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1 Faculty of Biology, University of Bucharest, Bucharest, Romania, 2 Department of Terrestrial Fauna, ‘‘Grigore Antipa’’ National Museum of Natural History, Bucharest,

Romania, 3 Department of Zoology, Oklahoma State University, Stillwater, Oklahoma, United States of America, 4 Faculty of Biology, ‘‘Alexandru Ioan Cuza’’ University, Iaşi,
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Abstract

Climate warming is one of the most important threats to biodiversity. Ectothermic organisms such as amphibians and
reptiles are especially vulnerable as climatic conditions affect them directly. Ecological niche models (ENMs) are increasingly
popular in ecological studies, but several drawbacks exist, including the limited ability to account for the dispersal potential
of the species. In this study, we use ENMs to explore the impact of global climate change on the Caspian whip snake
(Dolichophis caspius) as model for organisms with low dispersal abilities and to quantify dispersal to novel areas using GIS
techniques. Models generated using Maxent 3.3.3 k and GARP for current distribution were projected on future climatic
scenarios. A cost-distance analysis was run in ArcGIS 10 using geomorphological features, ecological conditions, and human
footprint as ‘‘costs’’ to dispersal of the species to obtain a Maximum Dispersal Range (MDR) estimate. All models developed
were statistically significant (P,0.05) and recovered the currently known distribution of D. caspius. Models projected on
future climatic conditions using Maxent predicted a doubling of suitable climatic area, while GARP predicted a more
conservative expansion. Both models agreed on an expansion of suitable area northwards, with minor decreases at the
southern distribution limit. The MDR area calculated using the Maxent model represented a third of the total area of the
projected model. The MDR based on GARP models recovered only about 20% of the total area of the projected model. Thus,
incorporating measures of species’ dispersal abilities greatly reduced estimated area of potential future distributions.
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Introduction

Climate is recognized as one of the main factors responsible for

shaping large-scale species distributions [1]. Global climate change

observed over the past decades has produced shifts in the

distribution and abundance of numerous species [2,3] and is

responsible for species extinction [4]. Increased levels of global

warming are expected to have different effects on species, based on

their life-history traits [5,6], dispersal rates [7–9], and habitat

requirements [10–12]. Predicted outcomes include range shifts

following changing environments, adaptation to novel conditions,

isolation to unaffected regions (refugia), and extinction [2,13–16].

Ectothermic animals (such as amphibians and reptiles) are

especially prone to be affected by global warming as a result of

their particular ecological requirements [17]. Local extinctions are

well documented for reptiles [18–21] and amphibians have the

highest rate of extinction recorded to date [22–27]. For example,

Sinervo et al. [28] predicted that by 2080, 30% of all known lizard

species will be locally extinct due of global warming alone. In

turtles, Ihlow et al. [29] calculated that changing climates will

produce distribution reductions of 86% of all species and 12% of

the species will shift completely out of their current range. In

snakes, Reading et al. [30] found that, in a period of about 14

years, 11 of 17 populations across Europe, Africa, and Australia

have faced abrupt declines. Reading et al. [30] suggested that the

reasons for these declines are the same as for the ones observed in

other reptile groups but with a special emphasis on global climate

change as the root cause.

Ecological niche modeling has become an increasingly popular

methodology to study species’ potential distributions in recent

years and, as a result, several applications have been developed to

facilitate generation of such models and distributions [31–34].

Broadly, these tools differ with regards to the type of species’

records (presence/absence or presence-only) and predictors

utilized (climatic - empirical approach or physiological constrains

- mechanistic approach) [35–37]. In their current form, ecological

niche models (ENMs) allow us to infer present [38–41], past

[42,43], and future potential distribution of species [44–46],

speciation scenarios [47–50], to design or refine protected areas

for threatened species [51,52], and to predict novel distributions of

invasive taxa [53,54] and impact of human-mediated global

warming on wildlife [55–57].

As stated, ecological niche modeling is a popular approach to

assessing the impact of global climate changes on species’

ecological niches [53,56,58–60]. However, resulting predictions

of future distributions are sometimes prone to potentially
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erroneous interpretations if the differences in dispersal ability

among taxa are not taken into account. As such, the interpretation

of these predictions may be subjective, indicating either species’

expansion or contraction of their current ranges, or complete

relocation to a new geographic area where the climate remains

favorable. Furthermore, if the climatic change occurs rapidly,

there is a risk of extinction for certain species, given the concept of

niche conservatism, which states that species and clades retain

their niches and related ecological traits over time [61,62].

One of the main drawbacks of ecological niche modeling, in its

empirical implementation, is its reliance on the correlation

between abiotic factors (i.e. temperature, humidity, radiation)

and species’ presences in what is defined as a ‘‘bioclimatic

envelope’’ [46,63]. Other factors are known to play an important

role in the distribution of species, such as biotic interactions (i.e.

predators, prey, diseases) [64], and dispersal ability or dynamics of

vegetation [65]. In the context of climatic shifts, dispersal ability

stands out as one of the most important factors not taken into

account when generating estimates of species’ distributions. It is

generally futile to discuss the suitability of future climatic

conditions in a certain area that the species may not be able to

reach in the first place.

In the present study, we used (i) ENMs to estimate the impact of

climate change scenarios on the geographic extent of a narrow

range, low dispersal organism (Dolichophis caspius) and (ii) cost

distance analysis in Geographic Information Systems (GIS) to

assess species’ dispersal potential into novel, currently unoccupied

regions identified as suitable by ENMs. Limitations of this

approach are also discussed. Our main goal was to develop an

approach to adjust assessments of global warming effects on

narrow range, low dispersal organisms such as the Caspian whip

snake by incorporating spatial estimates of the species’ dispersal

capacity on the landscape.

