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metribuzin tolerance in hexaploid wheat
(Triticum aestivum L.)
Roopali Bhoite1,2, Ifeyinwa Onyemaobi1,2, Ping Si1,2, Kadambot H. M. Siddique2 and Guijun Yan1,2*

Abstract

Background: Herbicide tolerance is an important trait that allows effective weed management in wheat crops.
Genetic knowledge of metribuzin tolerance in wheat is needed to develop new cultivars for the industry. Here,
we evaluated metribuzin tolerance in a recombinant inbred line (RIL) mapping population derived from Synthetic
W7984 and Opata 85 over two consecutive years to identify quantitative trait loci (QTL) contributing to the trait.
Herbicide tolerance was measured by two chlorophyll traits, SPAD chlorophyll content index (CCI) and visual
senescence score (SNS). The markers associated with major QTL from Synthetic W7984, positively contributing to
reduced phytotoxic effects under herbicide treatment were validated in two F3/4 recombinant inbred populations
developed from crosses of Synthetic W7984 ×Westonia and Synthetic W7984 × Lang.

Results: Composite interval mapping (CIM) identified four QTL, two on chromosome 4A and one each on
chromosomes 2D and 1A. The chromosomal position of the two QTL mapped on 4A within 10 cM intervals was
refined and validated by multiple interval mapping (MIM). The major QTL affecting both measures of tolerance jointly
explained 42 and 45% of the phenotypic variation by percentage CCI reduction and SNS, respectively. The identified
QTL have a pure additive effect. The metribuzin tolerant allele of markers, Xgwm33 and Xbarc343, conferred lower
phytotoxicity and explained the maximum phenotypic variation of 28.8 and 24.5%, respectively. The approximate
physical localization of the QTL revealed the presence of five candidate genes (ribulose-bisphosphate carboxylase,
oxidoreductase (rbcS), glycosyltransferase, serine/threonine-specific protein kinase and phosphotransferase) with a
direct role in photosynthesis and/or metabolic detoxification pathways.

Conclusion: Metribuzin causes photo-inhibition by interrupting electron flow in PSII. Consequently, chlorophyll traits
enabled the measure of high proportion of genetic variability in the mapping population. The validated molecular
markers associated with metribuzin tolerance mediating QTL may be used in marker-assisted breeding to select metribuzin
tolerant lines. Alternatively, validated favourable alleles could be introgressed into elite wheat cultivars to enhance
metribuzin tolerance and improve grain yield in dryland farming for sustainable wheat production.
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Background
Infestation of broad-spectrum weeds in dry-land farming is a
major yield-reducing factor (up to 50%) in wheat [1]. Metri-
buzin [4-amino-6-(1,1-dimethylethy1)-3-(methylthio)-1,2,4--
triazin-5-(4H)-one], a triazine herbicide (group C), is a
versatile herbicide that controls a wide range of weeds in
dry-land farming systems [1, 2] and is registered for use in
some wheat cultivars. However, most wheat cultivars lack
selectivity to metribuzin due to narrow safety margins that
result in crop damage. New herbicide-tolerant wheat culti-
vars are advantageous in the wheat industry to enhance crop
protection against herbicide damage and maximize crop
yield. A detailed understanding of the genetics and mecha-
nisms of metribuzin tolerance is helpful for selection of
superior wheat germplasm in breeding programs. Genetic
control of metribuzin tolerance has been loosely investigated,
and the genetic basis of inheritance and molecular mecha-
nism of metribuzin tolerance in wheat is poorly understood.
Herbicide tolerance is a complex trait that could be a

function of both alterations to the site of action (target--
site resistance) and metabolic detoxification (non-tar-
get-site resistance) before reaching the target site [3].
Previous studies have revealed different modes of genetic
control for metribuzin tolerance in crop plants. Ratliff et
al. [4] reported the role of both nuclear and cytoplasmic
genes in metribuzin tolerance in wheat. Villarroya et al.
[5] reported that the inheritance of tolerance to metribu-
zin in durum wheat (T. turgidum L.) is a complex char-
acter involving many genes or quantitative trait loci
(QTL). In contrast, for soybean, metribuzin tolerance is
controlled by a single dominant gene [6]. Further, in
narrow-leafed lupin (Lupinus angustifolius L.), Si et al. [7]
reported two independent semi-dominant gene loci (Mt3
and Mt5) having additive effects. Sequence analysis of the
chloroplast DNA-encoded psbA gene and further studies
based on the effect of inhibitors of cytochrome 450 mono-
oxygenases suggested that non-target-site detoxification
mechanisms may be responsible for the metribuzin toler-
ance phenotype. Likewise, Javid et al. [8] reported QTL for
metribuzin tolerance in field pea, based on symptom
scores and plant damage on a single genomic region lo-
cated on linkage group IV. The gene (cytochrome P450
monooxygenase) underlying the QTL support range sug-
gested herbicide tolerance based on non-target-site
metabolism.
Metribuzin acts on photosystem II, ultimately inhibi-

