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Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme
that catalyzes the addition of methyl groups to histone H3 at lysine 27, leading to
gene silencing. Mutation or over-expression of EZH2 has been linked to many cancers
including renal carcinoma. Recent studies have shown that EZH2 expression and activity
are also increased in several animal models of kidney injury, such as acute kidney injury
(AKI), renal fibrosis, diabetic nephropathy, lupus nephritis (LN), and renal transplantation
rejection. The pharmacological and/or genetic inhibition of EZH2 can alleviate AKI, renal
fibrosis, and LN, but potentiate podocyte injury in animal models, suggesting that the
functional role of EZH2 varies with renal cell type and disease model. In this article, we
summarize the role of EZH2 in the pathology of renal injury and relevant mechanisms
and highlight EZH2 as a potential therapeutic target for kidney diseases.

Keywords: acute kidney injury, chronic kidney disease, diabetic nephropathy, renal cell carcinoma, epigenetic
regulation, histone methyltransferase (HMT), enhancer of zeste homolog 2 (EZH2), renal fibrosis

INTRODUCTION

Epigenetics refers to the heritable change of gene function and phenotype without alteration in
a genes DNA sequence (Berger et al., 2009). The core function of epigenetics is to control access
to the DNA genetic code both spatially and temporally to ensure orderly gene expression and
silencing according to external signals. Epigenetic regulation involves DNA methylation, histone
modification, chromatin recombination, and non-coding RNA (Rosner and Hengstschlager, 2012;
Roy and Majumdar, 2012). These modifications control the fate of cells, regulate the normal
growth, and development of individuals, and are closely related to the occurrence and development
of various diseases such as cancers, diabetes, heart disease, and intestinal disease (Filion et al.,
2010). The importance and diversity of histone post-translational modification have been widely
studied in many epigenetic regulatory mechanisms. Histone modifications include acetylation,
methylation, ubiquitination, hydroxylation, phosphorylation, and ADP ribosylation (Graff and
Tsai, 2013; Hyun et al., 2017; Bochyńska et al., 2018; Worden et al., 2019). Methylation can occur
in histone and non-histone proteins. Histones are proteins that are abundant in lysine and arginine
and are found in eukaryotic cell nuclei. Among four core histone proteins (H2A, H2B, H3, and
H4), histone H3 is one of the most important epigenetic markers in transcriptional regulation.
The methylation of histone H3 mainly occurs on the arginine (R) and lysine (K) residues in
its tail (Wei et al., 2009). Histone arginine residues are monomethylated or dimethylated (Blanc
and Richard, 2017), while histone lysine can be monomethylated (me1), dimethylated (me2), or
trimethylated (me3). Different methylation sites such as H3K4, H3K9, H3K27, H3K36, and H3K79
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have been identified (Wang et al., 2009). Among those sites,
trimethylation of lysine 27 in histone H3 (H3K27me3) is a key
marker of gene silencing, found mainly in gene promoter and
enhancer regions (Duan et al., 2020).

H3K27 trimethylation is mainly carried out by Polycomb
Repressor Complex (PRC2; Tie et al., 1998; Sanchez-Beato
et al., 2006; Yu et al., 2007; Veneti et al., 2017). PRC2 is a
histone methyltransferase that mainly trimethylates the histone
H3 lysine 27 (H3K27me3; Margueron and Reinberg, 2011; Di
Croce and Helin, 2013). The PRC2 complex consists of four
components: enhancer of zeste homolog 1 (EZH1) or enhancer
of zeste homolog 2 (EZH2), compressor of zeste12 (Suz12),
embryonic ectoderm development (EED), and RbAp46/48. EZH1
and EZH2 are the core components of PRC2, while EED
can interact with EZH1 or EZH2 to maintain enzyme activity
(Kim et al., 2013; Eich et al., 2020). EZH2 is an essential
component of PRC2 methylation activity; it can also methylate
some non-histone substrates, such as actin, GATA binding
protein 4 (GATA4), android receiver (AR), and estrogen receiver
(ER). EZH2 can silence tumor suppressor genes and play an
important role in cell aging, fate selection, and differentiation
(Jacobs and van Lohuizen, 2002; Plath et al., 2003; Martinez
and Cavalli, 2006; Aloia et al., 2013). In addition, EZH2-
mediated methylation of non-histones such as STAT3 is an
important post-translational modification involved in many
life processes, such as the cell cycle, DNA repair, cell aging,
differentiation, apoptosis, and tumorigenesis (Kim et al., 2013;
Eich et al., 2020).