Materials and Methods

Species Account
The Caspian whip snake (Dolichophis caspius) is a xerophilous

snake species inhabiting primarily steppe open grasslands,

Mediterranean scrublands, rocky outcrops, and broad-leaved

forest edges at low and medium altitudes (0 to 1600 m ASL)

[66,67]. The species is widespread in Eastern Europe, southern

Ukraine, the Balkan Peninsula, West Anatolia, Black Sea Coast,

east to the Caucasus Mountains, southern Russia, and Kazakhstan

[66–68]. In Eastern Europe (Romania, Bulgaria, Greece) the

species is possibly one of the most frequent victims of ever-

increasing road traffic and its habitat is experiencing ongoing

reduction in many parts of the range [69].

Nagy and collaborators [70] recognized two Caspian whip

snake haplotype groups separated by the Aegean Sea and the

Bosphorus Straight, and estimated to have diverged during the

Pleistocene: an eastern group along the Turkish coast and on East

Aegean islands, and a western group in the Cyclades islands,

Euboea island, and mainland Central and Eastern Europe. The

western haplotype may have survived in its current observed range

during glacial periods and persisted since, but later rapid

recolonization events of Central and southeastern Europe, very

likely from the Balkan Peninsula, represents another possible

explanation of the current range [70].

Lowland areas such as steppes, forest-steppes, and xeric forests,

the preferred habitats for the Caspian whip snake [66–68], are

especially fragile and prone to land use changes due to their value

as agricultural and grazing fields. In addition, these areas are

extremely sensitive to minor variations in humidity and temper-

ature, i.e. to the effects of climate change [71–74]. In the

European Union (EU), such ecosystems became a top priority for

conservation (EU Habitats Directive 92/43/EEC of 21 May

1992), but in developing countries conservation measures are

implemented at a slower pace and may not represent a priority. At

the same time, most of the range of Dolichophis caspius falls outside

of the EU, where such measures are limited or do not exist [75].

Species Occurrence Data
In order to maximize the quantity and quality of the occurrence

data used for generating the models, we did an extensive literature

review from which we extracted available geographic location

information. Imprecise localities such as country, county, coarse

resolution UTM grids, as well as locations with uncertainty higher

than approximately1 km were excluded from the analysis. Most of

the whip snake localities had more than one confirmed record in

the past 50 years. The extracted points were manually georefer-

enced using ArcGIS 10 with populated places and topographic

maps as reference layers. For locality descriptions that could not be

georeferenced, we contacted the authors to clarify the geographic

reference. The georeferenced dataset comprised 338 localities

which we further trimmed to retain only spatially unique ones,

corresponding to single environmental grid cells using Trim Data

function in ENMTools 1.3 [76]. Consequently, only 324 unique

records were used to generate ENMs for the Caspian whip snake

(Supporting Information S1).

Climate Data
The baseline (current) climatic data used for running the models

had a spatial resolution of 30 arc-seconds (approximately 1 km)

and was retrieved from the WorldClim database [77,78]. To

analyze future climate effects on the potential distribution of the

whip snake, we used future climate datasets produced by the

Canadian Centre for Climate Modeling and Analysis (CCCma)

using the Second Generation Coupled Global Climate Model

(CGCM2), for two greenhouse gas emissions scenarios, A2a and

B2a. All datasets were downloaded at 2.5 arc-minutes resolution

(4.5 kilometers) from the International Centre for Tropical

Agriculture website [79]. The chosen emission scenarios follow

two opposite views on how the climate will change in the future 70

years. The A2a scenario is considered more liberal and takes into

account a high population growth worldwide, increased energy

use, land-use changes, and a slow technological advance; the B2a

scenario is considered more conservative and simulates a slow

human population growth rate, limited land use changes, and

reflects a more technologically innovative world [80]. For each

scenario we used the projections for 2020, 2050, and 2080 in an

effort to forecast time series changes in the climatic niche

distribution of D. caspius.

Both climatic datasets (baseline and CGCM2) comprise 19

bioclimatic variables (see Hijmans et al. [78] for more details)

(Table 1) considered to compute more robust models than

monthly temperature and precipitation variables [81] also

available in the datasets [78]. However, to obtain robust models,

it is necessary to optimize variable use by avoiding highly

correlated variables or by selecting those that are increasing

model accuracy. Here we opted for the latter to select a subset of

the available 19 variables. We ran a first model using all 19

variables (Table 1) in Maxent, selecting for the second and final

model runs only the variables that had a contribution above 5% in

creating the first model (Table1). The same subset of variables was

used for generating the GARP models.

To meet the recommendation that models must be trained only

in a region within the known range of the species or within its

Climate Change and Snakes Dispersal Ability

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e91994



dispersal limits [82,83], we produced the model using as

geographic extent only the known distribution range of the D.

caspius, following the distributional limits given in the literature

[66].

Ecological Niche Modeling Procedure
Based on the species records and the bioclimatic variables, we

generated models using Maxent version 3.3.3 k [36] and Desktop

GARP (Genetic Algorithm for Rule-set Prediction) version 1.1.3

[84]. These two algorithms are among the ones designed for

presence-only datasets that produce reliable predictions [85]. Also,

previous studies [86–88] have shown that GARP tends to produce

wider potential distributions when compared with Maxent, thus

we employed both algorithms to assess degree of variation in the

potential distribution and the estimated impact of global warming

on the species studied.

