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Abstract: Rapid and efficient assessment of cultivated land quality (CLQ) using remote sensing
technology is of great significance for protecting cultivated land. However, it is difficult to obtain
accurate CLQ estimates using the current satellite-driven approaches in the pressure-state-response
(PSR) framework, owing to the limitations of linear models and CLQ spectral indices. In order to
improve the estimation accuracy of CLQ, this study used four evaluation models (the traditional
linear model; partial least squares regression, PLSR; back propagation neural network, BPNN;
and BPNN with genetic algorithm optimization, GA-BPNN) to evaluate CLQ for determining the
accurate evaluation model. In addition, the optimal satellite-derived indicator in the land state index
was selected among five vegetation indices (the normalized vegetation index, NDVI; enhanced
vegetation index, EVI; modified soil-adjusted vegetation index, MSAVI; perpendicular vegetation
index, PVI; and soil-adjusted vegetation index, SAVI) to improve the prediction accuracy of CLQ.
This study was conducted in Conghua District of Guangzhou, Guangdong Province, China, based on
Gaofen-1 (GF-1) data. The prediction accuracies from the traditional linear model, PLSR, BPNN,
and GA-BPNN were compared using observations. The results demonstrated that (1) compared
with other models (the traditional linear model: R2 = 0.14 and RMSE = 91.53; PLSR: R2 = 0.33 and
RMSE = 74.58; BPNN: R2 = 0.50 and RMSE = 61.75), the GA-BPNN model based on EVI in the land
state index provided the most accurate estimates of CLQ, with the R2 of 0.59 and root mean square
error (RMSE) of 56.87, indicating a nonlinear relationship between CLQ and the prediction indicator;
and (2) the GA-BPNN-based evaluation approach of CLQ in the PSR framework was driven to
map CLQ of the study area using the GF-1 data, leading to an RMSE of 61.44 at the regional scale,
implying that the GA-BPNN-based evaluation approach has the potential to map CLQ over large
areas. This study provides an important reference for the high-accuracy prediction of CLQ based on
remote sensing technology.
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1. Introduction

Cultivated land is the most basic capital good of agricultural production [1,2]. The area of
cultivated land in China covers 134.9 × 106 hm2, accounting for 19.71% of the land area. In recent years,
the rapid urbanization and industrialization in China have resulted in a strong demand for evaluating
cultivated land quality (CLQ) to ensure national food security. The evaluation of CLQ represents
natural conditions and the degree of anthropogenic use of cultivated land resources, involving the
quantification and grading of CLQ indices [3–5]. Therefore, it is very important to quickly and
effectively evaluate CLQ. However, traditional estimations of CLQ are based on field measurements,
which are time-consuming and costly [6]. Traditional methods are also unable to output high precision
spatial distributions of CLQ. Remote sensing technology provides a unique means for the rapid
evaluation of CLQ in a time-efficient and low-cost manner. Substantial research has been conducted
for the evaluation of CLQ based on remote sensing data [7–10].

The current research on remote sensing-based CLQ evaluation methods was divided into two
categories: CLQ quasi-quantity evaluation and CLQ quantity evaluation. In CLQ quasi-quantity
evaluation, remote sensing data were used for the inversion of traditional some indicators (e.g., soil
fertility). For example, Yu (2012) constructed an evaluation indicator system with the normalized
vegetation index (NDVI) extracted from MODIS, soil organic matter (SOM), and soil mass and trace
elements content obtained from field sampling to evaluate CLQ [11]. Yang et al. (2012) used Landsat
TM5 to invert soil texture and SOM, and combined these with traditional indicators (barrier depth and
profile configuration) to evaluate CLQ [12]. However, the CLQ quasi-quantity evaluation method is not
able to increase the evaluation efficiency owing to the limitations of the traditional field measurements.

With the development of the remote sensing technique, we get CLQ quantity evaluation, whereby
remote sensing data were used to evaluate CLQ based on the pressure-state-response (PSR) framework
in terms of resistance to pressure, current state, and land use response [7,13]. For example, Fang et al.
(2008) used Slope, ratio vegetation index (RVI), NDVI, DVI, and land use degree (LUD) to establish
an evaluation model for CLQ, while Liu et al. (2010) used slope, sandy area ratio in a pixel (SARP),
modified soil-adjusted vegetation index (MSAVI), soil and vegetation moisture index (SVMI), and LUD
to establish a linear evaluation model of CLQ [8,9]. Although these studies have demonstrated rapid
CLQ evaluation processes, they estimate and map CLQ based on the PSR framework using the remote
sensing technique, in which linear relationships of CLQ with spectral indices are often assumed, and
there is a lack of optimizing selection of spectral indices. Thus, it is difficult to obtain accurate CLQ
estimates owing to the limitations of linear models and CLQ spectral indices.