Enhancer of zeste homolog 2 was discovered in 1996 using
yeast two-hybrid experiments (Hobert et al., 1996) and its gene
is located on the human chromosome 7q35. EZH2 occupies
nearly 40 kb in the gene structure, which contains 20 exons,
and the open reading frame is distributed on 19 exons (Cardoso
et al., 2000). Studies have shown that EZH2 can inhibit the
expression of tumor suppressor genes in normal cells, thereby
promoting the abnormal proliferation of cells, and stimulating
the metastasis of tumor cells. EZH2 exhibits gene amplification
and higher levels of expression in many human malignancies,
such as gastric cancer, colon cancer, breast cancer, lymphoid
hematopoietic tumors, liver cancer, and nephroblastoma (Su
et al., 2003; Mimori et al., 2005; Raman et al., 2005; Sudo
et al., 2005; Matsukawa et al., 2006; Saramaki et al., 2006;
Shi et al., 2007), and is closely related to tumorigenesis and
tumor progression.

Increasing evidence shows that EZH2 is associated with
a variety of kidney diseases and pathology. In addition to
the abnormal expression and activation of EZH2 in renal
tumors, its expression levels and activity were also increased
in acute kidney injury (AKI; Zhou et al., 2018b), renal fibrosis
(Zhou et al., 2016), diabetic nephropathy (DN; Jia et al.,
2019b), lupus nephritis (LN; Rohraff et al., 2019), hyperuricemic
nephropathy (Shi et al., 2019), and transplanted and aging
kidneys (Li et al., 2016; Han and Sun, 2020). Moreover,
pharmacological or genetic inhibition of EZH2 can interfere
with pathologic fibrosis in these animal models of kidney
disease. This article reviews the role of EZH2 in the pathology
of renal disease and relevant mechanisms (Table 1). We also

highlight EZH2 as a potential target for ameliorating fibrosis in
kidney disease.

EZH2 AND RENAL CELL CARCINOMA

Renal cell carcinoma (RCC), also known as renal
adenocarcinoma. originates from renal tubular epithelial
cells and accounts for over 90% of adult renal malignancies.
The worldwide incidence RCC has increased significantly in
recent years (Shah et al., 2009). At present, the cause and
pathogenesis of RCC are not clear. Epidemiology speculates
that the pathogenesis is related to genetics, smoking, obesity,
hypertension, and antihypertensive treatment (Grossman et al.,
1999). About 70% of renal cancers are associated with gene
expression inactivation caused by VHL gene deletion and
mutation. VHL gene encodes an E3 ubiquitin ligase complex
protein, which can degrade hypoxia inducible factor (HIF). HIF is
continuously activated in RCC cells, promoting the transcription
of a series of downstream target genes (Mallikarjuna et al., 2018).
Recently, it has been reported that epigenetic modification, in
particular, EZH2 activation, participates in the occurrence and
development of RCC, which provides a new direction for the
treatment (Bannister and Kouzarides, 2011).

