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Abstract

Background: Aggressiveness in humans is a hereditary behavioral trait that mobilizes all systems of the body—first
of all, the nervous and endocrine systems, and then the respiratory, vascular, muscular, and others—e.g,, for the
defense of oneself, children, family, shelter, territory, and other possessions as well as personal interests. The level
of aggressiveness of a person determines many other characteristics of quality of life and lifespan, acting as a stress
factor. Aggressive behavior depends on many parameters such as age, gender, diseases and treatment, diet, and
environmental conditions. Among them, genetic factors are believed to be the main parameters that are
well-studied at the factual level, but in actuality, genome-wide studies of aggressive behavior appeared relatively
recently. One of the biggest projects of the modern science—1000 Genomes—involves identification of single
nucleotide polymorphisms (SNPs), i.e,, differences of individual genomes from the reference genome. SNPs can be
associated with hereditary diseases, their complications, comorbidities, and responses to stress or a drug. Clinical
comparisons between cohorts of patients and healthy volunteers (as a control) allow for identifying SNPs whose
allele frequencies significantly separate them from one another as markers of the above conditions. Computer-
based preliminary analysis of millions of SNPs detected by the 1000 Genomes project can accelerate clinical search
for SNP markers due to preliminary whole-genome search for the most meaningful candidate SNP markers and
discarding of neutral and poorly substantiated SNPs.
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Results: Here, we combine two computer-based search methods for SNPs (that alter gene expression) {i} Web
service SNP_TATA_Comparator (DNA sequence analysis) and {ii} PubMed-based manual search for articles on
aggressiveness using heuristic keywords. Near the known binding sites for TATA-binding protein (TBP) in human
gene promoters, we found aggressiveness-related candidate SNP markers, including rs1143627 (associated with
higher aggressiveness in patients undergoing cytokine immunotherapy), rs544850971 (higher aggressiveness in old
women taking lipid-lowering medication), and rs10895068 (childhood aggressiveness-related obesity in adolescence

with cardiovascular complications in adulthood).

Conclusions: After validation of these candidate markers by clinical protocols, these SNPs may become useful for
physicians (may help to improve treatment of patients) and for the general population (a lifestyle choice preventing

aggressiveness-related complications).

Keywords: Aggressiveness, Gene, Promoter, TATA-binding protein, Single nucleotide polymorphism, Candidate SNP

marker, Keyword-based search, Prediction in silico

Background

Ethologists define aggressive behavior as a hereditary be-
havioral pattern performing functions that are important
for preservation of the species, namely, defense of the
territory, progeny, and shelter and establishment of
social-hierarchical relationships within society [1]. More-
over, in many species of animals, low aggressiveness
leads to decreased fitness of an individual in particular
and problems with reproduction of a population in gen-
eral [2]. Nonetheless, the opposite extreme—increased
aggression among animals of the same species—also has
negative consequences, for example, infanticide. In social
species of animals, the main mechanism that controls
aggressiveness and restrains it within optimal limits is
the hierarchical structure of relationships in society.
Thus, aggressive behavior has adaptive nature, and its
reaction norm is fixed by natural selection [2]. On the
other hand, in modern human society, uncontrolled
manifestation of aggression is becoming a leading social
problem [3-5]. Researchers of aggressive behavior in
people classify aggression into several types, which in-
clude the impulsive type (caused by external stimuli) and
the pathological type [6]. The latter is a symptom of
some affective and anxiety disorders. Nonetheless,
expression of aggressiveness in real actions of an individ-
ual does not depend on its primary causes and manifests
itself as physical or verbal aggression [7]. As shown in
many experiments on selection for aggressive behavior
[8], the latter is an inherited trait, whose phenotypic
variability is also influenced by genetic factors [9]. In
addition, environmental factors and endogenous ones
are so tightly inter-related that research into aggressive
human behavior unites the efforts of clinicians,
pharmacists, physiologists, geneticists, psychologists,
bioinformaticians, pedagogues, sociologists, legal scholars,
economists, and other relevant experts, e.g., specialists on
insurance, management, health care, law enforcement,
and environmental protection. Despite the large number

of studies on human aggressiveness, specific genes deter-
mining this type of behavior have not been identified to
date. The complexity of the problem stems from multifac-
torial neuroendocrine physiological regulatory mechanisms
that are based on genetic systems such as epigenetic regula-
tion of aggressive behavior. For this reason, genome-wide
studies of this vitally important form of human behavior are
only at the rudimentary stage (e.g., [10]).

One of the biggest modern scientific projects—1000
Genomes [11]—involves identification of SNPs on the
whole-genome scale and storing them in the dbSNP
database [12], which is an integral part of the reference
human genome, which represents the ancestral alleles of
all SNPs and, thus, is constantly refined. Taken together
with others public parts of the reference human genome
such as the Ensembl database [13] and the Web service
UCSC Genome Browser [14], dbSNP allows investigators
to design, for instance, experiments on gene knockouts
in animals designed for research on phenotypic conse-
quences of SNPs as well as for detection of perturbations
of gene networks during disorders and under the influ-
ence of therapeutic strategies [15].