ting photosynthesis. The decline in net photosynthetic
rate often reduces both chlorophyll and soluble-protein
levels [9]. We reported phenotyping chlorophyll mea-
sures in wheat to assess phytotoxicity of metribuzin at
the seedling stage in a previous study [10]. Chlorophyll
measures correlated with grain and protein yields in
winter wheat and spring barley [11, 12]. Rapid phenotyp-
ing techniques for measuring direct herbicide effects

coupled with improved understanding of the genetics of
such traits would speed up marker-assisted selection for
herbicide tolerance breeding in wheat.
The international Triticeae mapping initiative (ITMI)

mapping population with its high-density linkage map is
expected to find QTL flanked by closely linked markers
that can be readily used in breeding programs [13]. How-
ever, the plant breeding community recognizes that these
putative QTL need to be validated across various genetic
backgrounds before embarking upon marker-assisted
selection. As a result, in this study we (a) evaluated for
metribuzin phytotoxicity in ITMI mapping population de-
rived from a cross between Synthetic W7984 and Opata
85 over two years, (b) identified QTL associated with
metribuzin tolerance in the same population, (c)
confirmed and validated for its genetic effect in genetic
backgrounds other than the mapping population for their
applicability in MAS, and (d) identified the putative can-
didate genes influencing metribuzin tolerance. The dis-
covery of QTL will enhance the understanding of the
intricate genetic basis of phenotype variance. These find-
ings will provide new insights for improving wheat yields
in breeding programs.

Results
Phenotypic evaluation of the mapping population
The frequency distribution of the metribuzin reaction of
the mapping population was approximately normal (Fig. 1),
consistent with the polygenic control of tolerance. A wide
range of phenotypic variation was present in RILs for both
traits under control and metribuzin treatment conditions
(Additional files 1 and 2). With metribuzin, RILs ranged
from 0.5 to 37.3 and 1 to 10 using SPAD CCI and SNS, re-
spectively. The population means remained higher than
those of the parents, indicating transgressive segregations
in both directions of parents. The ANOVA of phenotypic
data from two years (2016 and 2017) indicated that the
magnitude of differences was constant between years,
genotype variance was significant (P ≤ 0.05), and the geno-
type × year interaction effect was insignificant. Therefore,
average predicted values of merged two-year data were used
for QTL analysis. The CCI and SNS scores had positive
and significant (P < 0.05) correlation (data not shown).
Moderate to high broad-sense heritability (h2) of 59.2 and
76.4 was estimated by CCI and SNS, respectively (Table 1).

QTL for chlorophyll contents
CIM using SPAD CCI reduction and SNS detected four
co-located QTL, with two on chromosome 4A and one
each on chromosomes 1A and 2D (Fig. 2). The LOD
scores ranged from 3.4 to 5.8 and 3 to 7.3, explaining
10–19% and 8–20% phenotypic variation by CCI reduc-
tion and SNS, respectively (Table 2). Two QTL were lo-
cated on the long chromosome arm of 4A at 52.6 cM
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and 61.9 cM by CCI reduction and 52.8 cM and
61.9 cM by SNS. The interval location between two
mapped QTL was 9.3 cM and 9.1 cM by CCI reduction
and SNS, respectively, which is less than 10 cM distance.
The position of multiple QTL on chromosome 4A was
optimized by MIM and the estimated positions with
main effects are given in Table 3. The QTL detected at
position 52.6 cM and 52.8 cM contributed to large
phenotypic variation with significant additive effect by
CCI reduction and SNS, respectively. However, the QTL

at position 61.9 cM, had decreased additive effect below
the threshold value and therefore was excluded from the
MIM model.

QTL effect confirmation and marker validation
In this study, two major QTL (Qsns.uwa.1AS and
Qsns.uwa.4AL.1) from Synthetic W7984 were validated
in different genetic backgrounds. The physical position
of the surrounding markers seemed to overlap for
co-located QTL by CCI reduction and SNS (Table 2).