GARP is a machine-learning algorithm, while Maxent has

recently been reclassified as a version of the generalized linear

model [89]. Both algorithms are able to produce ecological niche

models using presence-only data and environmental predictors

[36,90]. Maxent does this by finding the distribution closest to

uniform distribution (maximum entropy) constrained by the

environmental data input [36]. On the other hand, GARP

generates models using rules that are applied to the training data.

The changes in the predictive performance between runs are used

to evaluate whether a rule is included in a model [32].

To produce the models in Maxent we used the default settings

including regularization multiplier = 1 and maximum number of

background points = 10,000. Random test percentage was set to

25% of the input species’ occurrence records to test the

performance of the resulting model. Also, the clamping option

was used to downweight areas outside of the range presented by

the training data (Supporting Information S2). The clamping

function produces a map output that identifies in the projections

(i.e., future climate) areas with environmental variable values

outside of the minimum and maximum range of values present in

the training region (i.e., present-day climate). Model predictions in

such areas are deemed uncertain [91]. In GARP, we ran 100

models with a 0.01 convergence limit of model iterations and the

maximum itineration number set to 1000. We also activated the

internal testing feature and the ‘‘best subsets’’ procedure [92] to

select ten best models as the final ones. The selection criteria

included omission error (i.e., known occurrences predicted absent)

which we set to the lowest 20% of values, and commission error

(i.e., areas without known presences predicted present) for which

we used the default 50% value. Both Maxent and GARP models

were projected onto climate change scenario datasets at the end of

the iteration phase. As the final procedure, in ArcGIS 10 (ESRI,

Redlands, CA) [93] we summed the best ten GARP models to

create a model agreement map and we converted Maxent and

GARP models with continuous probability distribution values and

model agreement values, respectively, to binary presence-absence

potential distribution maps using as threshold 10% omission error

of the training presence dataset. These post-modeling procedures

were employed for both present-day and future climate potential

distributions.

Model Evaluation
The model evaluation was done using three different methods:

(1) partial ROC (Receiver Operating Characteristic), (2) omission

error calculated using the test occurrence subset and thresholded,

presence-absence predictions, and (3) expert’s opinion. Generally,

the most frequent method to evaluate ENMs is the Area Under the

ROC Curve (AUC) [36], but, as it has been shown that this

Table 1. Variable selection results indicating percent contributions to the initial and last models.

Contribution

Variable First model Final model

Mean Temperature of Coldest Quarter 35.2 39.7

Temperature Seasonality 17.1 21.6

Mean Diurnal Range 12.7 16.1

Min Temperature of Coldest Month 6.4 12.3

Precipitation of Driest Month 5 10.3

Temperature Annual Range 4.8* –

Mean Temperature of Wettest Quarter 3.3* –

Mean Temperature of Warmest Quarter 3.1* –

Isothermality 2.8* –

Precipitation of Driest Quarter 2.6* –

Annual Mean Temperature 1.7* –

Precipitation of Coldest Quarter 1.5* –

Precipitation Seasonality 1.1* –

Max Temperature of Warmest Month 0.6* –

Mean Temperature of Driest Quarter 0.6* –

Annual Precipitation 0.6* –

Precipitation of Warmest Quarter 0.5* –

Precipitation of Wettest Month 0.2* –

Precipitation of Wettest Quarter 0.2* –

*variables eliminated due to low contribution to model development.
doi:10.1371/journal.pone.0091994.t001
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approach may not be the most adequate to evaluate the ecological

niche models (see Peterson et al. [92,94] for details), we used a

modified version, the partial ROC [80], which calculates the AUC

only for a portion of the ROC curve, above an omission error

threshold. We set the threshold to 5%. The partial ROC AUC

scores were calculated using the partialAUC application developed

by N. Barve (University of Kansas). We ran 100 iterations in which

the test occurrence data were bootstrapped and we used z tests to

assess whether the partial ROC AUC values were above that of a

random model.

Post-modeling Analysis
To estimate whether D. caspius could disperse into novel areas of

suitable climatic conditions predicted by the models, we used the

cost distance analysis tool in ArcGIS 10. The cost distance

function calculates the ‘‘effort’’ or ‘‘resistance’’ to moving from one

point to another on the landscape based on a ‘‘cost’’ raster (GIS

grid with cells, or pixels). If no destination point is given, the

function automatically calculates ‘‘effort’’ to the edge of the raster.

The cost raster is used to explain the difficulty of crossing certain

landscape features, topographic or ecological (e.g.: altitude, slope,

rivers, ecoregions, human-impacted areas etc.; Supporting Infor-

mation S3–S5).

To develop the cost raster, we used geomorphological features

(altitude and rivers), ecological conditions (ecoregions and

presence-absence Maxent and GARP rasters), and the impact of

human habitation on the landscape (human footprint). The

altitude raster used was included in the standard WorldClim

BIOCLIM package and was used to calculate a slope raster in

ArcGIS 10. A GIS layer with world ecoregions was downloaded

from WWF (http://worldwildlife.org), while the human footprint

raster was downloaded from NASA Socioeconomic Data and

Applications Center (SEDAC, http://sedac.ciesin.columbia.edu).

