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Abstract: To further advance the performance and safety of autonomous mobile robots (AMRs),
an integrated chassis control framework is proposed. In the longitudinal motion control module,
a velocity-tracking controller was designed with the integrated feedforward and feedback control
algorithm. Besides, the nonlinear model predictive control (NMPC) method was applied to the
four-wheel steering (4WS) path-tracking controller design. To deal with the failure of key actuators,
an active fault-tolerant control (AFTC) algorithm was designed by reallocating the driving or braking
torques of the remaining normal actuators, and the weighted least squares (WLS) method was used
for torque reallocation. The simulation results show that AMRs can advance driving stability and
braking safety in the braking failure condition with the utilization of AFTC and recapture the braking
energy during decelerations.

Keywords: autonomous mobile robot; motion control; nonlinear model predictive control; active
fault-tolerant control; regenerative braking

1. Introduction

Compared with the traditional automated guided vehicles (AGVs), autonomous
mobile robots (AMRs) have higher flexibility and intelligence, representing a more so-
phisticated, flexible, and cost-effective technology, in favor of smart manufacturing, smart
factory, and intelligent logistics [1]. AMRs are usually equipped with multiple actuators for
steering, drive and brake. Therefore, AMR is an over-actuated system since each wheel
can provide independent traction force [2]. It is a critical issue to realize the coordinated
control between multiple actuators [3,4].

In recent years, different kinds of advance control methods have been applied to the
motion control of robots, including optimal control [5], model predictive control (MPC) [6],
Reinforcement Learning (RL)-based control approach [7], adaptive neural network [8], and
neuroadaptive learning algorithms [9]. The chassis control of AMR usually consists of
longitudinal motion control and lateral motion control [10]. Longitudinal motion control is
associated with the drive and brake actuators, e.g., in-wheel motors (IWMs) and electro-
mechanical brake (EMB) systems. In longitudinal motion control of AMRs, velocity-tracking
control is in favor of the autonomous driving [11]. In [12], a parameter-varying controller
was designed for velocity tracking, which showed high robustness. In [13], the MPC
method was used for velocity-tracking controller design, which could recover the braking
energy with brake torque allocation. In [14], an adaptive sliding mode control (ASMC)
algorithm using Radial Basis Function (RBF) neural network was applied to the velocity-
tracking controller design, which could deal with external disturbances. Besides, Antilock
Braking System (ABS), Acceleration Slip Regulation (ASR), and traction control have also
been widely studied in longitudinal motion control for AMRs [15–17]. In the lateral motion
control of AMRs, path-tracking is the main task for autonomous driving [18]. In [19], a
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linear quadratic regulator (LQR) technique was used for the four-wheel steering (4WS)
path-tracking controller design. However, it showed poor robustness in dealing with
uncertainties and disturbances. To reduce the effect of uncertainties in vehicle parameters,
a robust path-tracking controller was designed with a µ-synthesis approach [20]. The MPC
approach has been widely used in the path-tracking control of AMRs [21]. In [22], an
adaptive path-tracking strategy was proposed based on MPC and fuzzy rules, which could
guarantee vehicle stability under high-speed and large-curvature conditions. In [23], a
Tube-based MPC method was applied to the path-tracking controller design, which showed
strong robustness to address uncertainties and disturbances. In [24], an iterative learning
control (ILC) method was used for the path-tracking control of AMR, which could improve
the path-tracking performance significantly.

To deal with the failure of actuators, a fault-tolerant control has been widely stud-
ied [25–27]. In [28], a synthesis method was applied to the reconfigurable fault-tolerant
control system, which could deal with the failure of steering actuators. With the driv-
ing force allocation control method, the vehicle can reconstruct the distribution control
strategy on-line under fault conditions, realizing active fault tolerance [29]. In [30], the
linear-quadratic control method and the control Lyapunov function technique were used to
design the hybrid fault-tolerant control algorithm for the four-wheel-driving vehicle, which
can address the actuator failure in the path-tracking process. In [31], a robust fault-tolerant
control scheme was designed for distributed actuated electric vehicles, which integrated
cooperative game and terminal sliding mode control (SMC) into the framework of the
feedback linearization method (FLM). In [32], a fault tolerant sliding mode predictive
control (SMPC) strategy was proposed to address the actuator failure, in which SMC was
used to improve the robustness of the MPC in the presence of modeling uncertainties and
disturbances. In [33], a novel quantized SMC strategy based on switching mechanism
was proposed to compensate for actuator failure effects. In [34], the minimax MPC in the
delta-domain was deployed to achieve the tracking performance under the actuator fault,
system uncertainties, and disturbance.

