods.

Table 1 shows the bias and the MSE and Table 2 presents the coverage probability for the

two scenarios considering the following sample sizes, k = 2, 5, 10, 20 for the three different esti-

mation methods. The Figs 2 and 3 illustrate the bias, MSE and CP for scenarios 1 and 2,

respectively.

Analyzing Table 1 we can see that, in relation to β, for scenario 1, the MLE has the largest

bias and the largest MSE in all sample sizes, while the bias and MSE of the Bayesian estimators

are already small with k = 2. A similar situation occurs in scenario 2, but in this case, the bias

and especially the MSE in all methods are lower than in the previous scenario. When analyzing

the parameter δ, in both scenarios we see that the estimator using reference posterior presents

the greatest bias, however with MSE similar to the other methods and, as the sample size

increases, the bias of the estimator using reference posterior gets closer to the other methods.

According to Table 2, we can observe that MLE is the method that needs a larger sample size

to reach the CP very close to the nominal. We can also note that the Bayesian estimator using

reference posterior is the estimator that reaches the CP close to 0.95 with smaller sample sizes.

The Bayesian estimator using Jeffreys posterior behaves well in general in all aspects. These

results are also illustrated in Figs 2 and 3.

In a general way, it can be seen from the results in Tables 1 and 2 and Figs 2 and 3 that both

Bias and MSE are smaller under the Jeffreys posterior when compared with the MLEs. In fact,
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the results obtained using the Jeffreys posterior are very close to zero, these findings are consis-

tent with the theoretical results that proved that both estimators for β and δ are unbiased esti-

mators. On the other hand, considering the CPs the reference posterior returned better results

when compared with the other estimators, which also confirms our theoretical results. Overall,

the Bayesian estimators with the Jeffreys prior returned improved estimates for both parame-

ters as well as good credibility intervals and should be used to obtain the estimates of the

parameters. Note that the obtained estimates using the Jeffreys prior returned unbiased esti-

mates for the parameters. Firth [39] showed that if the model belongs to the exponential fam-

ily, using the Jeffreys prior the obtained the maximum a posterior estimator will be the same as

the bias-corrected maximum likelihood estimator discussed by Cox and Snell [40]. In our case,

the marginal posterior distributions for the parameters using the Jeffreys prior can be written

Table 1. The Bias and MSE from the estimates considering the Scenarios 1 (β = 0.5, δ = 10) and 2 (β = 3, δ = 5), for different sample sizes k = 2, 5, 10 and 20, with

M = 50,000 simulated samples and several estimation methods.

k = 2 k = 5 k = 10 k = 20

Sc. Par. Method Bias MSE Bias MSE Bias MSE Bias MSE

1 β MLE 0.3825 2.0550 0.1275 0.4603 0.0618 0.2001 0.0307 0.0944

Jeffreys -0.0019 1.3454 -0.0020 0.4054 -0.0002 0.1882 0.0003 0.0916

Reference -0.0019 1.3454 -0.0020 0.4054 -0.0002 0.1882 0.0003 0.0916

δ MLE 0.0296 2.4255 0.0386 0.9696 0.0318 0.4834 0.0352 0.2466

Jeffreys 0.0296 2.4255 0.0386 0.9696 0.0318 0.4834 0.0352 0.2466

Reference -0.2204 2.4732 -0.0614 0.9719 -0.0182 0.4827 0.0102 0.2454

2 β MLE 0.0282 0.0177 0.0102 0.0056 0.0051 0.0026 0.0026 0.0013

Jeffreys 0.0002 0.0149 -0.0002 0.0053 0.0000 0.0026 0.0001 0.0013

Reference 0.0002 0.0149 -0.0002 0.0053 0.0000 0.0026 0.0001 0.0013

δ MLE 0.0098 5.0054 0.0021 1.9975 -0.0054 0.9996 0.0055 0.5014

Jeffreys 0.0098 5.0054 0.0021 1.9975 -0.0054 0.9996 0.0055 0.5014

Reference -0.2402 5.0630 -0.0979 2.0071 -0.0554 1.0027 -0.0195 0.5018

Sc. means Scenario; Par. means Parameter

https://doi.org/10.1371/journal.pone.0258581.t001

Table 2. Coverage probabilities from the estimates considering the Scenarios 1 (β = 0.5, δ = 10) and 2 (β = 3, δ = 5), for different sample sizes k = 2, 5, 10 and 20,

with M = 50,000 simulated samples and several estimation methods.