Biomedical SNP markers represent differences be-
tween an individual human genome and the reference
human genome; these markers can help to improve a
medical treatment [16], to prevent complications of a
treatment [17], and to predict comorbidities within the
framework of postgenomic predictive preventive person-
alized medicine [18]. Clinical comparison between co-
horts of patients with a given disease and healthy
volunteers (as a control) allows researchers to identify
SNPs whose allele frequencies significantly separate
them from one another as the markers of the above
condition (e.g., see [19]). Computer-based analysis of
hundreds of millions of unannotated SNPs identified by
the 1000 Genomes project [11] may accelerate the clin-
ical search for biomedical SNP markers [20, 21]. Many
Web services [22—-39] facilitate the bioinformatic search
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for candidate SNP markers in terms of ranking of unan-
notated SNPs by their similarity to biomedical SNP
markers. These tools take into account whole-genome
maps of genes [13, 14], protein-binding sites, interchro-
mosomal contacts, nucleosomes, and transcripts either
in health [40], during infection [41] (or other disease
[42]), or after treatment [43]. According to the Central
Limit Theorem, the accuracy of this similarity-based
search for candidate SNP markers increases with the in-
crease in the number of genome-wide maps [44].

Within this mainstream approach, SNPs located in
protein-coding gene regions [45] seem to be more in-
formative in the case of monogenic diseases because of
the invariant types of disruption in both structure and
function of the altered protein [46], whereas SNPs lo-
cated in regulatory gene regions appear to be more likely
to be associated with polygenic treats and disorders, e.g.,
aggressiveness. With this in mind, the regulatory SNPs
in binding sites for TATA-binding protein (TBP) seem
to be best studied due to their fixed locations within the
narrow region [-70; —20] upstream of the transcription
start sites of protein-coding genes in the human genome
[47, 48]. Because model animals with a null-mutation
[49] or a knockdown of TBP [50] are always inviable,
SNPs in TBP-binding sites may be vital and, thus, most
promising for computer-based predictions of candidate
SNP markers of polygenic treats such as aggressiveness
in this study.

Earlier, we developed the public Web service SNP_TA-
TA_Comparator  (http://beehive.bionet.nsc.ru/cgi-bin/mgs/
tatascan/start.pl) [51, 52] for estimation of the statistical
significance (Fisher’s Z-score) of the difference between an-
cestral and minor SNP variants of a given TBP-binding site
in terms of the expression change of the gene whose pro-
moter contains this site [53]. This estimation was explored
in detail by our experiments in vitro under both equilibrium
[54] and nonequilibrium [55] conditions of the electrophor-
etic mobility shift assay (EMSA). Furthermore, we verified
these estimates using two modern tools of real-time assays,
such as a ProteOn™ XPR36 biosensor (Bio-Rad Lab) [56]
and an SX.20 spectrometer (Applied Photophysics) [57]. In
addition, we tested these estimates using independent data
of over 100 experiments by others [58-65]. That is why we
apply this approach to studies of unannotated SNPs de-
tected by the 1000 Genomes project [11] which are less
known at present. Recently, we predicted candidate SNP
markers of complications of hereditary diseases in obesity
[66], of autoimmune comorbidities of these diseases [67],
and of circadian rhythm disorders [68].

In the present work, we extended the use of our Web
service [51, 52] to unannotated SNPs near known SNP
markers of monogenic diseases in TBP-binding sites of
human gene promoters. Among them, we selected candi-
date SNP markers of aggressiveness-related complications
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of these diseases. After validation of these candidate
markers by clinical protocols, these SNPs may be-
come useful for physicians (i.e., may help them to im-
prove treatment of patients) and for the general
population (e.g., may help to choose a lifestyle pre-
venting aggressiveness-related comorbidities and com-
plications) within the framework of postgenomic
predictive preventive personalized medicine [18].

Results

Tables 1, 2, 3, and 4 show the results obtained using our
Web service SNP_TATA_Comparator [51, 52] for the 68
biomedical and candidate SNP markers in the TBP-
binding sites of human gene promoters [52] (see
Methods: Additional file 1: Supplementary Method). Let
us first review in more detail only one human gene in
order to briefly describe all the others.

Candidate SNP markers of aggressiveness as an adverse
effect of medical treatments

The human GHI gene (growth hormone 1, synonym: so-
matotropin) contains a biomedical SNP marker
(rs11568827) of short stature [69]. According to the re-
sults of electrophoretic mobility shift assay (EMSA) [69],
this SNP reduces this gene’s expression because it dam-
ages the binding site for an unknown transcription factor
rather than the TBP-binding site (Table 1. The prediction
of our Web service [51, 52] was consistent with these in-
dependent experimental data (Fig. la: text box “Results”,
line “Decision” contains the label “insignificant”).

First, using the primary keyword search (hereinafter:
see Methods, Additional file 2: Figure S1: two boxes out-
lined with a dashed line), we found the retrospective
clinical review [70] showing that a GHI deficiency is a
biochemical marker of lesser aggression of mentally un-
stable patients during growth hormone treatment when
the dose of the additional lithium (Li)-based or others
antiaggression medication may be reduced). Next, using
the secondary keyword search (hereinafter: see Methods:
Additional file 2: Figure S1: one box outlined with a dot-
ted line), we found the retrospective and clinical case re-
views indicating that short stature and aggressiveness
coexist in Smith-Magenis syndrome [71, 72], Dubowitz
syndrome [73], and Floating-Harbor syndrome [74]. In
addition, women of constitutionally short stature are
more aggressive than the ones with Turner syndrome
[75]. In contrast, children and adolescents with hypo-
pituitarism have short stature and show a tendency to
avoid aggression.