Most studies only consider the failure of one actuator, which cannot cover all failure
conditions. In this research, all kinds of failure conditions of IWMs were studied. Besides,
few studies consider the regenerative braking and actuator failure in the motion control
process of AMR at the same time. The contributions of this research are summarized as
follow: (1) To deal with the system nonlinearity and external disturbances, an integrated
feedforward and feedback control algorithm was designed for longitudinal motion control
of AMR; (2) To realize the collaborative steering of 4WS, the nonlinear model predictive
control (NMPC) method was applied to the path-tracking controller design; (3) To address
the braking failure of actuators, an active fault-tolerant control (AFTC) algorithm was
designed for AMR by redistributing the braking torques of the rest normal actuators.

The rest of this paper is organized as follows. Section 2 gives the problem description
and control framework for AMR. The modelling work for control algorithm design is
described in Section 3. Section 4 presents the control algorithm design for AMR. Then, the
simulation tests are described in Section 5. Finally, Section 6 provide some conclusions and
suggests future work.

2. Problem Description and Control Framework
2.1. Control Problem Description for AMR

To realize autonomous driving, the motion control for AMR mainly consists of longi-
tudinal motion control and lateral motion control. Lateral motion control is reflected by the
path-tracking issue. Longitudinal motion control is related to the drive and brake control,
which is a critical issue in this study.

IWMs are the key components for AMR. On one hand, in-wheel motors can be used
to drive the AMR. On the other hand, regenerative braking can be realized with in-wheel
motors, recovering the braking energy. AMR is usually equipped with four in-wheel motors
for independent drive, and four EMB systems for independent braking. Due to so many
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actuators, the reliability of the system is decreased. Therefore, safety is a critical issue for
AMR. In the braking process, if braking failure of actuators occurs, this reduces safety. To
maximize regenerative braking energy, IWMs have higher braking priority than EMBs.
EMBs are usually used to compensate the rest braking force. Therefore, we mainly discuss
the braking failure of IWMs in this paper.

Figure 1 shows the braking failure conditions of IWMs divided into five types, i.e.,
failure of one IWM, failure of two IWMs on two sides, failure of two IWMs on the same
side, failure of three IWMs, and failure of four IWMs. In this paper, the AFTC algorithm is
proposed to deal with all kinds of braking failure of IWMs.
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Figure 1. Braking failure of in-wheel motors: (a) Failure of one in-wheel motor; (b) failure of two
in-wheel motors on two sides; (c) failure of two in-wheel motors on the same side; (d) failure of three
in-wheel motors; (e) failure of four in-wheel motors.

2.2. Chassis Control Framework for AMR

The chassis control framework for AMR is illustrated in Figure 2, which mainly
consists of longitudinal motion control and lateral motion control, i.e., the velocity-tracking
control and the path-tracking control. In the path-tracking control module, NMPC is
applied to the controller design. Based on the target path and the feedbacked vehicle
state, the path-tracking controller outputs the front and rear wheel steering angels. In the
velocity-tracking control module, an integrated feedforward and feedback controller is
designed. To deal with the braking failure of IWMs, an AFTC module is designed after the
velocity-tracking controller. With the torque redistribution of IWMs and EMBs, the AFTC
algorithm is able to maximize the regenerative braking energy and guarantee safety at the
same time.
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3. Modelling
3.1. Vehicle Dynamic Model

Some assumptions are made in this paper. First, only seven degrees of freedom are
considered for the vehicle dynamic model, i.e., longitudinal motion, lateral motion, yaw
motion of the vehicle and the four wheels’ motion. Pitch motion, roll motion, and vertical
motion of AMR are ignored. Drive anti-skid control is not considered in the longitudinal
motion control strategy. This paper mainly focuses on the velocity-tracking control and
braking control. Additionally, the longitudinal acceleration of the wheel center is considered
equal to the longitudinal acceleration of the AMR at CG.

The longitudinal dynamic model is derived as follows [35].

m
( .
vx − vyr

)
= Fx − Fw − Ff (1)

Fx = Fx f l cos δ f l + Fx f r cos δ f r + Fxrl cos δrl + Fxrr cos δrr (2)

Fw = CD Aρv2
x/2 (3)

Ff = frmg (4)

where vx and vy denote the longitudinal and lateral velocities, r denotes the yaw rate at the
center of gravity (CG), Fx denotes the total longitudinal tire force acting on the vehicle. Fw
and Ff denote the wind resistance and the rolling resistance, respectively. m denotes the
vehicle mass, δi (i = fl, fr, rl, rr) denotes the steering angle of each wheel (fl denotes the front
left wheel, fr denotes the front right wheel, rl denotes the rear left wheel, and rr denotes the
rear right wheel). Fxi (i = fl, fr, rl, rr) denotes the longitudinal force of each tire, CD, A and ρ
denote the air resistance coefficient, windward area and air density, respectively., and fr
and g denote the rolling resistance coefficient and the gravitational acceleration.