River data were available in the basic collection of layers offered

by ESRI with the license of ArcGIS 10. The above-mentioned

rasters were reclassified manually using the ‘‘Reclassify’’ function

in ArcGIS 10, while the number of classes varied depending on the

specific raster dataset (Supporting Information S5, S6). The values

for each interval were assigned based on species’ biology and

experts’ opinion to account for the difficulty of movement

(Supporting Information S3–S4). ‘‘Cost’’ rasters were created

using the ‘‘Mosaic to New Raster’’ command in ArcGIS 10, which

merged all reclassified rasters to a new dataset (Supporting

Information S5–S6). To ensure that the cells of the resulting cost

raster reflected the highest impediment to movement, priority was

given to cells with a higher classification value (i.e., cells associated

with higher costs). We generated separate cost rasters for GARP

and Maxent model outputs and for each climate projection (two

emission scenarios and three time periods; Supporting Information

S3–S4). Also, to account for the uncertainty associated with

assigning costs based on experts’ opinion, we developed three

separate scenarios (based on three separate cost rasters; Support-

ing Information S3–S4): (S1) a permissive scenario, in which the

populations were assumed to have higher capacity of dispersal,

(S2) a restrictive scenario, where populations were heavily constrained

by conditions outside of the known environmental range, and (S3)

a balanced scenario, in which the cost values were weighted based on

experts’ opinion of which environmental conditions are more

likely to be suitable for the Caspian whip snake’s dispersal and

which could impede movement through the landscape.

The cost rasters (Supporting Information S3–S4), along with the

occurrence points (Supporting Information S1) gathered from the

literature survey, were used as input in the cost distance analysis

performed in ArcGIS 10, ‘‘Cost Distance’’ function, which

calculates the cumulative cost value for each cell (pixel) on the

landscape as an individual would disperse from species’ known

presence localities. The rasters generated through the cost distance

analysis (for both modeling algorithms and climatic scenarios, over

all three time periods and dispersal scenarios) were then reduced

(thresholded) using the lowest (minimum) cost distance value that

connected all species’ known presences (Supporting Information

S5–S6). The threshold was used since information regarding home

range or dispersal capabilities for the Caspian whip snake is not

available. We refer to the resulting rasters as Maximum Dispersal

Range (MDR). The cost distance analysis was repeated for each

cost raster generated for the two ecological niche modeling

algorithms and two emission scenarios, for three time periods and

three dispersal scenarios. We emphasize that, in addition to

ENMs, MDR incorporates variables not directly used in the

ecological niche modeling algorithms, such as anthropogenic

alterations of the landscape and topography, that would affect

dispersal routes for this species.

Results

Model Accuracy Metrics
The partial ROC area under the curve (AUC) ratios had a

mean of 1.24 (SD = 0.064) for Maxent and a mean of 1.18

(SD = 0.06) for GARP in 100 replicates, and were statistically

significant above the null expectations (z test, p,0.05). The rate of

false negative records (omission error) was 13% of the total

number of presences for Maxent model and 0% for GARP model.

From the herpetologist expert’s point of view, both algorithms

recovered the known distribution and potential distribution of the

Caspian whip snake (Fig. 1), with a slight trend of Maxent to

underpredict the potential distribution of Caspian whip snake in

the northern part of the species’ range. The location of presence

records predicted absent (omission error) is in agreement with the

expert opinion, as these records are at the limits of the species’

distribution. The results from all three evaluation methods suggest

good predictive power of the models, thus we consider the

resulting species’ potential distributions under future climate

conditions to be reliable estimates of the effects of forecasted

climate change.

Present-day Potential Distribution of the Caspian whip
Snake

The highest contributing variables (.5%) to both the first and

the final models were mean temperature of the coldest quarter,

temperature seasonality, mean diurnal range, minimum temper-

ature of the coldest month, and precipitation of the driest month

(Table 1). The difference in variable contribution values between

the two model runs was not significant (t = 20.622, df = 8,

p = 0.551). Maxent and GARP models predicted most of Balkan

Peninsula, Pannonian Plain, Crimean Peninsula, and Western and

Southern coast of Caspian Sea, Italy, Syria, Iraq and Iberian

Peninsula as climatically suitable for D. caspius. Other climatically

suitable regions were found in parts of Germany, Turkey, France,

Poland, and Baltic and Scandinavian countries.

We observed disagreement in the present-day potential

distributions predicted by the two algorithms: large areas predicted

suitable only by GARP in Turkey, Romania (excluding the

Carpathian Mountains), Moldova, Southern Ukraine, southern

European Russia, and the Caspian Sea basin, including large parts

of Turkmenistan, Azerbaijan, and Georgia, were only marginally

predicted present by the Maxent model. In addition, according to

the GARP present-day model, all Western Europe and the Czech

Republic are climatically suitable for D. caspius, regions only
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partially predicted present by the Maxent model. Generally,

discrepancies aside, the models generated by both GARP and

Maxent produced pertinent maps of the potential distribution of

Caspian whip snake under current climatic conditions.

Moreover, the GARP model recovered almost all of the species’

occurrence points used in the analysis (i.e, low omission error) and

filled in the gaps in species range in the southern European Russia,

Ukraine, and Moldova, where, although anecdotal information

about the species’ presence exists, to the best of our knowledge, no

documented records are available. From the herpetologist’ point of

view (expert opinion), the prediction generated by GARP is a

closer approximation of the current potential distribution of D.

caspius, with a tendency to overpredict especially at the northern

limit of the species’ range.