On the basis of all the above reasons together with our
recent hypothesis on “how SNP may change the apparent
biological activity of drugs inhibiting target genes” [76],
we propose rs11568827 as a candidate SNP marker associ-
ated with a lesser dose of an additional antiaggression
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Table 1 Candidate SNP markers of aggressiveness as an adverse effect of medical treatments (these markers may change the

TBP—promoter affinity)

Gene dbSNP [12]  5'flank mlu‘r 3" flank Ko, nM Z-score  Known diseases (observations) [Reference] or hypothetical [Ref] or [this
or see w oA 7 g ones in the case of the candidate SNP markers predicted work]
[Reference] mut by us in [this work] (see Methods: Additional file 2: Figure S1)

GH1 1511568827 aggggccagg 2 tataaaaagg % =1 - Short stature (unknown TF-binding site damaged rather [69]

than TATA box)
rs796237787 gaaggggcca 2 ggtataaaaa % =1 - g}yporhetica//y) low c(zggression c;f pﬁrienrs during growth {th/‘s w?rk]
a 15 _¢ hormone treatment (case review), short stature an 70-75
(/68454929 agggtatasa ¢ agggcccaca 3 L /10 aggressiveness co-exist in Smith-Magenis syndrome,
1761695685 gccagggtat 2 aaaagggccc 2| 19 107° Dubowitz syndrome, Floating-Harbor syndrome; and
7 ’ females with constitutional short stature are more
aggressive than the ones with Turner syndrome; children
and adolescents with hypopituitarism have short stature
and show a tendency to avoid aggressiveness
(case reviews)
1774326004 ccagggtata 2  aaagggccca })—9 t 7 1w0° (hypothetica/[y) highc?r aggression of a mentally [this work]
% gtatasasag 15 1 3 005 unstable patient during growth hormone treatment so [70]

rs777003420 aaggggccag

IL1B 151143627  ttttgaaagc €  ataaaaacag 2 1 15 10°

rs549858786 tgaaagccat 10°°

~ 1

aaaacagcga

ol
«—
Co

Greater body fat; gastric cancer, hepatocellular carcinoma,
non-small cell lung cancer, gastritis and gastric ulcer,
Graves' disease, major recurrent depression, and also, [85]
(hypothetically) higher aggressiveness in patients who

receive cytokine immunotherapy (clinical retrospective review)

as well as Graves’ disease and aggressiveness are

consequences of regular hemodialysis

that lithium (Li) and other antiaggression medication
may be required (a retrospective clinical case review)

[77-83], [this
work] [84]

(hypothetically) less aggressive traits in patients who receive [this
cytokine immunotherapy or regular hemodialysis (clinical
retrospective review)

work],[84]

Notes: hereinafter, TBP, TATA-binding protein; TATA-box, the canonical TBP-binding site; wt, ancestral allele; mut, minor allele; Kp, an estimate [52] of the dissociation
constant (Kp) of the TBP-DNA complex in vitro [53]; A, the expression change in comparison with the norm: overexpression (1), underexpression (), norm (=); Z Z-score;
a=1- p, significance, where p is probability (Fig. 1); TF, transcription factor; ALS, amyotrophic lateral sclerosis

drug during growth hormone treatment of mentally insta-
ble patients (Table 1).

Two base pairs away from a known biomedical marker
(rs11568827), we found an unannotated SNP
(rs796237787), which also represents a deletion of G.
For this SNP, our Web service predicted the same
change in the same TBP-binding site (Table 1). There-
fore, we also propose rs796237787 as a candidate SNP
marker of the same pathologies.

In addition, we found two unannotated SNPs
(rs768454929, and rs761695685) that significantly dam-
age the TBP-binding site in question, and thus reduce
expression of the GH1 gene, as is the case for the known
biomedical marker rs11568827. On this basis, we
propose rs768454929 and rs761695685 as candidate
SNP markers of the same disorders.

Finally, immediately upstream of the known biomed-
ical marker rs11568827, we identified two unannotated
SNPs (rs777003420 and rs774326004) for which our
Web service predicted a significant increase in the affin-
ity of TBP for the promoter of the GHI gene, and ac-
cordingly, increased expression of this gene. That is why
we propose rs777003420 and rs774326004 as candidate
SNP markers associated with a higher dose of an

additional antiaggression drug during growth hormone
treatment of mentally instable patients.

The human ILIB gene (interleukin 1) has an SNP
marker (rs1143627) of a wide variety of human diseases
such as Graves’ disease [77], major recurrent depression
[78], greater body fat in older men [79], non—small cell
lung cancer [80], hepatocellular carcinoma [81], gastric
cancer [82], gastric ulcer, and chronic gastritis [83]
(Table 1). Previously, we experimentally verified in depth
the predictions of our Web service [51, 52] for this SNP
(rs1143627) by EMSA under both equilibrium [54] and
nonequilibrium [55] conditions. First, our primary key-
word search pinpointed a retrospective clinical review
[84] about higher aggressiveness in patients who receive
cytokine immunotherapy. Next, the secondary keyword
search, produced a clinical case of regular hemodialysis
that resulted in aggressiveness and Graves’ disease at the
same time [85]. Therefore, a human disease associated
with the known SNP marker rs1143627 co-occurs with
aggressiveness. For this reason, we predicted that this
well-known biomedical SNP marker (rs1143627) can
also be considered a candidate SNP marker of higher
aggressiveness in patients receiving either cytokine im-
munotherapy or hemodialysis.
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Table 2 Candidate SNP markers of aggressiveness-related drug responses (these markers may significantly change the TBP—pro-

moter affinity)