Studies have demonstrated that EZH2 can promote the
development and metastasis of RCC. EZH2 is overexpressed in
numerous tumor entities including renal tumor cells (Kim and
Roberts, 2016; Sun et al., 2018). EZH2 overexpression leads to
increases in H3K27me3, with repression of tumor-suppressor
genes such as E-cadherin (Liu et al., 2016). In vitro and in vivo
studies confirmed that the abnormal increase of EZH2 can inhibit
the expression level of E-cadherin, induce the epithelial stromal
transformation of renal cancer cells, and promote the occurrence,
development and recurrence of renal cancer. Inhibition of EZH2
with 3-DZNep can reverse these pathological responses (Liu
et al., 2016). EZH2 also has growth promoting activity in RCC
(Wagener et al., 2010) and can enhance the proliferation and
invasion of renal tubular epithelial cells (Zhang et al., 2018).
Moreover, EZH2 promotes cell proliferation, migration and
angiogenesis by inhibiting expression of tumor suppressor genes
such as p27Kip1 and enhancing expression of proto-oncogenes
(Sakurai et al., 2012). Thus, inhibition of EZH2 can reduce
the survival and invasion of clear cell renal cell carcinoma
(ccRCC) cells and the growth of ccRCC in xenografted mice
(Sun et al., 2018). Finally, EZH2 in combination with the DNA
methyltransferase DNMT can methylate the VHL promoter and
inhibit its expression in RCC (Schlesinger et al., 2007).

EZH2 AND ACUTE KIDNEY INJURY

Acute kidney injury is a common pathologic process with high
mortality in hospitalized patients (Raimann et al., 2018). It can be
caused by ischemia/reperfusion, septicemia, or nephrotoxins (i.e.,
radiocontrast agents, NSAIDs, etc.) (Zuk and Bonventre, 2016;
Moledina et al., 2017; Wu et al., 2017). Acute injury to the kidney
usually leads to death of renal tubular epithelial cells, activation of
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endothelial cells, infiltration of leukocytes, and ultimately renal
dysfunction (Sato and Yanagita, 2018; Ronco et al., 2019). In
mild injury, adaptive repair mechanisms can restore epithelial
integrity, inhibit immune responses and reconstruct a healthy
vascular system. On the contrary, severe or persistent damage
can lead to inadequate repair (Sato and Yanagita, 2018; Ronco
et al., 2019). Tubular cells may experience G2/M cell cycle arrest,
senescence, apoptosis or necrosis, leading to release of pro-
inflammatory factors (Guzzi et al., 2019). Emerging evidence has
shown the role of EZH2-mediated histone modifications in AKI
(Ho et al., 2017) (Bomsztyk and Denisenko, 2013).

The abnormal expression or activation of EZH2 is related
to the pathogenesis of AKI Zhou et al., 2018b). Initially, it was
found that EZH2 is involved in many cellular responses, such
as apoptosis and inflammation (Wang Y. et al., 2018; Bamidele

et al., 2019). The expression of EZH2 and H3K27me3 is up-
regulated in ischemia-reperfusion and folic acid-induced AKI
models (Zhou et al., 2018b). Inhibition of EZH2 with 3-DZNep
can reduce renal dysfunction and tubular cell death (Zhou
et al., 2018b). E-cadherin downregulation mediates disruption of
cell-cell adhesion, activation of matrix metalloproteinases, and
activation of ERK1/2, and it promotes activation of cell death
receptor and regulation of mitochondrial damage. Inhibition of
EZH2 can preserve expression of E-cadherin and tight junction
protein ZO-1, inhibit expression of matrix metalloproteinase
MMP-2 and MMP-9, and suppress phosphorylation of Raf-1
and ERK1/2 in renal tubular cells exposed to oxidative stress
(Zhou et al., 2018b). This was confirmed by an in vitro study
(Zhou et al., 2018b). In a murine model of cisplatin induced-
AKI, inhibition of EZH2 expression by 3-DZNep could also

TABLE 1 | EZH2 inhibition on kidney diseases in various in vitro and in vivo models.