The objective of this study was to improve the evaluation accuracy of the satellite-driven approach
in the PSR framework by determining the optimal evaluation models among the traditional linear
model, partial least squares regression (PLSR), back propagation neural network (BPNN), and BPNN
with genetic algorithm (GA-BPNN), and selecting the evaluation indicator in the land state index
by analyzing the correlation coefficient between five vegetation indices (VIs) derived from Gaofen-1
(GF-1) data and soil sample fertility (SOM; and total nitrogen, TN). This study was validated using
GF-1 data in the Conghua District of Guangzhou, Guangdong Province, China. It is expected that the
modifications can increase the accuracy of CLQ estimates.

2. Materials and Methods

2.1. Study Area

This study area is Conghua District of Guangzhou City, China (113 17′–114 04′ E, 23 22′–23 56′ N),
located in the transition zone from the Pearl River Delta to the northern mountain area of Guangzhou.
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This is a typical hilly and mountainous area and is dominated by the south subtropical monsoon
climate, with an annual average temperature of 19.5–21.2 ◦C and an annual average precipitation of
2176.3 mm. The area of cultivated land in Guangzhou covers 13,485.99 hm2, of which the paddy field
was 11,885.16 hm2, accounting for 87.91% of the total area. As the main crop, rice can be planted in
two seasons.

2.2. Sample Data

A total of 2000 samples within Conghua District were collected at a plot-scale sampling grid
according to a stratified sampling method (Figure 1c). CLQ data from the 2000 samples were obtained
from the CLQ map for 2016 in the Conghua National Land Department. Further, the CLQ data
calculated using gradation regulations on agriculture land quality in China (GB/T 28407-2012) were
considered as standard reference values of CLQ. Out of the 2000 samples, 1500 samples in black were
used to the establish evaluation models, 250 sample plots in red were employed to validate the accuracy
of the estimated CLQ, and another dataset of 250 sample plots in green was used to assess the accuracy
of mapping CLQ at the regional scale.

Figure 1. Study area and sampling distribution: (a) the study area location in Guangzhou City;
(b) the standard pseudo-color map of the study area in Conghua District; (c) the spatial distribution of
2000 cultivated land quality (CLQ) samples (the training sample plots in black, the validation sample
plots for model in red, and the validation sample plots for mapping in green); and (d) soil samples for
selection of soil fertility indicator.
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In order to determine the optimal soil fertility indicator, the layout of 89 soil samples was extracted
from the 2000 samples based on soil type and land-use (Figure 1d). The 89 soil samples (at 0–20 cm
depth) were collected via GPS positioning in May 2016. Within each of the sample plots, soil samples
were collected at five points. Each soil sample was composed by mixing subsamples from five points.
One of the five points was located at the plot center and the remaining four points were allocated along
the diagonal lines of the plot, with an equal distance between the points. The samples were air-dried
naturally in the laboratory, and gravel and animal and plant residues were removed. The soil fertility
parameters of SOM and TN contents were analyzed. SOM content was determined by the potassium
dichromate oxidation-external heating method, and TN was determined using the phenol disulfonic
acid colorimetric method [14].

2.3. Satellite Image Data and Preprocessing

A GF-1 multi-spectral image of October 2016 with a spatial resolution of 8 m was obtained from
China Center for Resources Satellite Data and Application (http://218.247.138.119:7777/DSSPlatform/

index.html). A Landsat-8 thermal infrared sensor (TIRS) image and a digital elevation model (DEM)
from October 2016 with a spatial resolution of 30 m were obtained from the Geospatial Data Cloud of
the Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn).

The radiance calibration of the GF-1 and Landsat-8 TRIS images was to convert the DN value of
the raw image to surface spectral reflectance, which was performed based on Equation (1), expressed
as follows:

L = Gain×DN + Bias, (1)

where L is the radiance, and Gain and Bias are the calibration coefficients. The values of the radiance
calibration parameters are reported in Table 1. The GF-1 and Landsat-8 TRIS data were conducted
using the FLAASH model. Geometric corrections and resampling were performed for the DEM and
Landsat 8 TRIS imagery using ENVI 5.3. The geometric precision correction was performed on them
using a quadratic polynomial calculation model. The calibration error was within 0.5 pixels.

