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Age-related changes in cortico-cortical connectivity in the human motor network in

older adults are associated with declines in hand dexterity. Posterior parietal cortex

(PPC) is strongly interconnected with motor areas and plays a critical role in many

aspects of motor planning. Functional connectivity measures derived from dual-site

transcranial magnetic stimulation (dsTMS) studies have found facilitatory inputs from PPC

to ipsilateral primary motor cortex (M1) in younger adults. In this study, we investigated

whether facilitatory inputs from PPC to M1 are altered by age. We used dsTMS in a

conditioning-test paradigm to characterize patterns of functional connectivity between

the left PPC and ipsilateral M1 and a standard pegboard test to assess skilled handmotor

function in 13 young and 13 older adults. We found a PPC-M1 facilitation in young adults

but not older adults. Older adults also showed a decline in motor performance compared

to young adults. We conclude that the reduced PPC-M1 facilitation in older adults may

be an early marker of age-related decline in the neural control of movement.

Keywords: aging, posterior parietal cortex (PPC), primarymotor cortex (M1), motor evoked potential, transcrancial

magnetic stimulation

INTRODUCTION

Age-related decline in cognitive and sensorimotor functions in older adults has been
linked with changes in the brain’s structural and functional connectivity patterns (Seidler
et al., 2010; Damoiseaux, 2017). These age-related differences in functional connectivity that
mediate information flow across the brain have been attributed in part to the decline in
white matter integrity in older adults (Wu and Hallett, 2005; Zahr et al., 2009; Sullivan
et al., 2010; Bruijn, 2014). Additionally, mounting evidence from neuroimaging suggests
age-related changes in cortico-cortical connectivity in the motor network of healthy older
adults contribute to age-related declines in sensorimotor functions. Functional cortico-cortical
connectivity measures derived from dual-site transcranial magnetic stimulation (dsTMS)
in healthy older adults also have shown reduced facilitatory and inhibitory inputs from
secondary motor areas, including the supplementary motor area (SMA) (Green et al.,
2018) and dorsal premotor cortex (PMd) (Ni et al., 2014), to primary motor cortex (M1).
Posterior parietal cortex (PPC), a region involved in transforming sensory information
into motor commands (Crawford et al., 2003, 2004; Andersen and Cui, 2009), is strongly
interconnected with motor areas through white-matter tracts of the superior longitudinal
fasciculus (Makris, 2004). These reciprocal glutamatergic parietal-frontal circuits are likely
excitatory (Tokuno and Nambu, 2000; Dum and Strick, 2002; Matsumoto et al., 2006) and
underlie control processes for skilled voluntary movements such as dexterous finger movements
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required during the manipulation of objects (Filimon, 2010;
Davare et al., 2011; Vesia and Crawford, 2012; Turella and
Lingnau, 2014; Gallivan and Culham, 2015).

Human neuroimaging studies have implicated parieto-frontal
brain regions in sensorimotor control of human hand behavior
(Gallivan et al., 2011, 2013; Fabbri et al., 2014; Monaco
et al., 2020; Turella et al., 2020). Anatomical findings in non-
human primates have shown direct monosynaptic inputs to
M1 from PPC in the control of hand movements (Strick and
Kim, 1978; Rozzi et al., 2005; Bruni, 2018). A similar direct
functional and anatomical parieto-motor pathway has been
seen in human imaging (Koch et al., 2010). A number of
dsTMS findings also have shown direct facilitatory parieto-
motor connectivity in both the resting and active brain for
hand actions in young adults (Koch et al., 2007, 2008; Ziluk
et al., 2010; Cattaneo and Barchiesi, 2011; Karabanov et al.,
2013; Vesia et al., 2013, 2017). Similarly, recent findings from
intraoperative dual cortical stimulation in humans have provided
direct evidence that the inferior parietal lobule exerts short-
latency excitatory effects on cortical motor output (Cattaneo
et al., 2020). Importantly, a recent neuroimaging study points
to reduced coupling of parietal and premotor areas as a
possible mechanism for the decreased perceptual motor speed
observed in older adults (Michely et al., 2018). A question
that remains, however, is whether the well-established age-
related decline in sensorimotor performance relates to age-
related differences in parieto-motor connectivity in older adults.
We used dsTMS to characterize patterns of functional PPC-M1
connectivity and a standard pegboard test to estimate skilled
motor performance in young and older adults. We hypothesized
that facilitatory connectivity between PPC and M1 is reduced in
older adults.