Inhibitors or Knockout
mice

Models Effects and mechanisms References

shEZH2, 3-DZNep RCC cell lines; Tumor xenograft in nude
mice

Inhibit migration and invasion and up-regulate the
expression of E-cadherin; Inhibit tumor growth and prolong
survival

Liu et al., 2016

EZH2 siRNA RCC cell lines Prevent cell proliferation and invasion potential of 786-O
cells

Zhang et al., 2018

EZH2 siRNA RCC cell lines Reduce the proliferation of RCC without inhibiting the tumor
suppressor p27Kip1

Sakurai et al., 2012

shRNA EZH2, EPZ011989 RCC cell lines; Tumor xenograft in nude
mice

Inhibit survival, invasion and growth of ccRCC cells with
BAP1 mutation

Sun et al., 2018

EZH2 siRNA, 3-DZNeP I/R induced AKI Reduce acute kidney injury via targeting EZH2/p38
signaling pathway

Liang et al., 2019

EZH2 siRNA, 3-DZNeP I/R or FA induced AKI Reduce renal dysfunction and renal tubular cell death;
Prevent renal tubular injury

Zhou et al., 2018b

EZH2 siRNA, 3-DZNeP Cisplatin induced AKI Suppress acute kidney injury via an E-cadherin-dependent
mechanism

Ni et al., 2019

EZH2 siRNA, 3-DZNeP I/R induced AKI Alleviate I/R injury and block the activation of oxidative
stress and pyroptosis

Liu et al., 2020

3-DZNeP, GSK126, EZH2
siRNA

Cultured NRK-49F cells; Mouse model
of UUO

Attenuate fibrosis; Reduce the activation of renal interstitial
fibroblasts

Zhou et al., 2015

3-DZNeP, EZH2 siRNA Cultured TKPT cells; Mouse model of
UUO

Attenuate renal fibrosis; Inhibit TGF-β1–induced EMT Zhou et al., 2018a

3-DZNeP, EZH2 shRNA Streptozotocin (STZ) -induced DN Increase the glomerular TxnIP expression, induce podocyte
injury, and increase oxidative stress and proteinuria

Siddiqi et al., 2016

EPZ-6438, EZH2 KO mice Adriamycin nephrotoxicity; SNx Sensitize mice to glomerular disease; Increase podocyte
injury and dedifferentiation

Majumder et al., 2018

EZH2 siRNA Rat MCs (RMC)s;
Streptozotocin-induced rat model of
type 1 diabetes and DN.

Destroy the low level, stable state of fibrosis and
inflammatory genes in MCs. Inhibition and up-regulation of
genes that cause glomerular MC and podocyte dysfunction

Jia et al., 2019a

EZH2 siRNA, 3-DZNeP,
GSK126

HK-2cells; High-fat diet induced mice
model of DN

Rescue SIRT1 expression and block ROS accumulation Zeng et al., 2018

siEZH2, EPZ005687 Murine podocyte cell line;
Streptozotocin-induced rat model of
diabetes

Inhibit podocyte migration; reduce podocyte apoptosis Wan et al., 2017

EZH2 siRNA, 3-DZNeP NRK-49F and HK2 cells;
Hyperuricemia-induced CKD

Decrease serum uric acid levels; Alleviate renal pathological
damages

Shi et al., 2019

3-DZNeP MRL/lpr mice Reduce lupus associated kidney damage Rohraff et al., 2019

3-DZNeP T cells; mouse model of allogeneic
bone marrow transplantation

Attenuate graft-versus-host disease (GVHD) He et al., 2012

3-DZNeP Rat model of renal transplantation Ameliorate early acute renal allograft rejection Li et al., 2016
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reduce apoptosis of renal tubular cells and ameliorate acute
renal injury by restoring expression of E-cadherin (Ni et al.,
2019). Both in vitro and in vivo, cisplatin-induced renal tubular
cell damage was accompanied by up-regulation of H3K27me3,
while 3-DZNep treatment did not affect its expression (Ni et al.,
2019). This suggests that 3-DZNeP-elicited renal protection in
response to cisplatin exposure may not be through a H3K27me3-
mediated mechanism. Recently, it was demonstrated that EZH2
can regulate renal injury by inducing oxidative stress as evidenced
by the fact that EZH2 inhibition blocked the production of NOX4
dependent ROS through the ALK5/Smad2/3 signal pathway in an
animal model of ischemia/reperfusion-induced AKI (Liu et al.,
2020). In the same injury model, EZH2 inhibition also reduced
renal dysfunction and tubular injury by regulating p38 signaling,
apoptosis and inflammation (Liang et al., 2019). Therefore, EZH2
is an important mediator in the pathogenesis of AKI. Additional
studies are needed to describe the mechanism of EZH2 in AKI in
more detail.