Forecasting the Future Distribution of the Caspian Whip
Snake

The clamping results for all future predictions show that the

climate conditions in the training region were similar to those in

the projected area, across emission scenarios and time frames. The

only regions where the climates were different are located in the

northeastern Europe, a region in which Caspian whip snake has

not been recorded. Thus, we assumed that the models would be

reliably transferred to future climates since novel climatic

conditions were not identified in the species’ geographic range.

The agreement between future projections produced by GARP

using the liberal (A2a) and conservative (B2a) emission scenarios

was high (.90% congruence between the number of pixels

predicted present), for each of the three time periods studied

(2020, 2050 and 2080). On the other hand, Maxent projections

were more divergent between climate scenarios: over 60%

congruence for 2050 and 2080 and 80% for 2020 (Table 2 and

Fig. 2). The models produced by Maxent predicted a doubling of

Figure 1. Present-day ecological niche models (green) for D. caspius (lower left - model generated by Maxent; lower right - model
generated by GARP) in comparison to its known distribution range (upper panel, area in grey) (adapted after [66]) and presence
records (red points). The red dotted line in lower panels corresponds to the grey area in upper panel (known distribution range).
doi:10.1371/journal.pone.0091994.g001
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suitable climate area from the present to future projections under

both climate scenarios and suitable regions extended to areas

presently unsuitable for D. caspius.

The models produced by GARP predicted a more conservative

change of the climatically suitable areas, as future projections were

more similar to present predictions, adding 10.21% more suitable

space by 2080 under scenario A2a and 8.37% more suitable space

under scenario B2a (Table 3). The visual analysis of the effects of

climate change on D. caspius potential distribution using both

modeling methods (GARP and Maxent) and both emission

scenarios (A2a and B2a) suggests an increase in climatic suitability

in the currently known distributional range and also a gradual

geographic expansion of the climatic niche of the species farther

north. The most significant changes in terms of expansion of

suitable climates for D. caspius can be observed in the northern part

of its range, especially in Poland, Ukraine, the Baltic states,

southern and western Russia, and around Caspian Sea (figure 2).

However, while there was consensus between algorithms

regarding the northern expansion of the geographic range of

favorable conditions, the models generated by GARP under both

emission scenarios predicted a small and progressive loss of

suitable areas from the species’ southern distribution limit, in

Turkey, Lebanon, and Syria.

Figure 2. Future climatically suitable ranges for the Caspian whip snake, Dolichophis caspius.
doi:10.1371/journal.pone.0091994.g002

Table 2. Percent of suitable niche overlap between the two emission scenarios (A2a and B2a) for the studied time periods (2020,
2050, 2080).

Algorithm 2020 2050 2080

Maxent 81.85 60.19 66.29

GARP 98.01 93.92 96.07

doi:10.1371/journal.pone.0091994.t002

Climate Change and Snakes Dispersal Ability
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Maximum Dispersal Range Analysis
The cost distance analysis of the three dispersal scenarios

produced different results for the climate projections obtained with

the two modeling algorithms (Maxent and GARP) that required

different minimum cost distance thresholds to include species’

known presences.

In the case of the permissive scenario (S1), the minimum

distance threshold that connected all species’ known distribution

points was 5.26% of the original rasters resulted from the cost

distance analysis using Maxent and the liberal A2a emission

scenario, and 5.53% using the conservative B2a emission scenario.

For GARP, the distance thresholds were 4.65% (A2a) and 4.87%

(B2a). For the restrictive scenario (S2), the distance thresholds were

6.84% (A2a) and 7.11% (B2a) using Maxent predictions and

5.24% (A2a) and 5.53% (B2a) using GARP predictions. Finally, in

the case of the balanced scenario (S3), distance thresholds were 9%

using the liberal emission scenario (A2a) and 8% using the

conservative emission scenario (B2a) for Maxent potential

distributions, and 4% for both climatic scenarios for GARP

potential distributions. This suggests a better ability of the MDRs

based on GARP models output to delineate a single area that

includes all points used in analysis.

Using the S1 dispersal scenario, the spatial congruence between

the MDRs based on GARP was much higher (97%) than in the

case of Maxent (88%), whereas using the S2 dispersal scenario the

congruence was slightly higher for Maxent (98%) than GARP

(96%) predictions. In the balanced S3 scenario, the spatial

congruence between the MDR for the two emission scenarios

was again higher for the analysis based on GARP outputs

(99.16%) than the one based on Maxent outputs (92.67%).

The area defined as MDR using the Maxent projections on the

liberal A2a scenario represented 20.4% of the total area of the

projected model and 23.27% of the conservative B2a scenario in

the case of the permissive scenario (S1, Table 4). The MDRs based

on the GARP models for the two scenarios were similar, with

22.35% of the total area of the projected model using the A2a

scenario and 23.06% using the B2a scenario (Table 4). In the case

of the restrictive scenario (S2), the area defined as MDR using

Maxent niche projections were 20.33% using the A2a emissions

scenario and 20.81% with the B2a emissions scenario (Table 4).

The MDRs based on the GARP projections represented

approximately19% (18.72% for A2a and 19.43% for B2a) of the

total projected area under both emission scenarios (Table 4). The

MDRs from the balanced model (S3) represented 30.34% of the

total area of the projected model using the A2a scenario and

28.12% of the conservative B2a scenario projections. The MDRs

based on the GARP models for the two emission scenarios

featured 21.73% of the total area of the projected model using the

A2a scenario and 21.54% using the B2a scenario (Table 4).