a

b

Fig. 1 Phenotypic distribution of percentage chlorophyll content index reduction (a) and senescence (b) in Synthetic W7984 × Opata 85 RIL
mapping population based on mean data measured for two years. S Synthetic, O Opata
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For the QTL on chromosome 1A, the closest flanking
marker is Xgwm33, 4 cM away from peak QTL location.
Xgwm33 has greater additive effect and therefore was
used to validate the QTL effect. For QTL on the long
arm of chromosome 4A, the peak marker, Xbarc343,
with greater additive effect was used to validate the QTL
effect. The parental lines of two populations, Synthetic
W7984 ×Westonia and Synthetic W7984 × Lang were poly-
morphic for both Xgwm33 and Xbarc343. Synthetic W7984
had a null band for Xgwm33 and the absence of marker
(AA) in progenies reduced senescence as evident in Table 4.
The validation lines possessing different alleles of

markers Xgwm33 and Xbarc343 were separated into allele
group 1 and allele group 2 using LabChip®. The fragment
sizes in Table 4 were used to score the randomly selected
lines (24 lines) of validation population into different
groups based on the allele groups. For both QTL,
genotypes with homozygous alleles from Westonia and
Lang had significantly higher (P < 0.05) senescence than
genotypes with homozygous alleles from Synthetic W7984
(Table 5). For Xgwm33, the average senescence of Syn-
thetic W7984 ×Westonia and Synthetic W7984 × Lang
progenies declined by 28.5 and 28.8%, respectively. Simi-
larly, for Xbarc343, the average senescence of Synthetic
W7984 ×Westonia and Synthetic W7984 × Lang proge-
nies declined by 24.5 and 9.6% respectively (Table 5).

Potential candidate genes
One LOD drop-off interval was used to pick the func-
tional markers for a QTL on the current genetic map of
Synthetic W7984 × Opata 85 hosted in GrainGenes. For

the co-located QTL, Qcci.uwa.1AS and Qsns.uwa.1AS,
six markers are mapped including the tightly linked
markers, Xgwm136 (left) and Xgwm33 (right) with
one-LOD drop off interval between 3.9 and 17.3 cM and
3.9 and 14.3 cM, respectively (Fig. 2). The BLAST search
of markers on the wheat genome identified genes with
known functions on the URGI-Jbrowse database. This
includes uncharacterized gene involving oxidoreductase
activity, interestingly related to metabolic detoxification/
Xenobiotic degradation (Table 6).
For QTL, Qcci.uwa.2DS and Qsns.uwa.2DS, six flank-

ing markers were mapped in close vicinity, including the
tightly mapped markers, Xgwm210 (left) and Xgwm484
(right) with one-LOD drop off interval between 18.3 and
27.8 cM and 18.3 and 29.7 cM for CCI reduction and
SNS, respectively (Fig. 2). A blastN search against Triti-
cum aestivum TGACv1 (genomic sequence), identified
three potential genes— rbcs (ribulose biphosphate carb-
oxylase small chain), glycosyltransferase and phospho-
transferase — involved in the metabolic exclusion of
Xenobiotics (Table 6).
QTL, Qcci.uwa.4AL.1 and Qsns.uwa.4AL.1 had 13

markers on the genetic map of Synthetic W7984 × Opata
85 within the support intervals of 48.6 to 56.7 cM and
49.6 to 58.3 cM by CCI reduction and SNS, respectively
(Fig. 2). The blastN search of markers onto Triticum
aestivum TGACv1 (genomic sequence) identified a po-
tential candidate gene that has a known function in
Xenobiotic degradation. These include a gene which
codes for Serine/threonine-specific protein kinase and
ATP binding protein (Table 6).

Discussion
Chlorophyll content index and senescence were highly
correlated, reflected in the mapped QTL, and both
phytotoxic traits had identical linkage groups and loca-
tion. The moderate to high levels of broad-sense herit-
ability indicate that the high proportion of genetic
variability was measured by chlorophyll traits in the
mapping population. A cascade of reactions occur in
cells that encounter herbicides and this, in turn, reduces
the net photosynthetic rate due to the production of
active oxygen species. Any reduction in fundamental
processes such as photosynthesis may have a negative ef-
fect, which would extend beyond photosystem II (PSII)
to cause a down-regulation of total carbon gain causing
imbalance between the rate of photo-damage to PSII
and the rate of the repair of damaged PSII, reducing
plant yield. A higher value of CCI reduction and SNS in-
dicates that a proportion of PSII reaction centers have
been damaged. This phenomenon is observed in plants
under stress conditions [14].
By single-locus CIM analysis, four QTL for metribuzin

tolerance were mapped (Table 2). Map positions of

Table 1 Analysis of variance for metribuzin tolerance and
associated traits and their heritability estimates in the Synthetic
W7984 × Opata 85 RIL mapping population measured across
two years