EZH2 AND RENAL FIBROSIS

Renal fibrosis is a common pathological process in the
progression of CKD to end-stage renal disease (ESRD). Renal
interstitial fibrosis is considered an example of poor self-healing
after injury (Iwano and Neilson, 1991; Inoue et al., 2015;
Lovisa et al., 2015). It is mainly manifested by extracellular
matrix (ECM) deposition, epithelial to mesenchymal transition
(EMT), inflammatory response, and fibroblast activation and
proliferation (Iwano and Neilson, 1991; Inoue et al., 2015; Lovisa
et al., 2015). Although many studies have been conducted to
elucidate its pathogenesis, there is still a lack of effective treatment
for renal fibrosis (Boor et al., 2010; Nogueira et al., 2017).

Recent studies have demonstrated that EZH2 plays a critical
role in the development of renal fibrosis. EZH2 expression
levels are low in normal kidney tissue, but high in mice
kidneys following injury and in human kidneys following disease
(Zhou et al., 2015). Immunostaining showed that EZH2 was
expressed both in tubular epithelial cells and renal interstitial
fibroblasts (Zhou et al., 2015). Activation and proliferation of
renal fibroblasts produces a large amount of ECM proteins,
including fibronectin and collagen I. In vitro, pharmacological
inhibition or siRNA mediated silencing of EZH2 reduced the
activation of renal interstitial fibroblasts; in vivo, treatment
with the EZH2 inhibitor 3-DZNep attenuated UUO-induced
fibrosis in an animal model. The anti-fibrotic effect of EZH2
inhibition is related to the inhibition of expression of epidermal
growth factor receptor (EGFR) and platelet-derived growth factor
receptor (PDGFR) and deactivation of multiple intracellular
signaling pathways, including TGFβ/Smad3, AKT and ERK1/2
(Zhou et al., 2015). EZH2 was also identified as a key regulator
of epithelial-mesenchymal transition (EMT) in fibrotic kidneys
(Zhou et al., 2018a). EZH2 inhibition elicits an anti-EMT effect
related to preservation of E-cadherin expression, repression
of transcription factors (i.e., Snail, twist), and deactivation of
PTEN/Akt and β-catenin signaling pathways (Zhou et al., 2018a).
Studies have also shown that EZH2 inhibition can effectively

suppress the development of liver fibrosis (Zeybel et al., 2017),
skin fibrosis (Tsou et al., 2019), atrial fibrosis (Song et al., 2019),
pulmonary fibrosis (Xiao et al., 2016), and peritoneal fibrosis (Shi
et al., 2020). These results suggest that EZH2 may serve as a
promising therapeutic target for the treatment of fibrosis in many
organ systems.