Gene dbSNP [12] 3" flank
or see

[Reference]

5' flank %

= Ko, M Z-score

wt A 7 a

mut

[Ref] or
[this work]

Known diseases (observations) [Reference]

or hypothetical ones in the case of the candidate
SNP markers predicted by us in [this work]

(see Methods: Additional file 2: Figure S1)

a

SOD1 157277748 ggtctggect 2 taaagtagtc ; 117 10°°

StAR 1516887226  cagccticag  § gggggacatt 35 = 1 -

a

rs544850971 tcagcggggg g

catttaagac 1@ | 5

t
gtataaatac c

NOS2  see [110] tcttggctge 2 13

1

[86), [this work]
[87-90]

Familial amyotrophic lateral sclerosis (ALS), and also,
(hypothetically) aggressiveness is a memantine
response in Alzheimer's disease on the basis of this
drug’s success in the case of ALS; aggressiveness

at late stages of either ALS or traumatic
encephalopathy [clinically similar to ALS]; lesser
male-male aggression (SOD1-deficient mouse males)

Diabetic hypertension (unknown TF-binding site [91]

damaged, not TATA box)

[this work]
[92-107]

(hypothetically) lithium (Li) is a common drug against
aggressiveness, hypertension, and diabetes

(case reviews); old women on lipid-lowering medication
become more aggressive, hypertensive, and diabetic;
both diabetes and hypertension coexist with
aggressiveness in a magnesium (Mg) deficiency, in
intermittent explosive disorder, in Alzheimer's disease,

in postmenopausal women with multiple medical
problems in contrast to reduced aggressiveness

in old men regardless of disease and lesser

male aggression (a fish model on human behavior);

as well as coexistence of aggressiveness, hypertension,
and diabetes can elevate risk of nonfatal myocardial
infarction; diet has long-term impact on aggressiveness,
hypertension, and diabetes; aggressiveness, hypertension,
and diabetes are risk factors of cerebrovascular
disease, cerebral sclerosis;

[108-110]
[this work]
1117 [112-115]

Resistance to malaria, epilepsy risk, and also,
(hypothetically) drug-resistant or childhood epilepsy

is associated with aggressiveness; stigma as a critical
factor for interictal aggression in epilepsy

(clinical review); aggression, hyperactivity, and

impaired memory coexist during recurrent spontaneous
seizures in epilepsy (rat model), gender-biased complication
of excessive lead (Pb) intake manifested as lesser
exploration in females and higher aggressiveness

in males (mice)

Near this biomedical SNP marker rs1143627, we found
the unannotated SNP rs549858786, which can signifi-
cantly reduce the human ILIB gene expression. That is
why, rs1143627 may be a candidate SNP marker of
lesser aggressiveness in patients undergoing either cyto-
kine immunotherapy or hemodialysis.

Candidate SNP markers of aggressiveness-related drug
responses

The human SODI gene (superoxide dismutase 1, syno-
nym: Cu/Zn superoxide dismutase): its promoter con-
tains a known SNP marker (rs7277748) of familial
amyotrophic lateral sclerosis (ALS) [86]: this SNP causes
overexpression of this gene. Our primary keyword
search yielded laboratory findings on higher intermale
aggression in a murine model completely deficient in the
SODI gene [87] (Table 2).

As for coexistence of aggressiveness and ALS, our sec-
ondary keyword search identified three articles on ag-
gressiveness at late stages of ALS [88], in ALS with
frontotemporal dysfunction [89], and in chronic
traumatic encephalopathy whose signs and symptoms
are clinically similar to those of ALS [89]. In addition,
aggressiveness is a complication of the memantine-based
treatment of Alzheimer’s disease which was used due to
success of the memantine-based treatment of ALS [90].
For all these reasons, we predicted that the known SNP
marker rs7277748 can additionally be a candidate SNP
marker of lesser male—male aggression, significant
aggressiveness in ALS and in patients with Alzheimer’s
disease during memantine-based treatment.

The human StAR gene (steroidogenic acute regulatory
protein, synonym: cholesterol trafficker) has a known
SNP marker (rs544850971) of hypertension in diabetes
[91] (Table 2). This SNP destroys a binding site for an
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Table 3 Candidate SNP markers of aggressiveness as a symptom of hereditary diseases (these markers may change the TBP-DNA