METHODS

Participants
Thirteen young adults (YA, 8 females, 19.9 ± 1.3 years) and
thirteen older adults (OA, 5 females, 72.2 ± 5.5 years) provided
written consent to participate in the study. All participants
were right-handed as assessed by the Edinburgh Handedness
Inventory (Oldfield, 1971). All participants were screened for any
contraindications to TMS (Keel et al., 2001; Rossi et al., 2011)
and had no history of neurological disorders. To assess weekly
frequency and duration of various physical activities undertaken
by older adults, we administered the Community Health
Activities Model Program for Seniors self-report questionnaire
(CHAMPS), which revealed that all were very physically active
(total caloric expenditure per week: 3,799.5 ± 869.6; (Stewart
et al., 2001). Cognitive function was assessed in the older
adults using the Montreal Cognitive Assessment (MoCA score,
≥26) (Nasreddine et al., 2005) and Mini-Mental State Exam
(MMSE score ≥27) (Folstein et al., 1975). Those who took
CNS-active medications within 48 h of the study were excluded.
All procedures were approved by the University of Michigan
Institutional Review Board (HUM00155459) in accordance with
the Declaration of Helsinki.

Procedures
Transcranial magnetic stimulation in a conditioning-test
approach with two coils (Lafleur et al., 2016; Hallett et al.,
2017; Goldenkoff et al., 2020) was used to measure connectivity
between left PPC and left M1 (Figure 1A). A test stimulus (TS)
was delivered to M1 with a figure-8 coil (D702, 7 cm diameter)
connected to a Magstim 2002 stimulator (Magstim, Whitland,
UK) with a monophasic waveform. The TS coil was held
tangential to the skull at 45◦ from the mid-sagittal line, inducing
a current in the posterior-anterior direction in the underlying
cortical tissue. TS intensity was set to produce a motor evoked
potential (MEP) of∼1mV in the first dorsal interosseous muscle
or the abductor pollicis brevis muscle in the right hand (Rossini
et al., 2015). Left M1 was defined as the optimal scalp position
for coil placement where stimulation evoked the largest MEP
from the quiescent right-hand target muscle. PPC stimulation
was applied to the P3 electrode position of the international
10-20 electroencephalogram (EEG) coordinate system using
commercially available EEG head caps in each participant.
The site is situated over angular gyrus (BA 39) of the inferior
parietal lobule (Herwig et al., 2004; Okamoto et al., 2004) and
corresponds with activation foci for hand actions identified
by neuroimaging (Vesia and Crawford, 2012). A conditioning
stimulus (CS) was delivered to PPC with another figure-8
coil (D50 Alpha B.I., 5 cm diameter) connected to a Magstim
2002 stimulator (Magstim, Whitland, UK) with a monophasic
waveform and a posterior-anterior current direction. The CS
coil was held tangential to the skull at 90◦ from the mid-sagittal
line. CS preceded TS by an inter-stimulus interval (ISI) of 4, 6,
or 8ms. PPC stimulation intensity was applied at 70, 90, 110,
and 130% of resting motor threshold (RMT), similar to previous
work (Koch et al., 2007). RMT was defined as the lowest intensity
that evoked MEPs of at least 50 µV in peak-to-peak amplitude
in three of five consecutive trials with the PPC coil from the
right-hand muscle (Rossini et al., 1994). Each stimulus-response
curve was repeated for each ISI. Twelve single-pulse stimuli
(TS alone) to M1 and paired-pulse stimuli (CS-TS) at each
PPC stimulation intensity were delivered in random order
within an experimental block (60 trials) with both hands at
rest. Stimuli were applied every 5 s. The order of the ISI block
for each stimulus-response curve was counterbalanced across
participants. A frameless stereotactic neuronavigation system
(Brainsight; Rogue Research, Montreal, Canada) was used to
ensure consistency in the TMS coil position throughout the
stimulation session. After the electrophysiological measurements
were completed, motor skill performance was examined by
a test of hand dexterity, the Grooved Pegboard Test (GPT,
Lafayette Instrument # 32025) using standard procedures
(Wang et al., 2011).