EZH2 AND DIABETIC NEPHROPATHY

Diabetic nephropathy is one of the most common chronic
complications of diabetes (Alicic et al., 2017; Han et al., 2017;
Feldman et al., 2019). The typical characteristics of DN are
glomerular hypertrophy, proteinuria, progressive decrease of
glomerular filtration rate, and renal fibrosis, which leads to
loss of renal function. The pathological changes of diabetes
are mainly composed of mesangial hyperplasia, thickening of
basement membrane, occlusion of capillary lumen, disorder of
podocyte structure, and decrease of podocyte number (Tung
et al., 2018). However, the specific molecular mechanism
of DN is not completely understood. Recent studies have
shown that EZH2 activation is involved in the pathogenesis
of DN. EZH2 can regulate oxidative stress in diabetic patients
by inhibiting expression of Pax6, a transcription factor, and
thus the expression of TxnIP, an endogenous antioxidant
inhibitor (Siddiqi et al., 2016). The specific deletion of EZH2
in podocytes induced podocyte damage and dedifferentiation
(Siddiqi et al., 2016) and sensitized mice to glomerular disease
(Majumder et al., 2018). In human glomerular diseases such
as focal segmental glomerulosclerosis and DN, H3K27me3 was
decreased in podocytes. H3K27me3 and EZH2 are involved
in inhibiting and maintaining the low-level and stable state
of fibrosis and inflammation genes in mesangial cells, while
H3K27me3 and EZH2 are inhibited by TGF-β, which increases
the expression of genes that mediate glomerular mesangial
dysfunction and DN, leading to renal dysfunction (Jia et al.,
2019a). In contrast, the depletion or inhibition of EZH2
attenuated the increase of reactive oxygen species (ROS) in
human renal tubular epithelial cells (HK-2) induced by high
glucose (Zeng et al., 2018). Moreover, Wilm’s tumor 1 (WT1)
can improve the β-catenin mediated damage of podocytes in
DN by antagonizing EZH2, which is manifested in reducing
the transformation of the stroma of DN podocytes, maintaining
the structural integrity of DN podocytes, reducing apoptosis
and oxidative stress of DN podocytes (Wan et al., 2017). These
data illustrate that EZH2 activity is necessary for protection
against podocyte damage in DN. This is opposite to what has
been observed in the murine model of UUO-induced renal
fibrosis (Zhou et al., 2015). Currently, it remains unclear about
the underlying mechanism by which EZH2 plays distinct roles
in different disease models and cells. Since multiple cell types
are involved in the pathogenesis of DN, and EZH2 mediated
gene regulation is cell-context specific, EZH2 may play the
role of a double-edged sword in different cell types in DN
(Brasacchio et al., 2009). Further investigation is required to
elucidate the gene and signaling pathways regulated by EZH2
during DN development.
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EZH2 AND HYPERURICEMIC
NEPHROPATHY

Hyperuricemia (HUA) is a purine metabolic disorder, in which
the blood uric acid level is higher than the normal level due
to the increase of uric acid production and/or the decrease
of uric acid excretion. HUA is an independent risk factor for
CKD progression (Mok et al., 2012) and has a direct correlation
with renal damage (Lin et al., 2014). 10–20% of patients with
primary hyperuricemia have evidence of AKI and chronic kidney
disease, including chronic uric acid nephropathy, acute uric acid
nephropathy and uric acid stones. Long-term HUA can cause
renal damage through the urate crystal dependent pathway. Uric
acid crystals are deposited in the distal collecting duct and the
renal interstitium, causing chronic interstitial nephritis, which
may lead to renal interstitial fibrosis (Liu et al., 2015; Yuan
et al., 2017; Johnson et al., 2018). In addition, long-term HUA
can cause renal damage through an independent pathway of
urate crystal formation. In this regard, it has been reported
that uric acid can cause renal endothelial dysfunction, renin-
angiotensin system (RAS) activation, inflammation, oxidative
stress (Sanchez-Lozada et al., 2008; Yu et al., 2010; Filiopoulos
et al., 2012), whereas lowering serum uric acid alleviates renal
damage or delays its progression (Obermayr et al., 2008; Zhou
et al., 2012; Kim et al., 2014).

Although the molecular mechanism of renal damage caused
by elevated uric acid levels remains obscure, uric acid has been
shown to induce activation of TGF-β receptor and transcription
of TGF-β1 target genes (Böttinger, 2007), leading to activation of
downstream signaling pathways such as EGFR and ERK1/2 (Joo
et al., 2008; Lee et al., 2010). Interestingly, blocking EZH2 by 3-
DZNep inhibits TGF-β1-induced activation of renal interstitial
fibroblasts in vitro and attenuates ECM protein deposition and
α-smooth muscle actin expression in obstructed kidneys (Zhou
et al., 2015). Inhibition of EZH2 by 3-DZNep also significantly
reduces blood uric acid levels by reducing the activity of serum
purine oxidase (XOD) and alleviates HUA-induced renal damage
through various mechanisms, including inhibition of the TGF-
β1/Smad3 and EGFR/ERK1/2 signaling pathways. Moreover, 3-
DZNep was effective in downregulating the levels of various pro-
inflammatory chemokines/cytokines and reducing the apoptosis
of renal tubular cells (Shi et al., 2019). Therefore, EZH2 may
be a potential therapeutic target for reducing renal damage and
delaying the development of CKD caused by HUA.