affinity)
Gene dbSNP [12]  5'flank mlu‘r 3" flank Kp, "M Z-score Known diseases (observations) [Reference] or [Ref] or [this work]
or see WA 7 o hypothetical ones in the case of the candidate
[Reference] mut SNP markers predicted by us in [this work]
(see Methods: Additional file 2: Figure S1)
ESR2 135036378  cctctcggtc é ttaaaaggaa g I 5 107 ESR2-deficient pT1 tumor, [116]
15766797386 ttaaaaggaa % aaggggctta ‘—; L 3 107 (hypothetically) ESR2-deficient maladaptive [this work] [117, 118]
aggressive social behaviors caused by bisphenol
A and phthalates in children (primary tumors
and aggression are well-known consequences
of environmental pollution with bisphenol A)
HBB 15397509430 gggctgggca atacaacagt % 1 34 107° Malaria resistance, thalassemia, and also [119] [this work]
¢ 5 _¢ (hypothetically) thalassemia-related higher [85, 120-125]
133980857 gggctgggca gz atacaacagt 5 | 27 10 male-male aggression, socialized aggression,
rs34598529  ggctgggcat 3 aaagtcaggg % 1 24 10° /nattem[on, _/ow /OC acute psychosis with
£33931746 ctaqgcata 2 aadica I 14 106 aggression, /mpu/S/vengss as a form of By
9ct999 ac gtcaggge 7 aggressiveness; aggression as a comorbidity
133981098 agggctgggc 2 tasaagtcag 3 | 10 107° i 4yoand S-yo girs and in boys with
g"c . 5 thalassemia in a hospital: aggressiveness
rs34500389  cagggctggg ;i; atasaagtca 3 L 3 10 g5 g consequence of reqular hemodialysis
(HBD) 1535518301  caggaccagc 2  taaaaggcag ¢ | 11 1076 in a severe form of thalassemia
HBB  rs63750953  ctgggcataa  #  gtcagggcag % L 9 10 (hypothetically)malaria resistance, thalassemia, [this work]
a 5 s thalassemia-related higher male-male aggression, [85, 119, 125]
1281864525 tgggcataaa ¢ gtcagggcag - 3 L7 0 socialized aggression, inattention, low IQ, acute
(HBD) rs34166473  aggaccagca ! aaaaggcagg % | 18 1075 psychosis with aggression, impulsiveness as a

form of aggressiveness; aggression as a
comorbidity in 4-yo and 5-yo girls and in boys
with thalassemia in a hospital; aggressiveness
as a consequence of regular hemodialysis in a
severe form of thalassemia

unknown transcription factor (not a TBP-binding site)
and thereby causes underexpression of the human StARs
gene. Here, using a primary keyword search, we found a
laboratory finding of lesser male aggression in a StAR-
deficient fish model of human behavior [92]. In the case
of our secondary keyword search, we found a number of
articles [93—-107] describing co-occurrence of aggressive-
ness, hypertension, and diabetes. As an example, old
women on lipid-lowering medication become more ag-
gressive and hypertensive and develop signs of diabetes
[100]. Therefore, we propose the known SNP marker
rs16887226 (hypertensive diabetes) as a candidate SNP
marker of aggressiveness in many clinical and nonclini-
cal cases listed in Table 2.

Near the well-known biomedical SNP marker
rs16887226, we found the unannotated SNP
rs544850971. Next, we predicted using our Web ser-
vice [51, 52] that this SNP can also cause underex-
pression of the human StAR gene, and, then, we
proposed rs544850971 as a candidate SNP marker of
the same diseases.

The human NOS2 gene (inducible nitric oxide syn-
thase 2) contains an SNP marker of resistance to malaria
[108] and epilepsy [109] where the —51 T — C substitu-
tion (relative to the transcription start site of this gene
[110]) causes NOS2 overexpression [108-110]. Our pri-
mary keyword search vyielded laboratory data on a

gender-biased complication of excessive lead (Pb) intake
(a murine model): lesser exploration in females and
higher aggressiveness in males [111]. As for the second-
ary keyword search, it produced over 1,500 original arti-
cles on the co-occurrence of aggressiveness and epilepsy;
here, we cite only the most interesting studies in our
opinion. For example, both drug-resistant epilepsy and
childhood epilepsy are associated with aggressiveness
[112, 113] as well as a perceived stigma is a critical
factor of interictal aggression, hyperactivity, and im-
paired memory during recurrent spontaneous seizures in
epilepsy [114, 115]. On this basis, we predicted that —
51 T — C substitution within the known TATA-box of
the human NOS2 gene can be a candidate SNP marker
of higher aggressiveness in males under the influence of
environmental pollution with Pb as one can see in
(Table 2).

Candidate SNP markers of aggressiveness as a symptom
of hereditary diseases
The human ESR2 gene (estrogen receptor ) promoter
contains a known SNP marker (rs35036378) of a
primary ESR2-deficient pT1 tumor whose development
can lead to breast cancer without proper preventive
treatment [116] (Table 3).

Using a primary keyword search, we uncovered a clin-
ical case of maladaptive social behaviors (e.g., aggression)
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Table 4 Candidate SNP markers of obesity-related aggressiveness (these markers may change the TBP-promoter affinity)

Gene dbSNP [12]  5'flank mL;r 3' flank Ko, M
or see Wt
[Reference] mi A Z

Z-score

[Ref] or
[this work]

Known diseases (observations) [Reference] or
hypothetical ones in the case of the candidate
SNP markers predicted by us in [this work]
(see Methods: Additional file 2: Figure S1)