Scenario Parameter Method k = 2 k = 5 k = 10 k = 20

1 β MLE 0.9545 0.9510 0.9515 0.9505

Jeffreys 0.9497 0.9501 0.9514 0.9491

Reference 0.9497 0.9501 0.9514 0.9491

δ MLE 0.9353 0.9382 0.9477 0.9538

Jeffreys 0.9606 0.9461 0.9477 0.9505

Reference 0.9480 0.9599 0.9564 0.9561

2 β MLE 0.9521 0.9508 0.9501 0.9493

Jeffreys 0.9500 0.9492 0.9503 0.9480

Reference 0.9500 0.9492 0.9503 0.9480

δ MLE 0.9262 0.9397 0.9480 0.9485

Jeffreys 0.9394 0.9416 0.9475 0.9472

Reference 0.9574 0.9521 0.9547 0.9517

https://doi.org/10.1371/journal.pone.0258581.t002
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as gamma distributions, which belong to the exponential family. Therefore, the proposed esti-

mators are the same as if we obtain the Bias corrected MLEs, which confirms the results

observed from the simulation study. Note that, the Bayesian approach returned unbiased esti-

mates with accurate credibility intervals even for small samples as we do not need to resort to

asymptotic theory.

Fig 2. Bias, MSE and coverage probabilities from the estimates with N = 50, 000 simulated samples and different

estimation methods, considering the sample sizes of k = 2, 4, 6, . . ., 30 for the Scenario 1 (β = 3, δ = 5).

https://doi.org/10.1371/journal.pone.0258581.g002

Fig 3. Bias, MSE and coverage probabilities from the estimates with N = 50, 000 simulated samples and several estimation

approaches, considering the sample sizes of k = 2, 4, 6, . . ., 30, for the Scenario 2 (β = 0.5, δ = 10).

https://doi.org/10.1371/journal.pone.0258581.g003
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5 Application

In this application section, we analyze the data set collected in Brazilian sugarcane mills related

to the breaking of the Chopper blade of sugarcane harvester machines that are used in the pro-

duction of sugar and alcohol in the states of São Paulo and Parana during the 2014/2015

harvest.

This data set describes the failure times of 3 sugarcane harvesters with a total of 38 failures

in the Chopper blade, each followed by a repair. Each sugarcane harvester has a different num-

ber of repairs, ranging from 11 to 14 failures by harvester. The study was time truncated at 195

days. An outline of the data is presented in Table 3 and its graphical representation is pre-

sented in Fig 4.

Fig 5 exhibits the mean cumulative function, i.e., the non-parametric Nelson-Aalen esti-

mate for the Λ function. It is possible to observe that there is an indication that the intensity

function is decreasing.

Table 3. Chopper blade break data set (failure times in days).

Harv. Failures and truncated times (days)

1 10 42 51 68 85 110 120 146 157 167 194 (195)

2 8 9 25 31 40 62 73 88 107 118 124 154 158 178 (195)

3 1 29 31 38 60 82 83 101 102 128 129 153 182 (195)

Truncated times are enclosed between parentheses

https://doi.org/10.1371/journal.pone.0258581.t003

Fig 4. Failure times (in days) for each sugarcane harvester.

https://doi.org/10.1371/journal.pone.0258581.g004
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The adequacy of the PLP was verified through the Cramer von Mises goodness-of-fit test

[41] for the sugarcane harvesters data set, whose hypothesis are given by

H0: PLP is adequate (data comes from the F distribution)

H1: PLP is not suitable (data does not come from the F distribution)

where F is the cumulative distribuction function of PLP given in (3) and the test statistic is

calculated by

C2

N ¼
1

12N
þ
XN

i¼1

2i � 1

2N
� FðtiÞ

� �2

; ð22Þ

where N ¼
Pk

i¼1
ni is the total number of observations time and t1 < . . .< tN are all the failure

times. If the calculated C2
N value is greater than the tabulated value, then the null hypothesis

that the data comes from the F distribution is rejected. To obtain the value of the β estimate,

we calculate the maximum likelihood estimator of this parameter given in (9) and then we had

b̂ ¼ 0:899 and considering the N = 38 failure times we obtain the value C2
N ¼ 0:023006 of the

test statistic. The respective p-value can be calculated using the cvm.test function from the goft-
est package [42] of the R software [38] from which we obtained a p-value equal to 0.9939 and

thus we do not reject the null hypothesis and therefore the harvesters data set can be adjusted

by a PLP.