Even though the degree of congruence between MDRs within

each algorithm (Maxent and GARP) and between climatic

scenarios was .90%, slight differences existed across algorithms

and scenarios. The MDRs based on GARP predictions showed

many more dispersal possibilities for the Caspian whip snake when

the analyses were based on the permissive S1 scenario, the MDR

covering 98% (A2a) and 97.55% (B2A) of the current distribution

range, while the MDRs based on Maxent covered 95.67% (A2a)

and 97.20% (B2a) of the current distribution range (Figure 3). By

using S2, the MDRs identified similar dispersal options, the MDRs

based on GARP covering 98% (A2a) and 97.90% of the current

distribution range and the Maxent-based MDRs covered 98.55%

(A2a) and 98.89% (B2a) of the Caspian whip snake’s current

distribution (Figure 3). In S3 the MDRs based on the Maxent

predictions indicated many dispersal options, even more so when
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taking into account the liberal A2a model, with a 97.61% overlap

with the current distribution range of the Caspian whip snake, in

contrast to the conservative B2a model with a 94.69% overlap

with the current distribution (Figure 3). The MDRs based on

GARP predictions overlapped with the current distribution of D.

caspius in 98.20% of the area for the liberal A2a climatic scenario

and 96.09% for the conservative B2a climatic scenario (Figure 3).

In general, using the S1 dispersal scenario, the MDRs based on

GARP predict dispersal options for the Caspian whip snake into

Austria, Slovakia, the Czech Republic, Poland, Ukraine, Belarus,

and Russia towards the north, but also further into Turkey in the

southeast and into Georgia, Armenia, Azerbaijan, and Iran in the

south. In the case of the MDRs based on the Maxent models,

dispersal options are identified as far north as northern Poland and

to the west all the way into eastern Germany, but unlike the

GARP-based predictions, Ukraine and Belarus are shown only as

limited routes for dispersal. As in the case of the GARP-based

MDRs, to the south Georgia, Armenia, Azerbaijan, and Iran are

presented as likely dispersal routes, but unlike the GARP-based

MDRs, the outputs based on Maxent identify a sizable part of

Syria and Lebanon as possible dispersal options.

Using the restrictive scenario (S2), the consensus was greater

across modeling algorithms and emission scenarios (A2a & B2a),

all identifying Slovenia, Austria, the Czech Republic, southern

Poland, Ukraine, and Russia as likely dispersal routes towards the

north, Georgia, Azerbaijan, and northwestern Iran in the south,

and Turkey in the south-east.

In the case of the balanced scenario (S3), as a general agreement

between MDRs produced based on Maxent and GARP across

climate change emission scenarios, we identified favorable

corridors and a relatively low resistance of the landscape for D.

caspius to disperse to northwestern parts of its range to the Czech

Republic, Slovakia, Poland, and Slovenia, assuming no significant

changes of the human footprint or ecoregion distribution in the

future. Other important areas where D. caspius would have the

possibility to expand its range are Anatolia and the Caucasus

countries, especially Georgia and Azerbaijan. On the other hand,

the models predicted reductions in the northern and eastern parts

of the species’ current range. However, according to our MDRs,

large parts of Ukraine, Romania, and Moldova will be climatically

suitable and accessible by the Caspian whip snake.

Discussion

Although Maxent model had higher partial ROC AUC values,

GARP model performed better in the two other evaluation

methods, omission error (no presences predicted absent) and

herpetologist expert opinion. These results may be a consequence

of the basic differences between GARP and Maxent, as the former

tends to produce models with higher commission error than the

latter, in other words predict suitable broader areas [88], therefore

the herpetologist expert opinion would be in agreement with the

models generated by GARP.

Our models identified several environmental variables that had

high contribution to generating the potential distribution prediction

of D. caspius that recovered the current known range as well as

identified other, geographically adjacent, climatically suitable areas.

As it is the case with all reptiles in general, the Caspian whip snake’s

large-scale distribution is mainly environmentally dependent, due to

its physiological characteristics. Of all 19 variables initially used in

the modeling process, the most important ones that we based our

final models on, and that best explained the environmental

requirements of the species, were four temperature-derived

variables and one precipitation-derived variable. Our findings are

in agreement with the previous research published on this species

that characterized it as xerophilous [66–68]. The species is known to

tolerate high temperatures and long dry periods (up to several

months) [66], but it cannot tolerate low temperatures during winter,

the latter being considered a limiting factor of its distribution,

frequently indicated in the herpetological literature [66–68]. This

limiting factor was represented in our models by two variables, the

mean temperature of coldest quarter and the minimum temperature

of the coldest month, which limited the species’ distribution

northwards of 50u latitude in the Eastern European Plains. The

critical 50u latitude is also indicated in literature as the northernmost

limit of the species’ distribution but here we identify two climate

factors that may explain the observed northern distributional limit.

On the other hand, D. caspius is not able to live in desert and semi-

desert environments and this also was captured by our models

which indicated as limiting factor the mean diurnal range variable

in Near East, Middle East, and Central and Southern Iran due to

the very high temperatures during the warm period, which are

frequent in the area. In contrast, in most of the Mediterranean basin

and Central and Western Europe, D. caspius models had no

limitations, thus probably other, non-climate variables such as

dispersal ability of the species and landscape features play an

important role in shaping its distribution.