Table 1. Radiance calibration parameter values of the Gaofen-1 (GF-1) satellite and Landsat-8 thermal
infrared sensor (TIRS) images.

Satellite Parameter Value
Bands

Band 1 Band 2 Band 3 Band 4 Band 6

GF-1 Gain 0.2072 0.1776 0.1770 0.1909

Landsat-8 TRIS
Bias 7.5348 3.9395 −1.7445 −7.2053
Gain 1.1807 1.2098 0.9425 0.9692 17.04
Bias −7.3800 −7.6100 −5.9400 −6.0700 12.65

2.4. Selecting Satellite-Derived Indicators for CLQ Evaluation

CLQ evaluation indicators were obtained from the land pressure resistance index (PRI), land
state index (LSI), and land use response index (LURI) based on the PSR proposed by Dumanski and
Pieri [15], shown in Table 2.

Table 2. Cultivated land quality (CLQ) evaluation indicator system. TVDI, temperature vegetation
drought index; VI, vegetation index; RA, road accessibility; PFD, patch fractal dimension.

Target Layer Project Layer Satellite-Derived Indicator Layer

CLQ evaluation indicator system

Pressure Resistance Index (PRI) Slope

Land State Index (LSI) TVDI
VIs

Land Use Response Index (LURI) RA
PFD

http://218.247.138.119:7777/DSSPlatform/index.html
http://218.247.138.119:7777/DSSPlatform/index.html
http://www.gscloud.cn
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At the satellite-derived indicator layer, each indicator was selected based on the project layer
(PRI, LSI, and LURI). The PRI represents the ability to withstand environmental pressure and the
probability of degradation. As PRI increases, the ability to withstand environmental pressure improves
and the degradation probability falls. The environmental pressure within the study area mainly
originates from soil erosion. Therefore, slope was selected as the PRI evaluation indicator (Table 2).
In addition, LSI denotes the current quality and potential productivity of cultivated land, reflected by
soil moisture and soil fertility. Furthermore, soil organic matter (SOM) and total nitrogen (TN) are the
major determinants and indicators of soil fertility [16,17]. The temperature vegetation drought index
(TVDI) is related to surface soil moisture owing to changes in thermal inertia and evaporative control
(evaporation and transpiration) on net radiation partitioning (energy balance) [18]. Thus, soil moisture
was replaced by TVDI in this study (Table 2), expressed as follows [19]:

TVDI =
LST − LSTmin

a + bNDVI − LSTmin
, (2)

where LSTmin is the minimum surface temperature, defining the wet edge; LST is the observed
surface temperature at the given pixel; NDVI is the observed normalized difference vegetation index;
and a and b are parameters defining the dry edge, which is modeled as a linear fit to the data
(LSTmax = a + b×NDVI), where LSTmax is the maximum surface temperature observation for a given
NDVI. More specifically, a = 48.80 and b = −33.15. TVDI is lower for wet and higher for dry conditions,
with values of 1 at the dry edge and 0 at the wet edge [19].

Soil fertility (SOM and TN) is reflective of vegetation growing conditions [8,20]. Thus, remote
sensing VIs (Tables 2 and 3) were selected as soil fertility indicators in the study. In order to improve the
accuracy of the CLQ evaluation, the Pearson correlation was used to select the optimal satellite-derived
VI as soil fertility indicators. In particular, those with the greatest correlation coefficients between soil
fertility and satellite-derived VIs under the significance level of p ≤ 0.05 were chosen. The Pearson
correlation coefficient was derived, expressed as follows:

ri =

∑N
n=1

(
Rni −Ri

)
(y− y)√∑N

n=1

(
Rni −Ri

)2 ∑N
n=1(y− y)2

, (3)

where ri is the correlation coefficient between soil fertility and a satellite-derived VI, Rni is the
satellite-derived VI of the nth soil sample, Ri is the mean value of the VI in the ith soil sample, y is the
nth soil fertility, and y is the average value of soil fertility.