EZH2 AND LUPUS NEPHRITIS

Systemic lupus erythematosus (SLE) is a chronic autoimmune
inflammatory disease characterized by loss of immune tolerance
to autoantigens, production of autoantibodies, formation of
immune complexes and deposition in different parts of the
body, causing inflammation and multiorgan damage (Marshall
and Vierstra, 2018). LN is one of the most common and
serious complications of SLE, affecting up to 60% of lupus
patients by some estimates. LN is thus considered an important
cause of chronic kidney disease (Koutsokeras and Healy, 2014;

Zhu et al., 2016). The pathogenesis of SLE and LN is complex
and exact mechanism(s) are largely unknown. It is generally
believed that SLE is caused by genetic, endocrine, environmental
factors (infection, ultraviolet radiation, etc.), and abnormal
activation of the immune system. Epigenetic changes have
also been reported to contribute to the pathogenesis of lupus
(Ballestar et al., 2006). In particular, various abnormal patterns
of DNA methylation of immune cell types isolated from lupus
patients have been found to be related to clinical heterogeneity,
interspecific disease variability, lupus onset and remission
(Teruel and Sawalha, 2017).

Similar to DNA methylation, histone modifications can lead
to abnormal gene expression and contribute to the pathogenesis
of SLE (Hu et al., 2008). It has been reported that unregulated
EZH2 activation in CD4+ T cells leads to T cell activation
and non-Th1 immune responses, prior to transcription activity,
and is related to lupus activity. In addition, levels of two
microRNAs (miR-101 and miR-26a) targeting and regulating
EZH2 in CD4+ T cells of lupus patients were negatively
correlated with lupus disease activity (Coit et al., 2016). EZH2
can mark and control functions and survival of effector T cells
through microRNAs and the Notch signaling pathway (Zhao
et al., 2016). In lupus patients, overexpression of EZH2 leads
to the methylation of JAM-A (junctional adhesion molecule
A), which may increase the migration of T cells and lead to
the invasive exosmosis of T cells. Blocking EZH2 by 3-DZNep
and GSK126 can effectively inhibit the adhesion of lupus T
cells to human microvascular endothelial cells. In addition,
overexpression of EZH2 results in methylation changes of genes
involved in gene transcription, ubiquitination and immune
response, indicating that EZH2 is involved in various cellular
and physiological processes crucial to the survival and function
of T cells (Tsou et al., 2018). Inhibition of EZH2 by 3-DZNep
significantly reduced the number of pathogenic double negative
T cells and production of cytokines and chemokines in lupus
prone MRL/lpr mice. Splenomegaly and lymphadenopathy in
mice treated with 3-DZNep were significantly reduced. Most
importantly, inhibition of EZH2 by 3-DZNep in MRL/lpr mice
can reduce renal damage and increase survival rate of MRL/lpr
mice. Mice with 3-DZNep treatment have relatively stable
albumin:creatinine ratios, and attenuated glomerulonephritis
and crescent formation. Glomerular necrosis in the prevention
group of mice was significantly relieved as well. Therefore, 3-
DZNep elicited inhibition of EZH2 can effectively prevent the
progression of renal damage in lupus (Rohraff et al., 2019).
Additional studies are necessary to examine whether other EZH2
inhibitors or gene modulators are also effective in ameliorating
the pathogenesis of LN.