The projection of models onto future climatic conditions, for

both algorithms used and both emissions scenarios (the liberal A2a

and the conservative B2a), predicted similar trends in distribu-

tional shifts of the D. caspius. According to these models, as a result

of global warming, suitable climatic conditions for D. caspius will be

present in geographic areas north of its current range, especially in

the Central and Western Europe, but also in the Eastern European

Table 4. Percent of the area predicted accessible for D. caspius of the total projected space in the context of global warming
based on two climate change emission scenarios (A2a and B2a) and the three scenarios of Maximum Dispersal Range (MDR).

Dispersal scenario MDR Future climate scenarios

A2a B2a

S1 Maxent based MDR 20.4 23.27

GARP based MDR 22.35 23.06

S2 Maxent based MDR 20.33 20.81

GARP based MDR 18.72 19.43

S3 Maxent based MDR 30.34 28.12

GARP based MDR 21.73 21.54

doi:10.1371/journal.pone.0091994.t004
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Plains. The latter region, under current conditions, is considered

highly unsuitable in the literature and by our models built on

current climatic data. The projected climate changes may present

the opportunity for D. caspius to migrate to new regions northwards

of the climate-driven 50u latitude barrier.

The global warming process was estimated at a rate of 0.2uC
per decade for the next two decades in most global climate models

[80]. At this accelerated rate of warming, the predicted effects in

most cases are range contractions or, in extreme situations,

complete relocation to a new geographic area where the climate

would become favorable. Studies on the effects of global warming

on reptile species have generally predicted negative consequences

[28–30,95,96]. In contrast, our models generated using Maxent

and GARP show that the climatic space available for D. caspius will

expand geographically, especially beyond the northern distribution

limit.

While expansion is indicated by both algorithms across both

climate change scenarios, this geographic expansion of favorable

climatic conditions for D. caspius does not automatically infer actual

distribution expansion. As numerous studies have shown, while the

distribution of a species seems to be influenced mostly by climatic

conditions at large scales, at finer scales additional factors become

essential [37,82,97,98], such as landscape features, ecological

communities, predator-prey interactions, and anthropogenic pres-

Figure 3. Maximum dispersal range estimates (blue) using Maxent and GARP future potential distributions (A2a – liberal scenario
and B2a – conservative scenario) and three dispersal scenarios (S1 - permissive scenario, S2 - restrictive scenario, S3 - balanced
scenario). The known species’ range is shown in red dotted line.
doi:10.1371/journal.pone.0091994.g003
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sures [99,100]. Moreover, as these factors are responsible for the

existence of a species at local scales, the large-scale distribution of

the species will depend on the existence of favorable climatic

conditions plus the dispersal ability. The MDR analysis performed

here reveals precisely the importance of dispersal: while novel areas

with suitable conditions will arise for D. caspius outside its current

range, its low dispersal ability will impede the colonization of the

distant areas with newly suitable climates. Thus, MDRs are in

agreement with current views regarding the effects of global climate

change on amphibians and reptiles.

Limitations of the Maximum Dispersal Range Analysis
The MDRs developed in this study estimate the dispersal range

by associating a difficulty score to environmental or physical

features that individuals may encounter in their migration paths.

While these simulations too rely on certain assumptions, such as

unchanging human land use patterns and ecological communities,

our opinion is that this method provides additional, essential

information to refine views on the impact of global warming on

species’ distribution.

Using the MDR analysis, we expand our ability to assess the

impacts of global warming on species’ distributions. However, to

use this technique, researchers are expected to have advanced

knowledge regarding the ecology, habitat requirements, and

dispersal potential of the studied species, information that is

crucial to creating the cost raster for the MDR analysis.

Nevertheless, this method cannot be standardized to all species

due to differences in dispersal ability or lack of sufficient

knowledge of a certain species’ ecology. Thus, we recommend

careful selection and prioritization of the parameters for the cost

analysis, on a species by species basis.

Another limitation to the method is the omission of adaptation

capability of individual species. While certain species (e.g., Elaphe

sauromates, Zamenis longissimus) are known for their sensitivity to

environmental changes, especially the human-induced ones

[101,102], other species (e.g., Bufo viridis, Lacerta viridis, Natrix

natrix) exhibit ecological plasticity [103,104]. Thus generating the

MDRs and inferring the results need to be based on knowledge of

the species’ biology.
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thank D. Ş. Măntoiu (Institute of Speleology of the Romanian Academy)

for his advices in using ArcGIS.

Author Contributions

Conceived and designed the experiments: IG TCS MP AS SRZ.

Performed the experiments: IG MP. Analyzed the data: IG TCS MP.

Contributed reagents/materials/analysis tools: MP SRZ. Wrote the paper:

IG TCS MP AS SRZ. Proofread and edit the manuscript: TCS MP IG AS

SRZ. Literature review: TCS IG. Georeferenced the locality data: TCS.

References

1. Peterson AT, Ortega-Huerta MA, Bartley J, Sanchez-Cordero V, Soberon J, et

al. (2002) Future projections for Mexican faunas under global climate change

scenarios. Nature 416: 626–629.

2. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change

impacts across natural systems. Nature 421: 37–42.

3. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, et al. (2003)
Fingerprints of global warming on wild animals and plants. Nature 421: 57–60.

4. Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate
change on a tropical mountain. Nature 398: 611–615.

5. Both C, Visser ME (2005) The effect of climate change on the correlation
between avian life-history traits. Global Change Biology 11: 1606–1613.

6. Winkler DW, Dunn PO, McCulloch CE (2002) Predicting the effects of climate
change on avian life-history traits. Proceedings of the National Academy of

Sciences of the United States of America 99: 13595–13599.