The lateral dynamic model is expressed by [36]

m
( .
vy + vxr

)
= Fy (5)

Fy = Fy f l cos δ f l + Fy f r cos δ f r + Fyrl cos δrl + Fyrr cos δrr (6)

where Fy denotes the total lateral tire force acting on the vehicle. Fyi (i = fl, fr, rl, rr) denotes
the lateral force of each tire, which is expressed with the Dugoff tire model [37].

The yaw dynamic model is written according to [38]

Iz
.
r = Mz (7)

Mz = (Fy f l cos δ f l + Fy f r cos δ f r)l f − (Fyrl cos δrl + Fyrr cos δrr)lr + ∆Mz (8)

where Mz denotes the total yaw moment acting on the vehicle, Iz denotes the yaw inertia
moment, l f denotes the distance from the front axle to CG, and lr denotes the distance
from the rear axle to CG. ∆Mz is the external yaw moment, which is created by the torque
difference between left and right wheels.

∆Mz = [−Fx f l cos δ f l + Fx f r cos δ f r − Fxrl cos δrl + Fxrr cos δrr]
B
2

(9)

where B denotes the vehicle track.
Additionally, the dynamic model of each wheel is derived by

Iw
.

ωi = Ti − FxiRw (10)

where Ti denotes the wheel torque, Ti = Tdi − Tbi, Tdi and Tbi denote the drive and brake
torques, respectively, ωi and Rw denote the angular velocity of each wheel and the rolling
radius of the tire, respectively, and Iw denotes the wheel moment of inertia.
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3.2. Path-Tracking Model

As Figure 3 shows, the 4-wheel vehicle model is usually simplified to be a single-track
model to simplify the controller design [39]. The steering angle transformation relationship
between the two models follows the Ackerman steering geometry [40].

tan δ f l =
tan δ f

1− B
2l (tan δ f−tan δr)

, tan δ f r =
tan δ f

1+ B
2l (tan δ f−tan δr)

tan δrl =
tan δr

1− B
2l (tan δ f−tan δr)

, tan δrr =
tan δr

1+ B
2l (tan δ f−tan δr)

(11)

where δ f and δr denote the front and rear steering angles, and l denotes the distance from
the front axle to the rear axle.
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The yaw angel ϕ and lateral position Y of AMR at CG are expressed as{ .
ϕ = r
.

Y = vx sin ϕ + vy cos ϕ
(12)

A combination of (5), (7), (11) and (12) yields the following path-tracking model for AMR.

.
x(t) = f (x(t), u(t))
y(t) = g(x(t), u(t))

(13)

f (x(t), u(t)) =


−vxr + ∑ Fy

m
∑ Mz

Iz
r

vx sin ϕ + vy cos ϕ

 (14)

g(x(t), u(t)) =
[

0 0 1 0
0 0 0 1

]
x(t) (15)

where the state vector x =
[
vy, r, ϕ, Y

]T , the output vector y = [ ϕ, Y]T , and the control
vector u = [δ f , δr]T .

4. Control Algorithm Design
4.1. Velocity-Tracking Control Algorithm

For velocity-tracking controller design, (1) is rewritten as follows.

m
.
vx = Fx − Fw − Ff + Fc (16)
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where Fc = mvyr.
After Taylor expansion of (2) regarding cos δi :

Fx = Fx f l + Fx f r + Fxrl + Fxrr + Fd (17)

where higher-order terms are placed in Fd.
Then, the simplified longitudinal dynamic model can be expressed as

m
.
vx = Fx f l + Fx f r + Fxrl + Fxrr − Fw − Ff + Fc + Fd (18)

Based on the wheel dynamic model (10), it can be derived that

Fxi =
Ti − Iwi

.
vxi/Rw

Rw
(i = f l, f r, rl, rr) (19)

Substitution of (19) into (18) yields(
m +

∑ Iwi
R2

w

)
.
vx =

∑ Ti
Rw
− Fw − Ff + Fc + Fd (20)

The total torque of four wheels ∑ Ti is defined as the longitudinal control vector, which
is made up of the feedforward and feedback controllers, i.e.,

∑ Ti = u f f + u f b (21)

According to the model (20), the feedforward controller is derived as follows.

u f f =

(
mRw +

∑ Iwi
Rw

)
.
v∗x + (Fw + Ff − Fc)Rw (22)

where v∗x denotes the target velocity. The feedforward controller is mainly used to compen-
sate the control error caused by the nonlinearity of the system.

Substitution of (22) into (20) yields(
m +

∑ Iwi
R2

w

)
.
evx =

u f b

Rw
+ Fd (23)

where evx denotes the velocity tracking error, i.e., evx = vx − v∗x.
The feedback controller is designed by PID. Furthermore, defining the state vector

xl = [
∫ t

0 evx dτ, evx ,
.
evx ]

T
, control vector ul = [u f b,

.
u f b]

T , disturbance vector dl = [Fd,
.
Fd]

T ,
then, (23) can be written in the state-space form.