Category Source of variation df CCI SNS

Control Line 110 45.43** –

Year 1 13,217** –

Rep 2 3.43 –

Year × Line 103 16.11 –

Residual 332 11.77 –

h2 64.55 –

SE 0.29 –

Metribuzin treatment Line 110 173.94** 15.02**

Year 1 232.23 66.58**

Rep 2 706.55** 77.61**

Year × Line 95 70.89 3.54

Residual 214 90.20 5.63

h2 59.22 76.4

SE 0.95 0.23

CCI SPAD chlorophyll content index, SNS senescence scale (1–10)
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multiple QTL detected on the long arm of chromosome
4A, within 10 cM map distance, validated by fitting mul-
tiple regression model using the MIM method of QTL
Cartographer. It helped to eliminate false positive QTL
and get realistic estimates of the total variation explained
by the QTL because the R2 value of the multiple QTL
model takes into account their lack of independence
[15, 16]. The refinement of map-positions was possible due
to good marker density of the regions, which enhanced the
mapping resolution around these tolerance loci.
Three significant genomic regions on chromosome

1A, 4A and 2D associated with metribuzin tolerance,

explained phenotypic variation of 10–19% and 8–20%
using CCI reduction and SNS respectively, signifying
that herbicide tolerance is a genetically governed quanti-
tative trait that reflects the cultivar’s ability to withstand
herbicide at the level of PSII. Similarly, Javid et al. [8] re-
ported QTL for metribuzin tolerance in field pea (Pisum
sativum L.) with phenotypic variance ranging from of
12–21%. Several pleiotropic QTL affecting leaf senes-
cence and grain yield and/or grain protein concentration
were identified on group 2 and group 7 chromosomes in
wheat [17]. The QTL(s) for metribuzin tolerance with
LOD > 3.0 was detected from both Synthetic W7984 and

Fig. 2 Locations of putative QTL for metribuzin tolerance in Synthetic W7984 × Opata 85 RIL population based on SPAD chlorophyll content
index (CCI) reduction and senescence (SNS). QTL are indicated by solid bars and the bar length indicates a 1.0 LOD drop in the QTL support
interval. Green bars indicate QTL by SPAD chlorophyll content index and blue bars indicate QTL by leaf senescence. Map distances are indicated
on the left in Kosambi centimorgan and markers are indicated on the right of each chromosome. The markers in red are the flanking markers
within a 1.0 LOD drop in the QTL support interval
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Opata 85 parent which suggests that adaptive traits in
both Synthetic W7984 and Opata 85 could harbour a
suite of herbicide tolerance-related adaptive features or
tolerance could be due to new gene/allele combination
that should be further explored. However, the QTL
(Qcci.uwa.2DS) detected from Opata 85 could not be
validated due to the lack of validation population.
In the present study, all the QTLs detected by CCI re-

duction co-locate with senescence which supports the
hypothesis that a non-redundant function of relative leaf
chlorophyll content and cellular oxidative processes
causes senescence. Co-mapping of QTL for correlated
traits may result from tight linkage of several genes [18]
or the pleiotropic effect of major genes [19]. Zhang et al.
[12] elucidated the linear relationship between chloro-
phyll content and yield by co-located QTL for both traits
reflecting pleiotropism. Fontaine et al. [20] reported
co-localization of senescence with agronomic traits such
as grain number per spike, the amount of protein per
grain, and thousand kernel weight in common wheat.
Kichey et al. [21] confirmed a positive correlation
between chlorophyll content (visual senescence) and
grain yield, and total nitrogen content. Similarly, Gallais
and Hirel [22] reported non-redundant function between
the activities of two enzymes—glutamine synthetase and

glutamate dehydrogenase—and yield-related traits. In
wheat, consistent co-localized QTL have been reported
and QTL for correlated traits have been mapped
together [20, 23].
The two major QTL located on short and long arm of

wheat chromosome 1A and 4A— Qsns.uwa.1AS and
Qsns.uwa.4AL.1—from Synthetic W7984 positively
contributing to metribuzin tolerance was validated in
different genetic background. Validation of functional
marker for its phenotypic effects in different genetic
backgrounds/environments under herbicide– treated
conditions is essential to rule out statistical errors/arte-
facts [24] before applying in marker-assisted selections.
There are numerous markers present within QTL
support interval and use of conventional bench-top
molecular techniques to check polymorphism and band
size is time-consuming, lacks specificity, and is labor-
intensive. High-throughput genotyping of markers
using LabChip® for marker validation has enabled im-
proved read-out of information from molecular systems
using computer chips.