7. Pitelka LF, Gardner RH, Ash J, Berry S, Gitay H, et al. (1997) Plant migration

and climate change. American Scientist 85: 464–473.

8. Pearson RG, Dawson TP (2005) Long-distance plant dispersal and habitat
fragmentation: identifying conservation targets for spatial landscape planning

under climate change. Biological Conservation 123: 389–401.

9. Malcolm JR, Markham A, Neilson RP, Garaci M (2002) Estimated migration

rates under scenarios of global climate change. Journal of Biogeography 29:

835–849.

10. Keith DA, Akcakaya HR, Thuiller W, Midgley GF, Pearson RG, et al. (2008)

Predicting extinction risks under climate change: coupling stochastic population

models with dynamic bioclimatic habitat models. Biology Letters 4: 560–563.

11. Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-

use change on the global diversity of birds. PLoS Biology 5: 1211–1219.

12. Travis JMJ (2003) Climate change and habitat destruction: a deadly
anthropogenic cocktail. Proceedings of the Royal Society B-Biological Sciences

270: 467–473.

13. Colwell RK, Brehm G, Cardelus CL, Gilman AC, Longino JT (2008) Global

warming, elevational range shifts, and lowland biotic attrition in the wet
tropics. Science 322: 258–261.

14. Keith K, Berry KH, Weigand JF (2008) When desert tortoises are rare: Testing
a new protocol for assessing status. California Fish and Game 94: 75–97.

15. McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR (2002) Climate change
hastens population extinctions. Proceedings of the National Academy of

Sciences of the United States of America 99: 6070–6074.

16. Parmesan C (2006) Ecological and evolutionary responses to recent climate

change. Annual Review of Ecology Evolution and Systematics 37: 637–669.

17. Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville TD, et al. (2000)

The global decline of reptiles, Deja Vu amphibians. Bioscience 50: 653–666.

18. Driscoll DA (2004) Extinction and outbreaks accompany fragmentation of a

reptile community. Ecological Applications 14: 220–240.

Climate Change and Snakes Dispersal Ability

PLOS ONE | www.plosone.org 10 March 2014 | Volume 9 | Issue 3 | e91994



19. Foufopoulos J, Kilpatrick AM, Ives AR (2011) Climate Change and Elevated

Extinction Rates of Reptiles from Mediterranean Islands. American Naturalist

177: 119–129.

20. Jaggi C, Baur B (1999) Overgrowing forest as a possible cause for the local

extinction of Vipera aspis in the northern Swiss Jura mountains. Amphibia-

Reptilia 20: 25–34.

21. Richman AD, Case TJ, Schwaner TD (1988) Natural and Unnatural

Extinction Rates of Reptiles on Islands. American Naturalist 131: 611–630.

22. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, et al. (2012)

Emerging fungal threats to animal, plant and ecosystem health. Nature 484:

186–194.

23. Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, et al.

(2006) Widespread amphibian extinctions from epidemic disease driven by

global warming. Nature 439: 161–167.

24. Kiesecker JM, Blaustein AR, Belden LK (2001) Complex causes of amphibian

population declines. Nature 410: 681–684.

25. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, et al. (2004)

Status and trends of amphibian declines and extinctions worldwide. Science

306: 1783–1786.

26. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, et al. (2002)

Ecology - Climate warming and disease risks for terrestrial and marine biota.

Science 296: 2158–2162.

27. Hof C, Araujo MB, Jetz W, Rahbek C (2011) Additive threats from pathogens,

climate and land-use change for global amphibian diversity. Nature 480: 516–

U137.

28. Sinervo B, Mendez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, et al. (2010)

Erosion of Lizard Diversity by Climate Change and Altered Thermal Niches.

Science 328: 894–899.

29. Ihlow F, Dambach J, Engler JO, Flecks M, Hartmann T, et al. (2012) On the

brink of extinction? How climate change may affect global chelonian species

richness and distribution. Global Change Biology 18: 1520–1530.

30. Reading CJ, Luiselli LM, Akani GC, Bonnet X, Amori G, et al. (2010) Are

snake populations in widespread decline? Biology Letters 6: 777–780.

31. Nix HA (1986) A biogeographic analysis of Australian elapid snakes. In:

Longmore R, editor. Atlas of elapid snakes of Australia. Canberra: Australian

Government Publishing Service. 4–15.

32. Stockwell D, Peters D (1999) The GARP modelling system: problems and

solutions to automated spatial prediction. International Journal of Geograph-

ical Information Science 13: 143–158.

33. Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor

analysis: how to compute habitat-suitability maps without absence data?

Ecology 83: 2027–2036.

34. Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of

species geographic distributions. Ecological Modelling 190: 231–259.

35. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on

the distribution of species: are bioclimate envelope models useful? Global

Ecology and Biogeography 12: 361–371.

36. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of

species geographic distributions. Ecological Modelling 190: 231–259.

37. Elith J, Leathwick JR (2009) Species Distribution Models: Ecological

Explanation and Prediction Across Space and Time. Annual Review of

Ecology Evolution and Systematics 40: 677–697.

38. Bombi P, Salvi D, Vignoli L, Bologna MA (2009) Modelling Bedriaga’s rock

lizard distribution in Sardinia: An ensemble approach. Amphibia-Reptilia 30:

413–424.

39. DeMatteo KE, Loiselle BA (2008) New data on the status and distribution of

the bush dog (Speothos venaticus): Evaluating its quality of protection and

directing research efforts. Biological Conservation 141: 2494–2505.
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