.
xl = Al xl + Blul + Eldl
yl = Cl xl

(24)

where Al =

 0 1 0
0 0 0
0 0 0

, Bl =

 0 0
Bs 0
0 Bs

, Cl =
[

0 1 0
]
, El =

 0 0
Es 0
0 Es

,

Bs =
Rw

mR2
w+∑ Iwi

, and Es =
R2

w
mR2

w+∑ Iwi
.

To solve the feedback PID controller, the following performance index function is constructed:

JPID =
∫ ∞

0

(
yT

l Qlyl + uT
l Rlul

)
dt (25)

where Ql and Rl are weighting matrix, Ql = 103, Rl = I2×2.
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Furthermore, the solution problem of the feedback PID controller can be transformed
into the minimization of the performance index function, i.e.,

min JPID(K) (26)

Finally, the linear-quadratic optimization approach is used to solve the feedback PID
controller [41,42].

4.2. Path-Tracking Control Algorithm

For the path-tracking controller design, the path-tracking model (13) is expressed in
the discreate state-space form as follows.

x(k + 1) = F(x(k), u(k))
y(k) = G(x(k), u(k))

(27)

where F(x(k), u(k)) = x(k) + T f (x(k), u(k)), G(x(k), u(k)) = g(x(k), u(k)), T denotes the
sampling time, and T = 0.02s.

Based on the discreate model (27), NMPC is applied to the path-tracking controller
design. The prediction horizon and the control horizon are defined by Np and Nc, Np ≥ Nc.
Np = 10, and Nc = 5. Then, the predictive outputs are derived as follows.

y(k + 1) = G(x(k + 1), u(k + 1))
y(k + 2) = G(x(k + 2), u(k + 2))

...
y(k + Nc) = G(x(k + Nc), u(k + Nc))

y(k + Nc + 1) = G(x(k + Nc + 1), u(k + Nc))
...

y
(
k + Np

)
= G

(
x
(
k + Np

)
, u(k + Nc)

)
(28)

Based on (28), this yields the output sequence as follows.

y(k + 1) =
[
y(k + 1), y(k + 2), · · · , y

(
k + Np

)]T (29)

Besides, the reference output sequence is expressed by

ŷ(k + 1) =
[
ŷ(k + 1), ŷ(k + 2), · · · , ŷ

(
k + Np

)]T (30)

where ŷ(k + p) = [ϕ∗(k + p), Y∗(k + p)]T , p = 1, · · · , Np, ϕ∗(k + p) and Y∗(k + p) denote
the reference values of yaw angle and lateral position.

Moreover, the control sequence is expressed as follows.

u(k + 1) = [u(k + 1), u(k + 2), · · · , u(k + Nc)]
T (31)

The proposed path tracking controller aims to minimize the tracking error
‖y(k + 1)− ŷ(k + 1)‖2 with the smallest control energy ‖u(k + 1)‖2. Furthermore, the
following cost function is constructed.

J(k) =
Np

∑
i=1

[y(k + i|k)− ŷ(k + i|k)]TQ[y(k + i|k)− ŷ(k + i|k)]

+
Nc−1

∑
i=0

[u(k + i|k)]T R[u(k + i|k)]
(32)

where Q and R arediagonalweightingmatrices, Q = diag
{

8× 103, 104}, R = diag
{

5× 105, 106}.
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Finally, the NMPC path-tracking controller can be solved with the following optimization.

min
u(k)

J(k)

s.t.
x(k + i|k) = F(x(k + i− 1|k), u(k + i− 1|k))
umin ≤ u(k + i|k) ≤ umax

(33)

4.3. Active Fault-Tolerant Control Algorithm

In this section, we only discuss the braking failure of IWMs. If IWMs have failure
in the driving process, the AFTC mechanism is triggered immediately. After that, the
AMR starts braking to guarantee safety. Therefore, we do not discuss the driving failure of
IWMs independently.

Since the total torque of four wheels ∑ Ti has been worked out based on Section 4.1., it
yields that

∑ Ti = T IWMs + TEMBs (34)

where T IWMs and TEMBs denote the total torques of four IWMs and four EMBs, respectively,
i.e., T IWMs = T IWM

f l + T IWM
f r + T IWM

rl + T IWM
rr , TEMBs = TEMB

f l + TEMB
f r + TEMB

rl + TEMB
rr .

Besides, the external yaw moment is generated by IWMs and EMBs, i.e.,

∆Mz = ∆MIWMs
z + ∆MEMBs

z (35)

where ∆MIWMs
z and ∆MEMBs

z denote the external yaw moment generated by IWMs and
EMBs, respectively.