Table 3. Equations for the five VIs used in this study. NDVI, normalized vegetation index, EVI, enhanced
vegetation index; SAVI, soil-adjusted vegetation index; MSAVI, modified SAVI; PVI, perpendicular
vegetation index.

VIs Algorithm Formula Reference

NDVI (RNIR −RRED)/(RNIR + RRED) [21,22]
EVI 2.5× (RNIR−RRED)/(RNIR + 6RNIR−7.5RBLUE + 1) [23]

MSAVI
[
2RNIR + 1−

√
(2RNIR + 1)2

− 8(RNIR −RRED)

]
/2 [24]

SAVI 1.5× (RNIR −RRED)/(RNIR + RRED + 0.5) [25]
PVI (RNIR − aRRED − b)/

√
1 + a2 (a=0.9, b=0.1) [26,27]

RNIR, RRED, and RBLUE are the spectral reflectance of near-infrared, red, and blue bands respectively.

In the study area, land use embodied mainly in the form of land use types, road accessibility (RA),
and land patch fragmentation are the farmers’ response to CLQ [28–31]. As paddy fields are the only
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type of cultivated land in this study, RA (Table 2) and land patch fragmentation were selected as LURIs
indicators. RA was calculated according to Equation (4):

RA = 1−
di
d

, (4)

where di is the proximity distance between the ith land patch and road and d is the maximum distance
among all land patches and the road. RA ε (0, 1), where larger RA values indicate higher plot
accessibilities. The land patch fragmentation degree is reflected by the patch fractal dimension (PFD)
(Table 2), expressed as follows:

PFD = 2× ln
(L

4

)
/ ln A, (5)

where L (m) is the perimeter of the land patch and A (m2) is the area of land patch. PFD ε (1, 2),
with values approaching 1 indicate a greater degree of cultivated land utilization by farmers.

2.5. Modeling and Mapping Methods

In order to improve the CLQ evaluation accuracy, linear (PLSR) and nonlinear models (BPNN
and GA-BPNN) were applied for CLQ predictions using satellite-derived indicators.

2.5.1. Linear Model

The traditional linear model [7–9] was constructed taking measured CLQ in 1500 training samples
as the dependent variable and the corresponding evaluation indicator as independent variables.

Y =
n∑

i=1

βiX̌i, (6)

where Y is the dependent variable (CLQ value), X̌i is the ith independent variable (evaluation indicator
value), and βi is the ith weight coefficient determined from expert experience. In this study, a score
within the range of [0, 3000] was assigned to CLQ with reference to the GB/T 28407-2012. Therefore,
all indicators or indices were normalized to a range of 0–3000.

The PLSR is a standard multivariate statistical technique that was originally developed by Herman
Wold in 1966 [32]. Previous studies [33] indicate that the PLSR is highly effective in different disciplines
because it allows for the analysis of data with strong correlations in the predictor variables. The PLSR
used in the study is expressed as follows:

Y = Xβ+ ε, (7)

where Y is the dependent variable (CLQ value), X is the independent variable (evaluation indicator
value), β is the coefficient matrix, and ε is the residual matrix.

2.5.2. Back Propagation Neural Network

BPNN is a multi-layer feed forward network trained by the error back propagation algorithm, and
is suitable for various types of nonlinear relationship analysis methods. It consists of an input layer,
an output layer, and several hidden layers [34,35]. Trainlm and Purelin were selected as the training
function and the transfer function of the output layer in the BPNN, respectively. The steepest descent
method and the back-propagation algorithm in the BPNN model were used to repeatedly adjust the
weight and deviation of the network until the actual value and the expected output were as close as
possible [36,37].

The hidden layer information acquired from the input layer was expressed as follows:

o j = fi
(∑

ω jioi + θ j
)
, (8)
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where oi is the input layer information (the evaluation indicator); o j is the hidden layer information;
ω ji is the weight of the input layer to the hidden layer; and fi is the transfer function of the input layer
to the hidden layer. In this study, the Trainlm function is chosen and θ j is the hidden layer threshold.

The hidden layer was transferred to the output layer, expressed as follows:

ok = f j
(∑

ωkjo j + θk
)
, (9)

where ok is the output layer information (CLQ), f j is the transfer function of the hidden layer to the
output layer (the Purelin function was used in this study), ωkj represents the weight of the hidden
layer to the output layer, and θk is the output layer threshold.