Table 2 Putative QTL for two phytotoxic traits (CCI reduction and senescence) affecting herbicide tolerance in ITMI Synthetic
W7984 × Opata RIL population identified by composite interval mapping (CIM) at the LOD threshold ≥3

Trait Chromosome arm QTL QTL position (cM)c Flanking markers CId LOD score Additivee R2f (%)

CCIa 1 (1AS) Qcci.uwa.1AS 12.3 Xgwm136/Xgwm33 3.9–17.3 3.4 −0.6 10

6 (2DS) Qcci.uwa.2DS 21.1 Xgwm210/Xgwm484 18.3–27.8 4.7 0.7 13

10 (4AL) Qcci.uwa.4AL.1 52.6 Xbarc170/ Xbarc343 48.6–56.7 5.8 −0.8 19

10 (4AL) Qcci.uwa.4AL.2 61.9 Xbarc343/ Xgwm350 59.4–63.7 4.0 −0.7 12

SNSb 1 (1AS) Qsns.uwa.1AS 12.3 Xgwm136/ Xgwm33 3.9–14.3 3.0 −0.5 8

6 (2DS) Qsns.uwa.2DS 22.1 Xgwm210.2/ Xgwm484 18.3–29.7 7.3 0.9 20

10 (4AL) Qsns.uwa.4AL.1 52.8 Xbarc170/ Xbarc343 49.6–58.3 6.1 −0.8 17

10 (4AL) Qsns.uwa.4AL.2 61.9 Xbarc170/ Xgwm350 56.7–63.7 3.4 −0.6 10
aCCI SPAD chlorophyll content index reduction
bSNS senescence scale (1–10)
cQTL position from the left flanking marker (cM), within the 1-LOD support interval (CI)
dSupport interval between the two flanking markers (cM)
eQTL with a negative additive effect mean alleles from the tolerant parent increase tolerance, positive additive effect mean alleles from the susceptible parent
increase tolerance
fProportion of phenotypic variance explained by the QTL

Table 3 Estimates of QTL locations by multiple interval
mapping detected on the same chromosome 4AL within 10 cM
distance for the two phytotoxic traits, CCI reduction and SNS

Trait QTL Chromosome arm Position (cM) Additive effect

CCI Qcci.uwa.4AL.1 10 (4AL) 52.6 −0.8

Qcci.uwa.4AL.2 10 (4AL) 61.9 −0.2

SNS Qsns.uwa.4AL.1 10 (4AL) 52.8 −0.8

Qsns.uwa.4AL.2 10 (4AL) 61.9 −0.0

Table 4 Fragment size of the two SSR markers, with
polymorphism among the parental lines (Synthetic W7984,
Westonia and Lang) of validation population, related to QTL for
metribuzin tolerance

SSR markers Parental lines Fragment size (bp)

Xgwm33 Synthetic W7984 Null

Westonia 142

Lang 138

Xbarc343 Synthetic W7984 201

Westonia 159

Lang 159
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Numerous nuclear and cytoplasmic genes were identi-
fied by blasting the markers, within the support interval,
against the wheat genome. This corroborates with the
findings of Ratliff et al. [4] which stated that metribuzin
tolerance is a complex trait controlled by both nuclear
and cytoplasmic genes. Nevertheless, amidst numerous
genes having unknown functions, putative functions,
and hypothetical/uncharacterized proteins, it is promis-
ing that the identified QTL also hold some genes
directly or indirectly associated with photosynthesis, in
particular, the rbcS gene which codes for Rubisco protein
involved in photosynthetic CO2 fixation. Rubisco is the
most abundant protein, accounting for 12–35% of total
leaf N in plants [25, 26]. QTL on short arm of 2D
chromosome has been found closely associated to one of
the photosynthesis-related genes, rbcS. Group 2 and
Group 5 chromosomes in wheat has been reported to
harbour multigene family of rbcS [27]. Genes involved in
photosynthesis and regulation of senescence associated
protein has been found responsive to metribuzin toler-
ance in wheat [28].

The identified QTL regions are an ideal target for the
characterization of a gene(s) underlying this locus. The
identified chloroplast gene (rbcS) could have a direct im-
pact on maintaining high net photosynthetic rate during
herbicide stress. The identified glycosyltransferases (GT)
gene is involved in detoxification of a variety of toxic
chemicals, including pollutants and herbicides in Phase
II herbicide detoxification [29–32]. The conjugation re-
actions enable GT to diversify the secondary metabolites
via sugar attachments to maintain cell homeostasis by
quickly and precisely controlling plant hormone concen-
tration, and detoxify herbicides by adding sugars onto
molecules [33]. In conclusion, the proteins encoded by
the identified genes are involved in the oxygen-evolving
complex, and repair of the PSII complex and xenobiotic
detoxification. However, since numerous biological pro-
cesses are associated with these candidate genes, more
detailed experimental analyses will be needed to confirm
their roles in metribuzin tolerance.
Integrated effective weed control is vital for economical

food production. In dry land farming, particularly those

Table 5 Validation of the two quantitative trait loci (QTL) in structured and unstructured recombinant inbred line (RIL) populations
with the corresponding senescence effect

Co-located QTL for CCI and SNS RIL population Marker AA aa P valueb Effect (%)c

Qcci.uwa.1AS and Qsns.uwa.1AS Synthetic W7984 ×Westonia Xgwm33 4.0a 5.6 0.03* 28.5