Data Analysis
Electromyography (EMG) signals were recorded from the right-
hand target muscle using bipolar surface electrodes (Model
2024F, Intronix Technologies Corporation), filtered (band-
pass, 20Hz to 2.5 kHz), and digitized at 5 kHz (Micro 1401
Cambridge Electronics Design). The peak-to-peak amplitude of
the MEPs (mV) occurring between 15 and 100ms after the
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FIGURE 1 | (A) Dual-site transcranial magnetic stimulation in a conditioning-test approach was used to probe connectivity between left posterior parietal cortex (PPC)

and ipsilateral primary motor cortex (M1). The conditioning stimulus (CS) was delivered at an intensity of 70, 90, 110, or 130% of resting motor threshold (RMT) to the

PPC. CS was delivered 4, 6, or 8ms prior to a test stimulus (TS) delivered to primary motor cortex (M1). Resulting motor evoked potential (MEP) amplitudes were

recorded using electromyography (EMG) in the right-hand target muscle at rest. (B) Motor excitability plots showing transcranial magnetic stimulation (TMS) intensity

(expressed as a percentage of the maximum stimulator output, MSO) of resting motor threshold (RMT) and (C) TMS intensity to elicit a motor evoked potential (MEP)

of 1mV for older (filled circles) and young (open circles) adults. Mean and SE are presented.

TS were measured for each trial. Trials in which test pulses
coincided with motor activity or failed to elicit reliable MEPs
(i.e., value exceeded 1.5 times the interquartile range for the
participant) were removed from the analysis (∼2% of trials).
The mean MEP amplitude for paired-pulse stimulation (CS-
TS) was normalized by calculating the ratio of the amplitude
relative to the mean single-pulse TS alone to M1 for each
participant. Separate split-plot analysis of variances (ANOVAs)
were carried out on the normalized MEP amplitudes for each
PPC stimulus-response curve at each PPC stimulation intensity
using Age (two levels: young or older adults) as a between-
subjects factor and ISI (three levels: 4, 6, or 8ms) as a within-
subjects factor. The Bonferroni method was used for post-hoc
t-test comparisons. The Greenhouse-Geiser method was used
to correct for sphericity. Independent sample t -test was used
to compare motor excitability and behavioral measures between
groups. Paired t-tests also were conducted on the absolute
amplitudes of the test MEP and conditioned MEP for the
PPC stimulation intensity of 90% RMT at 6ms ISI to evaluate
facilitation and inhibition within the older and young adults.
Correlations between neurophysiological and behavioral data
were tested with Pearson’s coefficient. Statistical analysis was
performed using IBM-SPSS Statistics Version 26. A significance
threshold was set at p < 0.05. Partial η squared (η 2

p ) values were
computed as a measure of effect size. Cutoffs for effect sizes are
considered small (≥0.01), medium (≥0.06), and large (≥0.14)
(Cohen, 1992). Mean and standard error values are reported.

RESULTS

As shown in Figure 1, no significant age difference was found in
measures of motor excitability (all t24 < 0.71, all p > 0.49). The
RMT of maximum stimulator output (MSO) was 45.2 ± 2.0%
MSO for young adults and 44.8 ± 2.5% MSO for older adults

(Figure 1B). The intensity to elicit a MEP amplitude of 1mV in
the right-hand target muscle was 48.3 ± 2.4% MSO for young
adults and 48.4± 3.7% MSO for older adults (Figure 1C).

Figure 2A shows PPC-M1 connectivity in young and older
adults. Facilitation seen in the MEP amplitude ratio in young
adults was reduced in older adults with PPC stimulation at 90%
RMT for the ISI of 6ms (significant Age and ISI interaction:
F (1.96,47.0) = 3.4, p = 0.043, η