The number of neurons in the hidden layer was determined according to the empirical formula in
Equation (9):

nh = 2ni + 1, (10)

where nh is the number of hidden layer units and ni is the number of input units.
If the estimated value differs greatly from the measured value, it is transferred to the error of

the back propagation process. The process of reverse propagation uses the Levenberg–Marquardt
algorithm from the output layer to the input layer to modify the connection weight in order to reduce
the mean square error (MSE), expressed as follows:

MSE =
1
N

∑
(o− ok)

2, (11)

where o is the measured CLQ, ok is the estimated CLQ, and N is the number of training samples.

2.5.3. Genetic Algorithm-Back Propagation Neural Network

In order to improve the prediction accuracy of the BP algorithm, GA was introduced to the BP
model to optimize the weight and threshold selection of the neural network. GA has the advantages
of only requiring fitting information and not tending to a local solution [38,39]. Thus, the combined
GA-BPNN model was used to estimate CLQ in this study. The original BPNN weight and threshold
were converted into chromosomes in GA using real-number coding. The code length was calculated
using Equation (11):

S = i ∗ j + j ∗ k + j + k, (12)

where i is the number of input layer neuron nodes, which is the number of evaluation indicators;
j is the number of neurons in the hidden layer; and k is the number of neurons in the output layer.
Note that, in this case, the output layer only exhibited CLQ, hence k = 1. This was followed by the
generation of a random population of chromosomes. The BPNN was used to obtain the individual
fitness value (E), which is the sum of the absolute error between the estimated and measured values of
the training data, expressed as follows:

min E =
∑

abs(yk − ok), (13)

where yk is the measured value of CLQ in the kth land patch and ok is the estimated CLQ value in the
kth land patch.

3. Results

3.1. Satellite-Derived Indicators of CLQ Evaluation

The satellite-derived indicators in the three project layers were calculated in the PSR framework.
The PRI slope was determined using the ArcGIS 10.2 surface analysis model, based on the DEM data
(Figure 2a). Next, TVDI, acting as a satellite indicator for LSI, was derived according to Equation (2).
The spatial distribution of TVDI is shown in Figure 2b. In order to acquire highly-accurate CLQ
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estimates, the optimal VI was selected among five VIs (NDVI, EVI, MSAVI, SAVI, and PVI) as the
soil fertility indicator. In particular, the VIs with the greatest correlation coefficients with soil fertility
(p ≤ 0.05) were chosen, as shown in Table 4. It can be seen that EVI exhibited the greatest correlation
coefficients with SOM and TN (0.88 and 0.90, respectively), indicating EVI as the optimal indicator for
the evaluation of CLQ. The spatial distribution of EVI is presented in Figure 2c.

Table 4. Correlation coefficients between the VIs and soil fertility parameters derived from the soil
samples. SOM, soil organic matter; TN, total nitrogen.

Soil Fertility Parameters NDVI EVI MSAVI SAVI PVI

SOM (%) 0.82 ** 0.88 ** 0.87 ** 0.84 ** 0.85 **
TN (mg/kg) 0.75 ** 0.90 ** 0.88 ** 0.78 ** 0.79 **

** correlation is significant at p < 0.01 level.

Finally, RA and PFD, calculated according to Equations (4) and (5), respectively, and their spatial
distributions are given in Figure 2d,e.

Figure 2. Spatial distributions of satellite-derived indicators in the pressure-state-response (PSR)
framework: (a) slope; (b) temperature vegetation drought index (TVDI); (c) enhanced vegetation index
(EVI); (d) road accessibility (RA); and (e) patch fractal dimension (PFD).

From the spatial distribution of spectral indicators, the slope, PFD, and TVDI with low values
mainly located in the northwest part of the study area, and EVI and RA with high values also located
in this part. This indicates that, the larger the EVI and RA, the smaller the slope, PFD, and TVDI, which
corresponds to the factual conditions.

3.2. The Optimal Model for CLQ Evaluation

The selected evaluation indicators (slope, TVDI, EVI, RA, and PFD) were used as independent
variables and CLQ acted as the dependent variable. The CLQ predictions of the traditional linear, PLSR,
BPNN, and GA-BPNN models were compared. In order to evaluate the accuracy of the prediction
models for estimating CLQ, the coefficient of determination (R2), root mean square error (RMSE)
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between the estimated and observed values, and normalized root mean square error (NRMSE) [13]
were calculated based on the training and validation datasets. The obtained traditional linear and
PLSR evaluation model are expressed as follows:

Ŷ =
1
3
× ~Slope +

1
3
×

(
}EVI + TVDI

2

)
+

1
3
×

 |RA + ~PFD
2

 (
R2 = 0.14, P = 0

)
, (14)

Ŷ = 1480.15− 2.47× slope + 569.68× EVI − 296.41× TVDI + 106.70×RA− 79.28× PFD(
R2 = 0.33, P = 0

)
.