To guarantee yaw stability, ∆Mz = 0. The following work aims to distribute the torque
for each IWM and EMB based on (34) and (35). Figure 4 shows the AFTC flowchart to deal
with all kinds of braking failure of IWMs.
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Figure 4. AFTC flowchart for all kinds of braking failure of IWMs.

To maximize the regenerative braking energy, IWMs has higher braking priority than
EMBs. Therefore, the first step is to determine if

∣∣Fx
∣∣≤ FIWM

xmax , FIWM
xmax denotes the braking

force boundaries of all normal IWMs, which is related to the failure number of IWM, i.e., i
in Figure 4. If

∣∣Fx
∣∣≤ FIWM

xmax , FIWM
x = Fx, else FIWM

x = FIWM
xmax and EMBs will compensate the

rest braking force, i.e., FEMB
x = Fx − FIWM

x , where FIWM
x and FEMB

x denote the total braking
force of four IWMs and four EMBs.
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Since ∆MIWM
z cannot be zero under some failure conditions, e.g., failure of two IWMs

on the same side and failure of three IWMs, the generated −∆MIWM
z will be compensated

by ∆MEMB
z .

Once FIWM
x , FEMB

x , ∆MIWM
z and ∆MEMB

z are determined, the torque distribution
algorithm will work to work out T IWM

f l , T IWM
f r , T IWM

rl , T IWM
rr , TEMB

f l , TEMB
f r , TEMB

rl , TEMB
rr .

FIWM
x and FEMB

x can be derived from T IWM and TEMB based on (19).
For IWMs, the following torque distribution model is derived.

ΛIWM = ηIWMΘIWM (36)

ηIWM =

[
1 1 1 1
− B

Rw
B

Rw
− B

Rw
B

Rw

]
λ (37)

λ =


λ f l 0 0 0
0 λ f r 0 0
0 0 λrl 0
0 0 0 λrr

 (38)

λi =

{
1, normal
0, failure of IWMi

(i = f l, f r, rl, rr) (39)

where ΛIWM =
[
T IWM, ∆MIWM

z
]T and ΘIWM =

[
T IWM

f l , T IWM
f r , T IWM

rl , T IWM
rr

]T
.

Based on (36), the weighted least squares (WLS) method is used to distribute the
torques of IWMs. The cost function for IWM torque distribution is constructed as follows.

ΨIWM = ρIWM‖ω IWM
Λ

(
ηIWMΘIWM −ΛIWM

)
‖

2

2
+ ‖ω IWM

Θ

(
ΘIWM −ΘIWM

d

)
‖

2

2
s.t. ΘIWM

min ≤ ΘIWM ≤ ΘIWM
max

(40)

where ρIWM denotes the weighting coefficient, which is usually set very large to mini-
mize the torque distribution error, ρIWM = 106. ΘIWM

d denotes the desired control vector,
ΘIWM

d = [0, 0, 0, 0]T . ΘIWM
min and ΘIWM

max denote the minimum and maximum control
boundaries of ΘIWM, which is shown in Figure 5. ω IWM

Λ and ω IWM
Θ denote the weight-

ing matrices. In this paper, T IWM and ∆MIWM
z have the same allocation weights, i.e.,

ω IWM
Λ = diag [1, 1], T IWM

i (i = f l, f r, rl, rr) and Fzi are positively correlated, where Fzi

denotes the vertical load of each wheel. Thus, ω IWM
Θ = diag

[
1

Fz f l
, 1

Fz f r
, 1

Fzrl
, 1

Fzrr

]
.
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Furthermore, (40) is rewritten as

ΨIWM =

∥∥∥∥∥∥∥∥∥∥
[ (

ρIWM)1/2
ω IWM

Λ ηIWM

ω IWM
Θ

]
︸ ︷︷ ︸

AIWM

ΘIWM −
[ (

ρIWM)1/2
ω IWM

Θ ΛIWM

ω IWM
Θ ΘIWM

d

]
︸ ︷︷ ︸

BIWM

∥∥∥∥∥∥∥∥∥∥

2

2

(41)

Then, the WLS method for IWMs torque distribution is described as follows.

min
ΘIWM

‖AIWMΘIWM − BIWM‖2
2

s.t. ΘIWM
min ≤ ΘIWM ≤ ΘIWM

max

(42)

Based on (42), the torques for four IWMs, i.e., T IWM
f l , T IWM

f r , T IWM
rl , T IWM

rr , can be
worked out.

For EMBs, the following torque distribution model is derived.

ΛEMB = ηEMBΘEMB (43)

ηEMB =

[
1 1 1 1
− B

Rw
B

Rw
− B

Rw
B

Rw

]
(44)

where ΛEMB =
[
TEMB, ∆MEMB

z
]T and ΘEMB =

[
TEMB

f l , TEMB
f r , TEMB

rl , TEMB
rr

]T
.