PGR 1510895068  gggagataaa 2  gagccgegtg 12 1 8

LEP rs201381696  tcgggccgct g taagaggggc ]4‘2 17

rs200487063
rs34104384

tgatcgggcc
ccgctataag

ctataagagg

~ly Qe

[SSIF N
—
o~

9999cgggca

10°  Endometrial cancer in obese women

10°°  (hypothetically) obesity and also, in a 10 yo gir],

10°  (hypothetically) obesity-caused hypertension,

[126], [this work]
[de novo pathogenic TATA box], and also [127-132]
(hypothetically) obese school-aged girls

show verbal aggressiveness (e.g., victimization);

obese females are more aggressive

(primate model); obesity and aggression

coexist in polycystic ovary syndrome in women

with biliary calculi (retrospective clinical reviews);

high aggression/rejection in reproductive behavior

(mice); low attraction and high aggression

against males in females (rabbit model)

[this work],
aggressiveness is a predictive factor for prevention [115, 134-143]
of obesity in adolescence with cardiovascular

complications in adulthood, as is the case for

5 yo boys (retrospective review); aberrant maternal

behavior, low aggression against an unknown

social stimulus and locomotor activity during

a high-fat diet (mice); low chance to be dominant

due to aggressiveness against subordinates in

female social behavior (macaques model), high

risks of suicidality, violence, and impulsive

aggressiveness in 19-45 yo patients with

schizophrenia; higher social aggressiveness in

males (rat model); longer survival in aggressive

leptin-deficient women with anorexia nervosa

[this work]
and also, lower risk of aberrant maternal behavior,  [115, 134-142]
higher aggression against an unknown social

stimulus, and locomotion activity on a high-fat diet

(mice); higher chance to be dominant due to

aggressiveness against subordinates in female

social behavior (macaque model); lower risks

of suicidality, violence, and impulsive

aggressiveness in 19-45 yo schizophrenic

patients; lower social aggressiveness in males

(rat model)

caused by bisphenol A and phthalates in children [117].
Moreover, our secondary keyword search supported these
striking findings by a retrospective clinical review showing
that both primary tumors and aggression among the many
behavioral disorders are well-known consequences of envir-
onmental pollution with bisphenol A [118]. With this in
mind, we suggest the SNP marker rs35036378 (a primary
ESR2-deficient pT1 tumor) as a candidate SNP marker of
childhood aggressiveness caused by bisphenol A.

Near this biomedical SNP marker, we found an unan-
notated SNP (rs766797386) that can also reduce the hu-
man ESR2 gene expression as it was predicted by our
Web service [51, 52]. Thus, we recommend to verify
them as candidate SNP markers (rs766797386) of the
above-mentioned human disorders.

The human HBB and HBD genes (- and &-chains of
hemoglobin, respectively) have the largest number of known
SNP  markers (rs34500389, rs33981098, rs33980857,
1rs34598529, rs33931746, rs397509430, and rs35518301) of

resistance to malaria and thalassemia (Cooley’s anemia)
[119] (Table 3). According to output of a primary keyword
search [120-122], a hemoglobin deficiency is associated with
higher intermale aggression, socialized aggression, inatten-
tion, low IQ, acute psychosis with aggression, and also with
aggression in 4- and 5-year-old girls. Similarly, our second-
ary keyword search showed that thalassemia increases the
risk of aggressiveness (impulsiveness) [123, 124] and that ag-
gressiveness is a comorbidity in hospitalized boys with thal-
assemia [125]. For these reasons, we nominate these
biomedical SNP markers as candidate SNP markers of ag-
gressiveness in Cooley’s anemia.

Near these known SNP markers of hereditary diseases,
we found three unannotated SNPs (rs63750953,
rs281864525, and rs34166473) which can cause a
hemoglobin deficiency in humans according to our Web
service predictions. Thus, we propose them as candidate
SNP markers of aggressiveness as a complication of
thalassemia.
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Candidate SNP markers of obesity-related aggressiveness
The human PGR gene (progesterone receptor) has the
biomedical SNP marker rs10895068 of endometrial can-
cer in obese women [126] caused by this gene’s overex-
pression (Table 4).

Our primary keyword search retrieved the laboratory
findings about female reproductive behavior where the
progesterone receptor excess increases aggression
toward/rejection of males in a murine model [127] and
aggression against males in a rabbit model [128]. As for
our secondary keyword search, it produced a large num-
ber of articles showing co-occurrence of aggressiveness
and obesity in women [129-132]. For instance, obese
school-aged girls are predisposed to verbal aggressive-
ness (e.g., victimization) [129]; in addition, obesity and
aggression coexist in polycystic ovary syndrome [131]
and in women with biliary calculi [132]. Accordingly, we
predict rs10895068 to be a candidate SNP marker of
gender-biased aggressiveness in obese women.

The human LEP gene (leptin; synonyms: obesity factor
with acronym OB) contains a candidate SNP marker
(rs201381696) of obesity (reducing this gene’s expression)
as well as candidate SNP markers (rs200487063 and
rs34104384) of obesity-induced hypertension caused by
overexpression of this gene as we have predicted in silico
and verified in vitro in our previous work [66] (Table 4).

In this work, we experimentally confirmed (in cell culture)
the rs200487063-caused deficient expression of the LEP
gene using the pGL 4.10 vector (the reporter gene LUC for
luciferase; see Methods: Cell culture, transfection, and re-
porter assays) whose expression can be seen in Fig. 2.