(15)

Moreover, a three-layer BPNN with a single hidden layer was used for the CLQ predictions.
The number of neuron nodes in the hidden layer was fixed at 13, the number of iterations at 1000,
and both the learning rate and learning objective at 0.01. In order to compare the results of the GA
optimization, the network structure and parameter configuration were consistent with those of the
BPNN. In the GA, the number of the maximum runs was set at 50, and the population size, crossover
probability (Pc), and mutation probability (Pm) were fixed as 128, 0.9, and 0.02, respectively. A total of
1500 training samples were selected for the PLSR, BPNN, and GA-BPNN models in order to train the
response relationships between CLQ and the selected evaluation indicators (Figure 3).

Figure 3. Scatterplots of measured versus estimated CLQ obtained by four models using the training
dataset: (a) the traditional linear model; (b) partial least squares regression (PLSR); (c) back propagation
neural network (BPNN), and (d) BPNN with genetic algorithm optimization (GA-BPNN). RMSE, root
mean square error; NRMSE, normalized RMSE.

From the results using the training dataset, the explanatory power of CLQ was observed to vary
greatly depending on the evaluation model (R2: 0.14 for traditional linear model, 0.33 for PLSR, 0.50 for
BPNN, and 0.59 for GA-BPNN). At a given CLQ, the traditional linear model estimations exhibited
the greatest RSME values, and GA-BPNN exhibited the lowest. The PLSR and traditional linear
models performed the worst, while the BPNN and GA-BPNN models were able to improve the overall
CLQ prediction accuracy. In particular, the GA-BPNN model exhibited the highest accuracy and the
strongest prediction ability, implying that there existed a significant nonlinear relationship between
the evaluation indicators and CLQ.
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Moreover, 250 samples were used to validate the estimation accuracy of the four models, with the
results presented in Figure 4. For the validation samples, the estimated and measured values of CLQ
were observed to be randomly distributed on both sides of the 1:1 line, depending on the model.
More specifically, for the GA-BPNN model, the scatter points were closely located to the 1:1 line,
with limited outliers. Thus, the results demonstrate that the indicators selected in this study are suitable
for predicting CLQ in the study area.

Figure 4. Scatterplots of measured versus estimated values of CLQ obtained four models using the
250-sample validation dataset for model: (a) the traditional linear model; (b) PLSR; (c) BPNN; and
(d) GA-BPNN.

Furthermore, for the validation dataset, the observed prediction accuracies of the four models
from high to low are GA-BPNN (R2 = 0.60, RMSE = 55.41) > BPNN (R2 = 0.47, RMSE = 69.95) > PLSR
(R2 = 0.31, RMSE = 78.84) > traditional linear model (R2 = 0.16, RMSE = 87.62). This implies that the
GA-BPNN model demonstrated the highest accuracy and the strongest prediction ability, consistent
with the results of the training samples.

3.3. Spatial Prediction of Cultivated Land Quality at the Regional Scale

The GA-BPNN model was applied to map CLQ in Conghua District at the regional scale using
the evaluation indicators. The CLQ values were then divided into three grades according to gradation
regulations on agriculture land quality in China (GB/T 28407-2012). The derived spatial distribution of
CLQ was presented in Figure 5.

In order to validate the mapping accuracy of CLQ using the GA-BPNN model, the CLQ estimated
using the evaluation indicators was compared with the measured data from the 250 samples by
calculating the R2, RMSE, and NRMSE (Figure 6). There was an improvement in the CLQ mapping
using the satellite-derived indicators based on the GA-BPNN model (R2 = 0.56, RMSE = 61.44,
NRMSE = 13.04%), indicating that the method proposed in this study is capable of estimating CLQ at
the regional scale.
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Figure 5. Spatial distributions of CLQ using GA-BPNN for the study area: (a) utilization grade index
and (b) utilization grade.

Figure 6. Measured and estimated CLQ based on the GA-BPNN model using the 250 validation sample
plots for mapping.