Based on (43), the cost function for EMBs torque distribution is derived as follows.

ΨEMB = ρEMB‖ωEMB
Λ

(
ηEMBΘEMB −ΛEMB

)
‖

2

2
+ ‖ωEMB

Θ

(
ΘEMB −ΘEMB

d

)
‖

2

2
s.t. ΘEMB

min ≤ ΘEMB ≤ ΘEMB
max

(45)

where ρEMB denotes the weighting coefficient, which is usually set very large to mini-
mize the torque distribution error, ρEMB = 106, ΘEMB

d denotes the desired control vector,
ΘEMB

d = [0, 0, 0, 0]T , ΘEMB
min and ΘEMB

max denote the minimum and maximum control bound-
aries of ΘEMB, ΘEMB

min = −200, ΘEMB
max = 0, ωEMB

Λ and ωEMB
Θ denote the weighting matrices,

ωEMB
Λ = diag [1, 1], ωEMB

Θ = diag
[

1
Fz f l

, 1
Fz f r

, 1
Fzrl

, 1
Fzrr

]
.

Furthermore, (45) is rewritten as

ΨEMB =

∥∥∥∥∥∥∥∥∥∥
[ (

ρEMB)1/2
ωEMB

Λ ηEMB

ωEMB
Θ

]
︸ ︷︷ ︸

AEMB

ΘEMB −
[ (

ρEMB)1/2
ωEMB

Θ ΛEMB

ωEMB
Θ ΘEMB

d

]
︸ ︷︷ ︸

BEMB

∥∥∥∥∥∥∥∥∥∥

2

2

(46)

Then, the WLS method for EMB torque distribution is derived as follows.

min
ΘEMB
‖AEMBΘEMB − BEMB‖2

2

s.t. ΘEMB
min ≤ ΘEMB ≤ ΘEMB

max

(47)

Based on (47), the torques for four IWMs, i.e., TEMB
f l , TEMB

f r , TEMB
rl , TEMB

rr , can be
worked out.

5. Simulation Results and Analysis

Three simulation cases were designed and carried out via the co-simulation platform
based on Carsim and Simulink as shown in Figure 6. Figure 6a shows the Simulink
algorithm structure in the co-simulation platform, including the path-tracking control
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algorithm, longitudinal velocity-tracking control algorithm and the AFTC algorithm. All
the control algorithms were carried out in the Simulink software. The real AMR model was
built in Carsim software. With the co-simulation of Carsim and Simulink, the effectiveness
and feasibility of the proposed algorithm were verified. Figure 6b shows the simulation
scenario in Carsim.
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5.1. Simulation Case 1

In this case, a straight-line braking condition was carried out. The AMR accelerated to
15 m/s and then started to brake after the 10th second. Three kinds of braking modes were
compared in this case, i.e., regenerative braking (IWM), mechanical braking (EMB) and
hybrid braking (IWM + EMB). The three kinds of braking modes were realized based on
the same AMR with the parameters in Table 1 and the same simulation platform in Figure 6.
The same velocity-tracking control algorithm and path-tracking control algorithm were
utilized. In this case, braking failure was not considered.
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Table 1. AMR parameters for simulation.

Parameters Value Parameters Value

m (kg) 431 l f (m) 0.829
CD 0.28 lr (m) 0.705

A (m2) 0.97 l (m) 1.534
ρ (kg/m3) 1.2258 B (m) 0.97

fr 0.008 Iw (kg·m2) 0.67
Iz (kg·m2) 217 Rw (m) 0.298

The path lengths of AMR with different kinds of braking modes are illustrated in
Figure 7. It was found that regenerative braking had the longest braking distance. The
second was mechanical braking, and the shortest was hybrid braking. A detailed analysis is
shown in Table 1. The braking distances for the three kinds of braking modes were 42.74 m,
33.15 m, 27.33 m, respectively, and the braking times for the three kinds of braking modes
were 4.04 s, 3.09 s, 2.32 s, respectively. Figure 8 shows the velocities of AMR with different
kinds of braking modes. Hybrid braking showed the largest deceleration among the three
kinds of braking modes. It can be concluded that hybrid braking can shorten the braking
distance and braking time remarkably, improving braking safety.
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Regenerative braking powers with different kinds of braking modes are depicted in
Figure 9. Mechanical braking cannot recover braking energy. Regenerative braking has
larger regenerative braking power than hybrid braking. As shown in Table 2 regenerative
braking energies for regenerative braking, mechanical braking, and hybrid braking were
6.10× 104 J, 0 J, and 3.29× 104 J, respectively. Due to the application of EMB in hybrid
braking, the hybrid braking mode had smaller regenerative braking energy than the
regenerative braking mode.
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Table 2. Comparative studies of three braking modes in Case 1.