This figure shows that the rs200487063-caused signifi-
cant downregulation of reporter gene LUC is approxi-
mately twofold in both cell lines: HCT116 (human colon
adenocarcinoma exemplifying basal expression of the
human LEP gene) and MCEF-7 (carcinoma of the human
mammary gland epithelium exemplifying tissue-specific
expression of this gene), at a <0.05 according to Stu-
dent’s t-test (asterisks in Fig. 2). As one can see in Fig. 2,
there are no differences in the effects of this candidate
SNP marker (rs200487063) between the basal and
tissue-specific mode of the human LEP gene expression
in our study, in agreement with a well-known independ-
ent experiment on multiple promoter models [133].

That is why we then conducted our primary keyword
search for publications associating aggressiveness with a
significant deficiency in this gene’s expression; this
search produced a large number of research papers and
review articles on this topic [115, 134-143]. As an ex-
ample, our secondary keyword search identified a retro-
spective review [135] showing that high aggressiveness
in 10-year-old girls is a statistically significant predictive
factor of obesity in adolescence (p < 0.0005) and cardio-
vascular complications in adulthood; the same is true for
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Fig. 2 Cell culture verification of the candidate SNP marker rs201381696
in human cell lines transfected with the pGL 4.10 vector carrying a
reporter LUC gene. Open bars, ancestral allele (wild type, WT); gray bars,
minor allele; HCT116, a human colon adenocarcinoma cell line as an
example of basal expression of the human LEP gene; MCF-7, a cell line of
the human mammary gland epithelium carcinoma as an example of
tissue-specific expression of this gene. The height of the gray bars and
their error bars correspond to the mean estimates and their standard
deviations calculated from at least three independent measurements.
Asterisks indicate a statistically significant difference at the confidence

level a <005

5-year-old boys. Furthermore, a leptin deficiency in a
murine model causes aberrant maternal behavior, lower
aggression against an unknown social stimulus, and in-
creased locomotor activity during a high-fat diet [136].
In addition, a clinical case review [143] revealed longer
survival in aggressive leptin-deficient women with an-
orexia nervosa. On the basis of these data, we expanded
our prediction [66] on the obesity-related candidate SNP
markers rs201381696, rs200487063, and rs34104384 to
our prognosis that these SNPs can also be candidate
SNP markers of aggressiveness in obesity.

Discussion

Because the TBP-binding site is one of the best-studied
regulatory sequences within the human genome [48], we
limited our research to SNPs altering the human gene
expression via statistically significant changes in the
TATA-binding protein’s affinity for human gene pro-
moters. Using our Web service SNP_TATA_Comparator
[51, 52], we analyzed 493 SNPs located within [-70; —20]
proximal promoter regions of 33 human genes and found
only 28 aggressiveness-related candidate SNP markers
(6%). Each of them can alter expression of one of 10
human genes via significant changes in the TBP-binding
affinity of promoters of these genes, as we deduced from
our results shown in Tables 1, 2, 3 and 4. This finding
does not mean that the other 465 of the 493 SNPs (94%,
data not shown) cannot be considered aggressiveness-
related candidate SNP markers; they may at least alter
transcription factor-binding sites (e.g, rs11568827,
rs796237787, and rs16887226). To conduct this kind of
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analysis for any of them, one can find a number of public
Web services [22-39] for in-depth studies on other mo-
lecular mechanisms behind the effects of SNPs on human
health; these services’ research capabilities can be en-
hanced when they are used together with our Web service
SNP_TATA_Comparator [51, 52].

It should be emphasized that known SNP markers of
monogenic diseases cause these diseases, whereas candi-
date SNP markers of polygenic diseases whose symptoms
include aggressiveness can only serve as genomewide in-
formative landmarks suggestive of either increased or de-
creased risk of aggressiveness (in these diseases relative to
the norm) among patients with the minor alleles of these
SNPs [67]. For example, here we predicted a candidate
SNP marker (rs201381696) of aggressiveness in obesity.
Using this whole-genome landmark, parents of an aggres-
sive 10-year-old girl with a minor allele of rs201381696
may choose a diet and a physical exercise regimen for
their daughter to prevent her obesity in adolescence and
cardiovascular complications in adulthood; the same ap-
proach is applicable to 5-year-old boys. Similarly, using
our suggested candidate SNP marker (rs1143627) of
higher aggressiveness in patients receiving cytokine im-
munotherapy, a physician can prescribe an antiaggression
medication together with cytokine immunotherapy to a
patient carrying a minor allele of this SNP. In addition, ac-
cording to our prediction of the candidate SNP marker
(rs35036378) of childhood aggressiveness caused by
bisphenol A, parents may look into the presence of this
compound in plastic toys of their child if he/she has the
minor allele of this SNP. Furthermore, using the candidate
SNP marker of higher aggressiveness in males subjected
to environmental pollution with Pb [the —-51 T — C sub-
stitution in the human NOS2 gene promoter], people with
a minor allele of this SNP can modify their lifestyle to
minimize their contact with materials containing lead.

In this study, we encountered a huge number of clin-
ical cases, retrospective reviews, research articles, labora-
tory data, and empirical findings—on aggressiveness in
various life situations—from clinicians, pharmacists,
physiologists, geneticists, psychologists, bioinformati-
cians, pedagogues, sociologists, legal scholars, econo-
mists, and other relevant experts such as specialists on
insurance, management, health care, law enforcement,
and environmental protection. The gigantic scale, multi-
disciplinary nature, complexity, and disarray of this in-
formation pool may hinder the use of this vital
knowledge for broad practical applications in the general
population. As shown in Tables 1, 2, 3 and 4, candidate
SNP markers of aggressiveness seem to be promising
whole-genome landmarks around which researchers can
organize existing knowledge about this integral charac-
teristic of the genome as a whole; this characteristic re-
flects the individual mobilization potential of the human
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body. The usable portions of this knowledge may be dir-
ectly applicable to people carrying a minor allele of such
SNPs.