4. Discussion

The CLQ plays a vital role in agricultural production. CLQ will change drastically over a short
time when environmental change and human economic activities occur. Therefore, timely assessment
and dynamic monitoring of CLQ are especially critical in the agricultural vulnerable region. Estimating
CLQ using remote sensing data is a cost-efficient, yet challenging method owing to the complex
nonlinear relationship between CLQ and the evaluation indices [40]. Previous studies [7–9] based on
the PSR framework using remote sensing technique have generally focused on building linear models
with coefficients determined from expert experience. In order to improve the CLQ evaluation accuracy
from previous work, this study applied linear (traditional linear model and PLSR) and nonlinear
models (BPNN and GA-BPNN) to evaluate CLQ.

Compared with the evaluation results from the four models, BPNN and GA-BPNN models (R2 of
0.50 and 0.59) performed better than PLSR and the traditional linear models (R2 of 0.33 and 0.14) in
accurately predicting CLQ, highlighting the evident nonlinear relationships between satellite-derived
indicators and CLQ. Meanwhile, this demonstrates that the GA-BPNN model performed better on CLQ
evaluation than the BPNN model, because GA was introduced to BPNN, which led to an integrated
GA-BPNN method to optimize the BPNN initial input parameters (thresholds and weights) and
provide the solution for the problem of being stuck in the local minima [41]. The results of the
validation datasets also showed that, compared with the BPNN model without the optimization of the
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input parameters, the GA-BPNN model significantly improved the estimation accuracies of CLQ by
decreasing the RMSE values by 14.81.

In order to further validate the regional scale applicability of the GA-BPNN prediction model,
the satellite-derived indicators were used to map CLQ over Conghua District. The comparison between
the measured and estimated CLQ resulted in an RMSE of 55.14 and NRMSE of 11.68%. The result
demonstrated that the satellite-driven evaluation approach in the PSR framework using the GA-BPNN
model has the potential to accurately map CLQ.

It has to be pointed out that the experiment was conducted only in paddy fields. Owing to the
absence of information on other types of cultivated land, we cannot currently validate the evaluation
indicators and CLQ model uncertainties caused by cultivated land type. Thus, more field samples
from different types of cultivated land should be collected to further validate the reliability of the
indicators and the model proposed in the study. Moreover, in order to further build and validate
the optimal indicators of CLQ evaluations in future studies, larger sample sizes with a CLQ range
from low to high should be utilized. This will improve the accuracy of the CLQ predictions. Finally,
compared with the algorithm efficiency of linear models (the traditional linear and PLSR), the BPNN
and GA-BPNN algorithms have the problem of slow learning, resulting in the difficulty to satisfy
practical applications, especially for large-scale training samples [42]. Thus, the addition of other
prediction methods (e.g., multiple linear regression, MLR; deep learning; support vector machine,
SVM; and random forest, RF) is expected to enhance the efficiency and accuracy of CLQ evaluations.

5. Conclusions

It is agreed that estimating and mapping CLQ using satellite-derived approaches based on the
PSR framework is quick and effective, yet also very challenging owing to spectral indicator accuracy,
modeling methods, and model transferability, which will affect the accuracy of CLQ evaluation.
In order to improve the accuracy of CLQ evaluation, this study focused on determining an accurate
spectral response relationship model between CLQ and satellite-derived indicators based on the PSR
framework to evaluate CLQ using the traditional linear, PLSR, BPNN, and GA-BPNN algorithms.
The experiment was conducted in the Conghua district of Guangzhou City. The following conclusions
could be drawn: (1) comparing with other VIs (NDVI, PVI, MSAVI, and SAVI), EVI, with the greatest
correlation coefficients r of 0.88 for SOM and 0.90 for TN, is the optimal indicator in the land state
index; (2) the GA-BPNN model demonstrated the strongest fitting ability for CLQ (R2 = 0.59 and
RMSE = 56.87) compared with the PLSR, BPNN, and traditional linear models. This indicates a
nonlinear relationship between CLQ and the prediction indicators; (3) the validation led to a relatively
small NRMSE value of 13.04% for mapping CLQ, which further indicated that the GA-BPNN-based
evaluation approach of CLQ in the PSR framework using GF-1 data was reliable to map CLQ at the
regional scale. This study provides an important reference for high-accuracy CLQ predictions.
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