Synthetic W7984 × Lang Xgwm33 4.2a 5.9 0.01** 28.8

Qcci.uwa.4AL.1 and Qsns.uwa.4AL.1 Synthetic W7984 ×Westonia Xbarc343 4 5.3 0.04* 24.5

Synthetic W7984 × Lang Xbarc343 4.7 5.6 0.02* 9.6

AA homozygous alleles from Synthetic W7984, aa homozygous alleles from Westonia and Lang
aPhenotypic effect for null bands
bStudent’s t-test (P < 0.05) was used to identify differences between the lines of population with distinct allele peaks; **, significant at P < 0.01; *, significant
at P < 0.05
cAverage decrease in senescence

Table 6 List of potential candidate genes or proteins related to photosynthesis and metabolic detoxification related to the three
major quantitative trait loci (QTL)

QTL name UniProtKB Gene ID Length (bp)
and direction

Subcellular
location

Molecular function Biological process

Qcci.uwa.1AS and
Qsns.uwa.1AS

A0A1D6RPK4_WHEAT 3063+ – Oxidoreductase activity Catalysis of oxidation-
reduction reaction

Qcci.uwa.2DS and
Qsns.uwa.2DS

W5C9Y4_WHEAT 840– Chloroplast Ribulose-bisphosphate
carboxylase activity
Monooxygenase activity

Photosynthesis
Carbon fixation
Photorespiration

A0A1D5W3W9_WHEAT 989+ – Glycosyltransferase activity Metabolic detoxification/
Xenobiotics degradation

A0A1D5X620_WHEAT 1689– Cytoplasm Phosphotransferase activity
ATP binding
Kinase activity

Metabolic and transcriptional
processes

Qcci.uwa.4AL.1 and
Qsns.uwa.4AL.1

A0A1D5VWT5_WHEAT 2302– – Serine/threonine-specific
protein kinase
(transferase activity)
ATP binding

Metabolic and Post-translation
modification

+/− Sign indicates the direction (forward/reverse) on the strand; bp indicates base pairs
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with Mediterranean climate, wheat and broad-spectrum
weeds actively grow throughout the wet winter wheat
growing season. Australia has the second highest reported
occurrence of herbicide-resistant weeds worldwide, which
is the key agronomic issue for the farmers. Making direct
selections for chlorophyll traits will positively influence
herbicide tolerance and grain yield. SSR markers,
Xgwm136 and Xbarc343 validated in different genetic
background can be used for marker-assisted selection to
potentially reduce phytotoxic effects of herbicide and im-
prove photosynthetic efficiency and yield. Consequently,
the identified and validated favourable alleles could be
introgressed into elite wheat cultivars used in dryland
farming for sustainable wheat production. This will be a
more effective strategy to control weeds without com-
promising wheat productivity in dry-land farming of
Australia and worldwide.

Conclusion
To our knowledge, this is the first report on identification
of QTL and functional markers associated to herbicide
tolerance at seedling stage in wheat. This study has shown
that CCI reduction and SNS are effective parameters for
evaluating metribuzin tolerance in wheat breeding. Metri-
buzin tolerance is a complex trait and direct phenotypic
selection is time-consuming, labour intensive and could
be hindered significantly by environmental factors.
Marker-assisted selection is a tool for precision plant
breeding and offers several advantages over direct pheno-
typic screening. Identification of genomic regions res-
ponsible for metribuzin tolerance followed by validation
of closely linked markers in two populations, specifically
segregating for chlorophyll traits, identified genes directly
or indirectly affecting the functionality of PSII and herbi-
cide metabolism in the plant system. The identified flank-
ing markers can be used in marker-assisted selection for
breeding metribuzin tolerant wheat. Further, the identified
QTL could be fine mapped using high number of trans-
gressive lines to identify the exact candidate genes for the
trait or the identified candidate genes could be further in-
vestigated/targeted to improve the PSII efficiency during
metribuzin stress.

Methods
Genetic stocks
One hundred and eleven recombinant inbred lines
(RILs) (F8 generation) from the international Triticeae
mapping initiative (ITMI) mapping population derived
from a cross between Synthetic W7984 (Triticum turgi-
dum cv. Altar84/Aegilops tauschii Coss. line WPI 219)
and Mexican spring wheat cultivar Opata 85 [34] were
used to identify QTL/genomic regions responsible for
metribuzin tolerance. Following the identification and
mapping of QTL, crosses between Synthetic W7984 as

the common parent and two other genotypes (Westonia
and Lang) were used to validate the phenotypic effect of
these QTL in other genetic backgrounds. These two F3.4
RIL populations (Synthetic W7984 ×Westonia and
Synthetic W7984 × Lang) were evaluated for one year to
validate the QTL identified in the mapping population.
SSR markers in close vicinity to the QTL were used to
genotype 24 RILs from the crosses mentioned above.