Finally, each aggressiveness-related candidate SNP
marker predicted in this work needs comprehensive
verification under various in vitro and in vivo experi-
mental conditions, as well as in clinical protocols involv-
ing representative cohorts of patients with the
corresponding diseases and healthy volunteers (as a con-
trol). After that, such SNP markers will become practic-
ally applicable. To facilitate the validation, for each
predicted candidate SNP marker we show a quantitative
parameter: the equilibrium dissociation constant (Kg) for
binding of human TATA-binding protein to 26-bp syn-
thetic duplex DNA identical to the SNP in question (as
the prediction of our Web service, expressed in “nano-
moles per liter” units, nM; Tables 1, 2, 3 and 4). These
additional data are intended for optimization of experi-
mental and clinical conditions during verification of our
predictions before their practical use.

Conclusions

If these aggressiveness-related candidate SNP markers are
validated by clinical protocols, these whole-genome land-
marks may become useful for physicians (may help to
optimize treatment of patients) as well as for the general
population (may help to choose a lifestyle preventing
aggressiveness-related comorbidities and complications).

Methods

Cell culture, transfection, and reporter assays

Cell lines HCT116 (human colon adenocarcinoma) and
MCE-7 (carcinoma of the human mammary gland epi-
thelium) were cultivated in a complete medium consist-
ing of Dulbecco’s modified Eagle’s medium/Nutrient
mixture F-12 Ham, supplemented with 10% (v/v) of fetal
bovine serum (Sigma) and penicillin (100 U/mL) and
streptomycin (100 mg/mL) (BioloT). The cultures were
maintained at 37 °C in a humidified atmosphere contain-
ing 5% of CO, until the desired level of confluence. All
the experiments were performed at 80-85% confluence.
Oligonucleotides corresponding to ancestral and minor
alleles of the predicted candidate SNP marker
rs201381696 (Table 4) were cloned into the pGL 4.10
vector (Promega, USA) and cotransfected with pRL-TK
using Screen Fect A (InCella) as described by Wolfe and
the colleagues [144]. After that, the cells were cultured
in 6-well plates for 24 h. Luciferase activity was mea-
sured by means of the Dual-Luciferase Reporter Assay
kit (Promega).

DNA sequence analysis in silico
We analyzed DNA sequences of the human gene pro-
moters retrieved from the human reference genome
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using the standard BioPerl library [145] via our Web ser-
vice [51, 52], (Fig. 1) in the case of ancestral alleles of
SNPs that were analyzed and those manually corrected
on the basis of the description of these alleles from the
database dbSNP [12]. For each DNA sequence, we
calculated the maximal value and its standard deviation
~In(K®) + & of the affinity of TBP for the [-70; —20]
promoter region (where all the known sites are located)
using our Web service [51, 52] as described in
Additional file 1 [146-150].

Keyword search within the NCBI databases

For each case of predicted significant overexpression or un-
derexpression of the human genes (as clinically relevant bio-
chemical markers), we conducted a manual two-step
keyword search in the NCBI databases [151] as described in
detail elsewhere [152] and as depicted schematically in
Additional file 2: Figure S1. In this figure, two boxes consist-
ing of a dashed line depict the primary keyword search for
diseases whose symptoms include aggressiveness and whose
known biochemical markers correspond to the gene expres-
sion alteration caused by the SNP being considered.

In addition, in Additional file 2: Figure S1, there is
a box outlined with a dotted line that depicts the
secondary keyword search for co-occurrence of the
aggressiveness-related disease found by the primary
keyword search and the hereditary disease clinically
associated with this SNP. Our heuristic interpretation
of each aggressiveness-related candidate SNP marker in
accordance with a significant alteration of expression of a
human gene is listed in the second rightmost column of
Tables 1, 2, 3 and 4; the supporting information consisting
of clinical cases, retrospective reviews, empirical data, la-
boratory observations, and published hypotheses are cited
in the rightmost column.

Additional files

Additional file 1: Supplementary method. A quantitative sequence-
based prediction of binding affinity of TATA-binding protein (TBP) for a
human gene promoter. (PDF 161 kb)

Additional file 2: Figure S1. A flow chart of the keyword search for
aggressiveness-related diseases whose biochemical markers correspond
to an alteration in expression of the human gene under study containing
the candidate SNP marker of interest. Legend: two boxes consisting of a
dashed line depict the primary keyword search for diseases whose
symptoms include aggressiveness; the box outlined with a dotted line
depicts the secondary keyword search for co-occurrence of the
aggressiveness-related disease found by the primary keyword search and
the hereditary disease clinically associated with the SNP in question.
(PNG 385 kb)

Abbreviations

ALS: Amyotrophic lateral sclerosis; EMSA: Electrophoretic mobility shift assay;
Kg: Equilibrium dissociation constant; In: Natural logarithm; mut: Minor allele
of SNPs; SNP: Single nucleotide polymorphism; TBP: TATA-binding protein;
TF: Transcription factor; TSS: Transcription start site; WT: Wild type (norm)
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