2
p = 0.12; no main effect

of Age: F(1,24)1.17, p = 0.29, η
2
p = 0.05; no main effect of

ISI: F(1.96,47.0) = 0.34, p = 0.71, η
2
p = 0.01). Specifically,

post hoc tests confirmed that the ratio of the MEP amplitude
was significantly different between the age groups for the
PPC stimulus-response curve at 90% RMT at the 6ms ISI
(Bonferroni’s t-test: t22.9 = 2.84, p= 0.028). The results show that
the facilitation between left PPC and ipsilateral M1 connections
in young adults is reduced in older adults. Closer inspection
of the individual normalized data confirmed that left PPC
stimulation intensity of 90% RMT at 6ms ISI caused inhibition
of corticospinal excitability in ipsilateral M1 in about 69% of
the older adults (Figure 2B). A similar pattern emerged at this
timing and intensity when comparing the absolute amplitude
of the conditioned and test MEP (Figure 2C). Paired t-tests
revealed a trend toward significance in the facilitation of the
conditioned MEP compared to TS alone in young adults (t12 =
2.04, p = 0.06), while the analysis within older adults did not
reach significance (t12 = 1.38, p = 0.19). It is worth noting that
single-pulse TS MEPs for the older adults were more variable
than young adults, possibly influencing the normalized MEP
amplitude ratio.

In a series of control experiments, we also verified whether
the PPC-M1 connectivity at rest would differ with different PPC
stimulation intensities. In each case, no significant age difference
was found in the PPC stimulus-response curve at intensities of
70, 110, or 130% RMT (Figure 3). At 70% RMT (Figure 3A),
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FIGURE 2 | (A) Group analysis of the effects of left posterior parietal cortex (PPC) stimulation at 90% resting motor threshold (RMT) intensity on motor evoked

potential (MEP) amplitude induced by left M1 stimulation for older (n = 13; closed circles) and young (n = 13; open circles) adults at rest. The conditioning stimulus

(CS) to PPC preceded a test stimulus (TS) to the primary motor cortex (M1) by an inter-stimulus interval (ISI) of 4, 6, or 8ms. MEP amplitude was normalized as a ratio

of the MEP amplitude evoked by paired-pulse stimulation (CS-TS) to that evoked by single-pulse stimulation (TS) to M1 alone (dashed line). Y = 1 indicates no effect

of TMS to PPC on M1 excitability, whereas ratios higher than 1 indicate increased and ratios lower than 1 indicate decreased M1 excitability because of PPC

stimulation. Facilitation in the ratio of MEP amplitude in young adults was reduced in older adults with PPC stimulation delivered at an intensity of 90% RMT at ISI of

6ms. (B) Individual conditioned MEP amplitudes for the stimulus-response curve at 90% of RMT at the 6ms ISI for older (n = 13, filled circles) and young (n = 13,

open circles) adults normalized to TS alone (dashed line). (C) Individual absolute values of MEP amplitudes (mV) for the single-pulse TS to M1 and paired-pulse CS-TS

to PPC at an intensity of 90% RMT at the 6ms ISI for older (filled circles) and young (open circles) adults. Mean and SE are presented. *p < 0.05.

FIGURE 3 | Group-averaged conditioned motor evoked potential (MEP) amplitudes for a posterior parietal cortex (PPC) stimulus-response curve at 70% (A), 110%

(B), and 130% (C) of resting motor threshold (RMT) at an inter-stimulus interval (ISI) of 4, 6, or 8ms normalized to a test stimulus (TS) alone (dashed line). MEP

amplitudes are expressed as a ratio of the amplitude relative to the mean single-pulse TS alone to the primary motor cortex (M1) for older (n = 13, filled circles) and

young adults (n = 13, open circles). Mean and SE are presented.

a split-plot ANOVA showed that there was no significant effect
of Age [F(1,24) = 1.42, p = 0.25, η

2
p = 0.06], ISI (F(1.44,34.6) =

0.40, p = 0.60, η
2
p = 0.02), nor an interaction effect [F(1.44,34.6)

= 2.52, p= 0.11, η 2
p = 0.10]. At 110% RMT (Figure 3B), a split-

plot ANOVA showed that there was no significant effect of Age
[F(1,24) = 0.28, p = 0.60, η 2

p = 0.01], ISI [F(1.73,41.5) = 0.11, p =

0.90, η 2
p = 0.005], nor an interaction effect [F(1.73,41.5) = 1.05, p

= 0.35, η 2
p = 0.04]. Similarly, at 130% RMT (Figure 3C), a split-

plot ANOVA showed that there was no significant effect of Age

[F(1,24) = 1.32, p = 0.26, η
2
p = 0.05], ISI [F(1.93,46.29) = 0.64, p

= 0.53, η 2
p = 0.03], nor an interaction effect [F(1.93,46.29) = 0.61,

p= 0.54, η 2
p = 0.03].