Regenerative Braking Mechanical Braking Hybrid Braking

Braking distance (m) 42.74 33.15 27.33
Braking time (s) 4.04 3.09 2.32

Regenerative energy (J) 6.10× 104 0 3.29× 104

The wheel torques of AMR for three kinds of braking modes are displayed in Figures 10–12,
respectively. In the regenerative braking mode, only IWMs worked, in charge of both
drive and control. In the mechanical braking mode, IWMs were only used for drive,
and EMBs were used for braking. Therefore, the torques of IWMs changed to zero after
10th second. In the hybrid braking mode, both IWMs and EMBs were used for braking.
EMBs could compensate the rest braking force for IWMs, shortening the braking time and
braking distance.
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From the above simulation results, it can be seen that the regenerative braking mode
was beneficial to braking energy recovery. However, it led to longer braking distance,
which reduces braking safety. The mechanical braking mode could shorten the braking
distance but not recover the braking energy. In general, the hybrid braking mode had the
advantages of the above two kinds of braking modes, i.e., maximizing the regenerative
braking efficiency and advancing the braking safety.

5.2. Simulation Case 2

This case aimed to validate the AFTC algorithm for the AMR on a curved road; the
hybrid braking mode was used. The AMR accelerated to 20 m/s and then started to brake
after the 12th second. However, failure of the FL IWM occurred at the 10th second and
failure of the RL IWM at the 12th second.

Figure 13 shows the path-tracking results of AMR under three kinds of conditions,
i.e., normal (no failure), failure (without AFTC), and AFTC. It can be seen from Figure 13b
that without AFTC, the AMR departed from its target path after braking failure, showing
a large lateral offset. With AFTC, the AMR could realize lane-keeping after the braking
failure and brake safely until stopped, as in the normal condition. The steering angles of
AMR are illustrated in Figure 14. After the braking failure of IWMs, the AMR showed very
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large steering angles to realize lane-keeping when without AFTC. However, with AFTC,
the AMR could use torque redistribution to guarantee brake safety and lateral stability.
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The velocities of AMR under three kinds of conditions are depicted in Figure 15. Due
to the loss of stability, the simulation was stopped at the 12.6 s when without AFTC. The
AMR could not finish the braking process after the braking failure of the IWMs. With AFTC,
the AMR could realize safe braking as in the normal condition.
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The regenerative braking results are shown in Figure 16 and Table 3. In spite of the
braking failure, the AFTC algorithm could help the AMR recover the braking energy up to
3.43× 104 J. Due to the braking failure of FL and RL IWMs, the recovered braking energy
was smaller than in the normal condition.
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Figure 16. Regenerative braking power of AMR in Case 2.

Table 3. Regenerative braking energy of AMR in Case 2.

Normal Failure AFTC

Regenerative energy (J) 6.85× 104 7.67× 103 3.43× 104

The wheel torques of AMR with failure and with AFTC are illustrated in Figures 17 and 18,
respectively. Due to the failure of FL and RL IWMs, the torques of the two IWMs changed
to zero after the 10th second and the 12th second, respectively. Without AFTC, the AMR
could not adjust its torque distribution to guarantee lateral stability. However, with AFTC,
the EMBs redistributed the brake torque to compensate the braking force and overcome the
external yaw moment caused by the braking failure of IWMs (Figure 18a,b).
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5.3. Simulation Case 3

In this case, the braking failure condition of three IWMs was studied, further validating
the effectiveness of the AFTC algorithm. The AMR accelerated to 20 m/s and then started
to brake after the 12th second. However, the FL IWM had a failure at the 10th second, and
the RL and RR IWMs had a braking failure at the 12th second.

The path-tracking results of the AMR in this case are illustrated in Figure 19. This was
similar to Case 2 in that without AFTC, the AMR departed from its original trajectory and
lost stability after the braking failure of the IWMs. Moreover, the lateral offset was larger
than that in Case 2. In spite of the increased failure numbers of IWMs, AFTC can help the
AMR realize lane-keeping and safe braking. Figure 20 shows the steering angels of the
AMR. It was found that the AMR had very large steering angles after the braking failure
of IWMs, reaching the control boundaries. Despite this, the AMR could not guarantee
stability and braking safety.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 22 
 

 

 
(a) 

  
(b) (c) 

Figure 18. Wheel torques of AMR with AFTC in Case 2: (a) IWM; (b) EMB; (c) sum. 

5.3. Simulation Case 3 

In this case, the braking failure condition of three IWMs was studied, further validat-

ing the effectiveness of the AFTC algorithm. The AMR accelerated to 20 m/s and then 

started to brake after the 12th second. However, the FL IWM had a failure at the 10th 

second, and the RL and RR IWMs had a braking failure at the 12th second. 