Experimental design and herbicide treatment
Package DiGGeR [35] was used to generate a row–co-
lumn design with two blocks. A seedling tray (Rite-Gro)
with 6 × 5 cells filled with homogenous river sand was
equilibrated with water to 100% capacity. One seed/per
cell was sown. Treatment and control trays were sprayed
with a differential metribuzin dose of 400 g ai ha− 1, dose
which differentiates tolerant and susceptible lines as
identified in the previous study [10], and water, respect-
ively, perpendicular to the tray surface in two passes at a
flow rate of 118 L ha− 1 and 200 kPa in a cabinet spray
chamber. The trays were maintained in a phytotron,
where the temperature was set to 25/15 °C day/night
and watered regularly every 48 h. 12 treatment and 12
control trays were randomized across two blocks. The
mapping population was assessed in two independent
trials, in 2016 and 2017, with three replicates. The same
experimental setup and rate of metribuzin were used to
evaluate the phytotoxic effects of metribuzin in the val-
idation populations.

Phenotypic evaluation
The phytotoxic effects of metribuzin in wheat seedlings were
recorded using a portable Minolta SPAD-502 chlorophyll
meter (Spectrum Technologies, Inc., Plainfield, IL, U.S.). The
SPAD chlorophyll content index (CCI) scores were obtained
from leaf lamina at 16 day after treatment (DAT) and the
average reading from two fully emerged leaves represented
the final score. This index is linearly related to chlorophyll
concentration [36]. The effect of metribuzin was computed
as a percentage of CCI reduction relative to the control.
Lower CCI reduction represents higher tolerance and higher
CCI reduction represents greater susceptibility. Leaf senes-
cence was visually estimated using a scale of 0 (no senes-
cence/phytotoxicity) to 10 (100% senescence/dead), 16 DAT.
This count was defined as the senescence score (SNS), with
a low SNS representing less loss of chlorophyll and greater
tolerance and a high SNS representing more loss of chloro-
phyll and greater susceptibility. Control plants were green
and healthy with no visual senescence; therefore, senescence
was not scored for control plants.

Molecular markers and linkage map
Molecular marker data and linkage map of the Synthetic
W7984 ×Opata 85 RIL mapping population were accessed
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from the GrainGenes database (https://wheat.pw.us-
da.gov/cgi-bin/GG3/report.cgi?class=mapdata&name=-
Wheat%2C%20Synthetic%20x%20Opata%2C%20BARC).
The chromosomal location for metribuzin tolerance
was mapped by integrating appropriate phenotypic
and genotypic/segregating data containing a total of
1476 SSR and RFLP markers. The genetic map
spanned a length of 3715 cM with a mean marker
density of 1 cM, distributed across 21 chromosomes
of wheat. Markers with >70% missing data were re-
moved from the dataset.

Quantitative trait loci analysis
QTL analysis was performed for the trait means using
the composite interval mapping (CIM) method of
WinQTLcart2.5. Based on 1000 permutations [37], loga-
rithm of odds (LOD) peaks ≥3 were used to declare
significant QTL for SPAD CCI reduction and SNS, re-
spectively, on data combined across two years. The con-
tribution rate (R2) was calculated as the percentage of
variance explained by each QTL in proportion to the
total phenotypic variance. QTL were classified as major
when the phenotypic variance was more than 10% and
minor for less than 10% [38]. A one-LOD drop from the
peak position was used as a support interval for each
QTL location. Flanking or tightly linked markers were
selected within the QTL supportrange. QTL with a
negative additive effect for a trait implies alleles from the
tolerant parent increase tolerance by decreasing phyto-
toxicity and positive additive effect mean alleles from
the susceptible parent increase tolerance by decreasing
phytotoxicity.
Finally, a QTL was declared when the region was

mapped with both the CCI reduction and SNS scores.
This was to protect against type I errors (finding false
positive QTL) and type II errors (missing real QTL). In
cases of multiple QTL detected on the same linkage
group, inter-locus interaction or epistasis was determined
by simultaneous analyses of the QTL in a multiple regres-
sion model using the multiple interval mapping (MIM)
method of QTL Cartographer.