As shown in Figure 4A, young adults were significantly
faster than older adults at completing the GPT (young
adults = 68.0 ± 8.6 s vs. older adults = 90.7 ± 22.2 s,
t24 = 3.44, p = 0.003). Figure 4B shows associations
between the PPC-M1 connectivity at rest and motor skill
performance in young and older adults. A correlation
analysis for each age group showed that the normalized
MEP amplitude for the PPC stimulation intensity of 90%
RMT at the 6ms ISI did not correlate with GPT completion
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FIGURE 4 | (A) Bar graph for group averaged completion times for the

Grooved Pegboard Test in seconds (s). Individual data are presented for older

(filled circles) and young (open circles) adults. As expected, young adults

performed the task faster compared to older adults. Error bars represent SE.

*p < 0.05. (B) Correlation between normalized motor evoked potential (MEP)

at the 6ms inter-stimulus interval (ISI) for PPC stimulus-response curve at 90%

resting motor threshold (RMT) and Grooved Pegboard Test completion time for

each older (filled circles) and young adult (open circles). A simple linear

regression line is superimposed over the individual data points for each group.

Normalized MEP amplitude did not correlate with the Grooved Pegboard Test

performance in both young and older adults (all p’s > 0.2).

time in both young (r = 0.130; p = 0.23) and older adults
(r = 0.015; p= 0.69).

DISCUSSION

A reduction of facilitation in a parieto-motor connection
responsible for skilled hand movements was demonstrated in
older adults compared to young adults. Using a dsTMS approach,
we found that a conditioning stimulus to PPC with a 90% RMT
intensity delivered 6ms prior to a test stimulus to M1 resulted in
a facilitation of the MEP amplitude in young but not older adults.
In fact, the PPC-M1 interaction in the older group changed from
facilitation to inhibition. The present findings are in line with
prior dsTMS work in young adults showing short-latency PPC-
M1 functional interactions are selectively facilitated at rest when
applying CS to PPC at an intensity of 90%RMT (Koch et al., 2007;
Karabanov et al., 2013). In the current study, the reduced PPC-
M1 facilitation in older adults may be related to impairments of
high-level movement planning signals in PPC as demonstrated
by their slowed completion time of the GPT (Andersen and
Cui, 2009). However, future work will need to better characterize
the relationship between functional PPC-M1 connectivity and
skilled motor performance. For instance, previous dsTMS studies
have shown that functional PPC-M1 connectivity is modulated
early in the motor plan for different types of hand actions at
a similar ISI and conditioning stimulation intensity in young
adults (Koch et al., 2008; Vesia et al., 2013, 2017). Yet, no
work has investigated whether there is a relationship between
functional PPC-M1 interactions during grasp preparation and
manual dexterity in older adults. Future investigation is needed to
determine whether similar age-related differences occur during
these action-associated processes. It also should be noted that it
remains unclear whether the non-significant association between
reduced facilitation of parieto-motor functional connections

and manual dexterity in older adults is present in a larger
sample size given the moderate sample size in the current
study. One possible explanation of the current results is that
widespread motor plans involving multiple, parallel parieto-
premotor-motor circuits could modulate corticospinal output
associated with sensorimotor hand control (Koch and Rothwell,
2009; Davare et al., 2010, 2011; Vesia and Davare, 2011; Turella
and Lingnau, 2014; Vesia et al., 2018). It also is possible that
the relationship between cortico-cortical connections in the
motor system and skilled hand behavior likely encompasses a
much broader range of brain regions within frontal, parietal,
and temporal cortices to support the flexibility of human hand
behavior (Grafton, 2010; Gallivan and Culham, 2015; Monaco
et al., 2020; Turella et al., 2020).