The path-tracking results of the AMR in this case are illustrated in Figure 19. This 

was similar to Case 2 in that without AFTC, the AMR departed from its original trajectory 

and lost stability after the braking failure of the IWMs. Moreover, the lateral offset was 

larger than that in Case 2. In spite of the increased failure numbers of IWMs, AFTC can 

help the AMR realize lane-keeping and safe braking. Figure 20 shows the steering angels 

of the AMR. It was found that the AMR had very large steering angles after the braking 

failure of IWMs, reaching the control boundaries. Despite this, the AMR could not guar-

antee stability and braking safety. 

 
(a) 

Figure 19. Cont.



Sensors 2022, 22, 3939 18 of 22
Sensors 2022, 22, x FOR PEER REVIEW 18 of 22 
 

 

 
(b) 

Figure 19. Path-tracking result of AMR in Case 3: (a) moving trajectories; (b) lateral offset. 

  
(a) (b) 

Figure 20. Steering angles of AMR in Case 3: (a) braking failure; (b) AFTC. 

Figure 21 shows the velocities of AMR under different conditions. Under the failure 

condition, the simulation was stopped at the 14.1 s due to the loss of stability of the AMR. 

However, the AFTC algorithm could help AMR address the braking failure of IWMs and 

finish the braking process safely. 

 

Figure 21. Velocity of AMR in Case 3. 

The regenerative braking results of AMR are shown in Figure 22 and Table 4. In spite 

of the braking failure of three IWMs, the AFTC algorithm could help AMR recover brak-

ing energy up to −1.72 × 104 J using the normal IWM. 

Table 4. Regenerative braking energy of AMR in Case 3. 

 Normal Failure AFTC 

Regenerative energy (J)   6.84 × 104 1.14 × 104 1.72 × 104 

Figure 19. Path-tracking result of AMR in Case 3: (a) moving trajectories; (b) lateral offset.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 22 
 

 

 
(b) 

Figure 19. Path-tracking result of AMR in Case 3: (a) moving trajectories; (b) lateral offset. 

  
(a) (b) 

Figure 20. Steering angles of AMR in Case 3: (a) braking failure; (b) AFTC. 

Figure 21 shows the velocities of AMR under different conditions. Under the failure 

condition, the simulation was stopped at the 14.1 s due to the loss of stability of the AMR. 

However, the AFTC algorithm could help AMR address the braking failure of IWMs and 

finish the braking process safely. 

 

Figure 21. Velocity of AMR in Case 3. 

The regenerative braking results of AMR are shown in Figure 22 and Table 4. In spite 

of the braking failure of three IWMs, the AFTC algorithm could help AMR recover brak-

ing energy up to −1.72 × 104 J using the normal IWM. 

Table 4. Regenerative braking energy of AMR in Case 3. 

 Normal Failure AFTC 

Regenerative energy (J)   6.84 × 104 1.14 × 104 1.72 × 104 

Figure 20. Steering angles of AMR in Case 3: (a) braking failure; (b) AFTC.

Figure 21 shows the velocities of AMR under different conditions. Under the failure
condition, the simulation was stopped at the 14.1 s due to the loss of stability of the AMR.
However, the AFTC algorithm could help AMR address the braking failure of IWMs and
finish the braking process safely.
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Figure 21. Velocity of AMR in Case 3.

The regenerative braking results of AMR are shown in Figure 22 and Table 4. In spite
of the braking failure of three IWMs, the AFTC algorithm could help AMR recover braking
energy up to −1.72× 104 J using the normal IWM.
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Table 4. Regenerative braking energy of AMR in Case 3.

Normal Failure AFTC

Regenerative energy (J) 6.84× 104 1.14× 104 1.72× 104

The wheel torques of AMR under the failure condition and the AFTC condition are
displayed in Figures 23 and 24, respectively. After the braking failure of three IWMs, the
original torque distribution algorithm could not guarantee stability and braking safety.
However, AFTC could help redistribute the torque of the normal IWM and four EMBs,
recovering braking energy and guaranteeing braking safety and stability.
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6. Conclusions 
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The hybrid conditions of IWM braking failure and EMB braking failure will be stud-

ied in future work. 
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6. Conclusions

A chassis control framework was designed for an AMR. To address the braking failure
of IWMs, an AFTC algorithm was studied by redistributing the braking torques of normal
IWMs and four EMBs. Torque redistribution was carried out based on the WLS method.
Three simulation cases were conducted to evaluate the feasibility and effectiveness of the
proposed control algorithms. The simulation results indicate that the hybrid braking mode
can help AMR recover the braking energy and advance braking safety. Moreover, the AFTC
algorithm can deal with the braking failure of IWMs and realize braking energy recovery
at the same time.

The hybrid conditions of IWM braking failure and EMB braking failure will be studied
in future work.
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