Genotyping populations for marker validation
Genomic DNA was extracted from the leaves of
three-week-old seedlings of individual plants from the
parental lines of Synthetic W7984, Westonia and Lang,
and each of the F3:4 validation lines from Synthetic
W7984 ×Westonia and Synthetic W7984 × Lang using
the cetyl trimethyl ammonium bromide (CTAB) method
and then suspended in T.E. buffer (pH 8.0) for storage
and analysis. DNA concentration was assessed by Qubit
2.0 fluorometer using the Qubit ds DNA Broad Range
Assay. The PCR reaction mixture (15 μL) containing
100 ng template DNA, 20 μM forward and reverse

primers each, and 7.5 μL Taq HS mix (Bioline, NSW,
Australia) was amplified in a thermocycler (BIO-RAD).
PCR thermal cycling was programmed at: 95 °C for
5 min, 35 cycles of denaturation at 95 °C for 30 s,
annealing at temperature obtained from GrainGenes for
individual SSR markers for 30 s, elongation at 72 °C for
45 s, and final extension at 72 °C for 5 min. The primers
were obtained from Sigma-Aldrich (Sigma-Aldrich Pty
Ltd., NSW, Australia). Typically, SSR reactions were
multiplexed in pairs based on their annealing
temperature and amplicon size. To minimize
background signals, PCR products were diluted with
nuclease-free water in a 1:15 ratio. The diluted ampli-
cons were analyzed by automated capillary electrophor-
esis LabChip® GX instrument from Perkin Elmer. A
DNA 5 K Perkin-Elmer LabChip® which gives resolution
from 100 to 5000 bp, was used to separate the bands
with appropriate sizing. The microfluidic 5 K chip was
loaded with gel and marker in the specified containers
according to the manufacturer’s protocol. PCR plates
were centrifuged (5 min, 2000 rpm) and placed without
caps or adhesive film in the electrophoresis system. The
chip was primed for 5 min, and PCR samples were
injected into the chip’s micro-capillaries connected to
electrodes. Each sample, mixed automatically with an in-
ternal marker, was run through these micro-capillaries
according to their size and nucleotide composition. The
DNA fluorescence measurement was recorded as a
function of time on an electropherogram and the DNA
ladder defined the product sizes. Primary data (electro-
pherograms) were then converted to virtual gels by the
machine software for the analyses. LabChip Reviewer 5
Software was used to analyze peaks, percent purity and
molecular weights. Settings were kept constant for all
runs to make comparisons within and between runs.
Phenotypic effects of major QTL alleles detected from

Synthetic W7984 were estimated in different genetic
background using closely linked markers. Recombinant
inbred lines of two F3.4 RIL populations (Synthetic
W7984 ×Westonia and Synthetic W7984 × Lang) carry-
ing the same QTL alleles were grouped. The mean
phenotypic performance of genotypes based on the two
types of allele combinations (AA and aa) were compared
using Fisher’s protected least significant difference (LSD)
at P = 0.05. The phytotoxic effect was computed as the
mean SNS of homozygous dominant (AA) relative to
homozygous recessive (aa) allele.

Statistical analysis
The phenotypic data analyses were performed using GenStat
statistical software 17th edition (VSN International 2014).
Analysis of variance (ANOVA) was conducted for unba-
lanced design based on the following model: Pij = μ+ gi + yj
+ gyij +Ɛijk, where Pij is the observed phenotypic mean; μ is
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the overall/population mean; gi is the effect due to the i
th geno-

type; yj is the effect due to jth year; Ɛijk is the random error.
The adjusted mean was further used to calculate the percentage
CCI reduction. Variance components and broad-sense herit-
ability (h2) were estimated from the ANOVA, as in He et al.
[39]. Heritability was estimated using the formula: h2 = σ2g=(

σ2gþ σ2gy=y + σ2
e=ry) for multiple years where σ2g is the gen-

etic variance; σ2
gy is the variance for genotype by environ-

ment interaction; σ2e is the residual variance; y is the number
of years and r is the number of replications. The estimated
genotypic interaction and error variances were calculated as:

σ2g ¼ MSg−MSgy
ry ; σ2gy ¼ MSgy−MSe

r and σ2e ¼ MSe

Identification of potential candidate genes
The physical position of the flanking markers was identi-
fied in the GrainGenes wheat database (https://wheat.p-
w.usda.gov/cgi-bin/GG3/browse.cgi?class=marker). The
QTL support range was estimated based on one LOD
drop off interval on identified genomic regions. The
marker sequences within the QTL support range were
blasted against the Ensembl Plants wheat (http://plant-
s.ensembl.org/Triticum_aestivum/Info/Index) to find the
Traes numbers of the genes. The Traes numbers were
searched in the UniProt in TrEMBL (http://www.uni-
prot.org/?-id+2fYRW1ChXSa+-fun+Pagelibinfo+-info+
TREMBL) to obtain more information including pro-
tein domain, family, molecular and biological functions
of the potential candidate genes. Only those genes with
known function and/or related to photosynthesis and
metabolic detoxification were counted as potential candi-
date genes. The graphical representations of QTL on lin-
kage groups were drawn by MapChart 2.2 software [40].
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