This interpretation is in line with prior dsTMS studies
demonstrating age-related decline between M1 and frontal areas
in the motor cortical network such as dorsolateral prefrontal
cortex (Fujiyama et al., 2016), SMA (Green et al., 2018), and PMd
(Ni et al., 2014). Together, these findings suggest an age-related
reduction in functional connectivity from action-associated
cortical areas to M1 in older adults. It is possible that the
degraded facilitatory inputs from PPC toM1 in older adults likely
represent an early marker of age-related decline for functional
connectivity underlying complex motor skills. This view is in
line with theoretical suggestions that older adults recruit frontal
cortical areas to compensate for bottom-up sensory processing
in posterior cortical areas when performing more cognitive-
demanding motor tasks (Davis et al., 2008). Indeed, a large
body of research provides complementary evidence linking these
age-related differences in functional activation and connectivity
patterns with cognitive and motor performance (see reviews
Seidler et al., 2010; Damoiseaux, 2017). Functional neuroimaging
studies have consistently demonstrated enhanced prefrontal
influences on the motor system in response to increased task
demands in older adults (Heuninckx et al., 2005; Wu and Hallett,
2005; Cabeza et al., 2018). One such study found that prefrontal
areas compensated for decreased parietal influences on premotor
areas associated with a decline in perceptual motor speed with
advancing age (Michely et al., 2018). This is also consistent with
evidence linking age-related decline in cognitively demanding
motor tasks with structural changes in white matter tracts
that connect sensorimotor, frontal, and parietal regions in
older adults (Stewart et al., 2014). The reduced efficacy of
this connection is also supported by findings in individuals
with Parkinson’s disease (Palomar et al., 2013) and stroke
(Schulz et al., 2015) that show a more favorable motor outcome
related to higher levels of communication between frontal
and parietal areas in the motor system. Additionally, dsTMS
evidence has shown that this selective age-related decrease in
PPC-M1 facilitation in healthy older adults is exacerbated at
early clinical stages of Alzheimer’s disease (Bonnì et al., 2012).
This decreased functional connectivity precedes disease-related
changes in cognitive-related frontal areas and could in part
represent a key driver of cognitive decline in Alzheimer’s disease
(Koch et al., 2019).

It is worth noting that neurobiological aging is a complex
process involving interactions between local cortical and
brain network plasticity (Freitas et al., 2013). In the case of
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aging, compensatory processes likely depend on the neural
reorganization and recruitment of alternative circuits to
attenuate cognitive and motor declines that occur with age
(Cabeza et al., 2018). Future longitudinal studies delineating the
specific contribution of PPC on motor related frontal circuits
combining TMS with neuroimaging approaches will be needed
to gain insight into the mechanisms of system-level plasticity
across the lifespan. We recognize that age-related neural
decline such as brain atrophy, synaptic loss, and white matter
degradation could account for the observed MEP amplitude
differences between young and older adults (Giorgio et al.,
2010; Farokhian et al., 2017). However, we believe a global
effect on mechanisms underlying aging is unlikely to account
for the highly specific reduction in PPC-M1 facilitation in the
current study. A methodological limitation of the study is that
we did not selectively localize PPC sites for hand actions at
the individual level using fMRI or task-based dsTMS. Prior
dsTMS work has shown anatomical and functional differences
in connectivity between PPC regions and M1 (Karabanov et al.,
2013). This raises the possibility that the effects at other ISIs
and conditioning stimulation intensities in our study could be
dependent on different neural substrates. Further studies will
need to examine the effect of nearby parietal regions on motor
excitability to account for the individual differences in functional
connectivity among older adults. Finally, we recognize that the
older adults tested in the current study were high-functioning
and in relatively good health based on self-reports. Therefore,
future work is needed with a more heterogenous subset of
older participants to clarify the effects of physical activity
and other environmental factors on age-related cognitive and
motor deficits.

We conclude that the reduced PPC-M1 facilitation in older
adults may be an early marker of age-related decline in the neural
control of movement. Our findings could have implications for
understanding functional parieto-frontal connectivity affected
by advancing age in both healthy and clinical populations.
Importantly, dsTMS methods could be used to develop better
diagnostic tools and treatment approaches (Fox et al., 2012,

Hallett et al., 2017; Goldenkoff et al., 2020). We propose that
prospective strengthening of PPC-M1 circuitry in healthy adults
might be a fruitful therapeutic path to counteract the gradual age-
related breakdown in functional connectivity within the motor-
related network associated with motor impairments. It is possible
that the preservation of these neural substrates could enhance
resilience of the intact circuitry and minimize compensatory
shifts in brain networks that maintain optimal cognitive and
motor performance.
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