Table 4 presents the model parameter estimates for the three methods presented in the

study: MLE, Jeffreys posterior and reference posterior. Estimates were found using the

Fig 5. Mean cumulative function (MCF) estimate for data.

https://doi.org/10.1371/journal.pone.0258581.g005
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estimators given by (9), (14) and (18). The confidence interval of the MLE was found through

the asymptotic theory, that is, we find the variance of the estimates through the FIM and use

the quantiles of the normal distribution. The Jeffreys and reference credibility intervals were

found using the quantiles of their posterior distribution, given by (13) and (17), respectively.

We can see that estimates are very close in all three methods used.

The estimates suggest that the reliability of the systems is increasing over the time, that is,

the intensity function is decreasing which is in accordance with the MCF plot. Moreover, it is

expected that there are 12.5 failures in each sugarcane harvester in the period of 195 days.

The confidence intervals obtained through the MLE using the the asymptotic theory were

(0.614; 1.186) for β and (8.639; 16.694) for δ. Hence, as expected, we observe that there is a sig-

nificant difference in relation to those obtained through the reference posterior. This envisages

that MLEs tend not to return reliable estimates for small samples. Finally, as we proved theo-

retically and from a simulation study, the Bayes estimates obtained with the overall reference

posterior and given in Table 4 should be used.

6 Discussion

In this study, we have focused on the analysis of the reliability of multiple systems that can

have multiple failures over time. Under the assumption of minimal repair, it was assumed that

the failure has a power law intensity and, in order to facilitate the interpretation and the esti-

mation process, we considered a useful reparameterization to obtain the Bayesian estimators.

The parameter estimators of the PLP model were obtained in closed-form expressions

using the Bayesian approach. We discussed two objective priors known as Jeffreys prior and

reference prior. The resulting posterior distributions lead to unbiased estimators. Considering

the Jeffreys prior we proved that the resulting estimators lead to unbiased estimates for both

parameters. On the other hand, the overall reference prior provided marginal posterior inter-

vals with accurate frequentist coverage for both parameters, i.e., the prior is a matching prior.

The obtained posterior distributions are proper and have one-to-one invariance property. An

extensive simulation study was presented confirming our theoretical results. Overall, the

Bayesian estimators with the Jeffreys prior returned improved estimates for both parameters

as well as good credibility intervals and should be used to obtain the posterior estimates for the

parameters. Note that, if the analysis is more interested in interval estimates, the posterior dis-

tribution with the reference prior should be used.

A real data set related to the breaking of the Chopper blade of sugarcane harvester was used

to confirm the applicability of the proposed methodology. From the estimates obtained we can

conclude that the blades over time have their reliability increased and during the 195 days of

the study they have 12.5 failures as mean.

Table 4. Bayesian estimates for the parameters of the model.

Method Parameter Estimate CI

MLE b̂ 0.899 (0.614; 1.186)

d̂ 12.667 (8.639; 16.694)

Jeffreys b̂ 0.876 (0.637; 1.208)

d̂ 12.667 (8.964; 16.999)

Reference b̂ 0.876 (0.637; 1.208)

d̂ 12.5 (9.104; 17.193)

https://doi.org/10.1371/journal.pone.0258581.t004
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It is important to notice that this paper was formulated from our application of the harvest-

ers. That is, we considered identical systems and truncation by time, because the harvesters

come from the same company and were built under the same conditions. Also, they are sub-

jected to the same working conditions, which leads us to consider them as identical systems.

Also, time truncation was chosen due to the condition in which the harvesters are working

(they stop working in a fixed period of time per year, which is exactly the harvest time). As a

future work, we propose to consider situations where the systems are different and other kinds

of truncation. Note that, in a new model, the parameterization used in this paper is not ade-

quate, being necessary to use other parameterizations, such as the parametric form presented

by Crow [28], and so, the new model will probably not have closed forms for the parameters

estimators.
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