EZH2 AND AGING KIDNEY

Aging is an irreversible phenomenon characterized by gradual
decline of cell function and gradual structural changes of
many organ systems. Age-related changes in kidney function
include anatomical and physiological changes (Zhou et al.,
2008). The histological changes in renal aging mainly include:
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renal mass reduction, glomerulosclerosis, renal tubular atrophy,
renal interstitial fibrosis and arterial intimal fibrosis (Silva,
2005). The partial loss of renal function can be manifested
as decreases in renal vascular elasticity, renal blood flow and
glomerular filtration rate. At present, mechanisms of renal aging
are incompletely studied. Increasing evidence indicates that renal
aging is related to epigenetic changes (Painter et al., 2008; Au
et al., 2013; Kooman et al., 2014).

Epigenetic histone modification plays a role in aging (Sen
et al., 2016), especially trimethylation of 27 lysine (H3K27me3)
of histone H3, which is directly related to life span and aging
in different models (Jin et al., 2011; Ma et al., 2018). Previous
studies have shown that EZH2 expression is related to abnormal
expression of genes in aging animal models (Shumaker et al.,
2006; Bracken et al., 2007; Chen et al., 2009). For example,
overexpression of EZH2 can prevent stem cell failure and aging
(De Haan and Gerrits, 2007) while pharmacological inhibition
of EZH2 can dysregulate tissue regeneration in aged mice
(Nishiguchi et al., 2018). Methylation of CpG islands related to
aging may overlap with the regulatory regions of cancer genes
such as c1ql3. EZH2 interacts with these regulatory regions
in mice, and the occupancy of EZH2 may decrease with age
at c1ql3. EZH2 is part of the protein mechanism of forming
the aging epigenome (Mozhui and Pandey, 2017). A recent
study found that H3K27me3 regulated the expression of Klotho
in the kidney of aging mice. A decrease of Klotho levels
is an important mechanism of aging. The epigenetic down-
regulation of Klotho gene expression is at least partly due
to the histone 3 modification of the Klotho promoter. Aging
plays a role by up-regulating H3K27me3 and down-regulating
hyperphosphorylation of Klotho and mTOR in renal tubules.
Inhibition of EZH2 with GSK343 or EED226 was able to reduce
H3K27me3 recruitment to the Klotho promoter (Han and Sun,
2020). The expression level of EZH2 decreased in older mice (Han
and Sun, 2020). At present, no study has confirmed the obvious
correlation between the expression of EZH2 and H3K27me3 in
the kidney of aging mice or adult tissues (Margueron et al., 2008).
Studies have pointed out that renal aging can up-regulate the
ECM laminin genes by down-regulating 5mC and H3K27me3
in the promoter region of the ECM laminin gene. Reduction
of H3K27me3 levels by 3-DZNep can inhibit expression of the
laminin gene in the ECM, but administration of a more specific
EZH2 inhibitor, GSK-126, did not inhibit expression of the
laminin gene in ECM (Denisenko et al., 2018). Therefore, the
exact mechanism(s) by which EZH2 contributes to renal aging
needs further investigation.

EZH2 AND KIDNEY TRANSPLANTATION
REJECTION

Currently, renal transplantation is the most effective treatment
for ESRD. However, acute rejection (AR) is a common adverse
reaction after kidney transplantation, usually occurring weeks
to months after transplantation. Rejection after transplantation
is caused by the recipient’s immune system. Recognition of
the graft as a foreign body stimulates secretion of various

inflammatory factors to attack the graft. Eliminating the foreign
body reaction and maintaining the stability of the internal
environment would improve the long-term survival of the
transplanted kidney. Transplantation rejection includes T-cell-
mediated rejection and antibody mediated rejection (Haas et al.,
2018). Acute T-cell mediated rejection is an inflammatory
reaction, involving extensive T lymphocytes infiltration of the
allograft and activation (Yang C. et al., 2015). T cell mediated
AR of renal transplantation includes mononuclear interstitial
infiltration and tubulitis with intima-intimal arteritis. Epigenetic
modification is involved in T cell-mediated AR of renal
transplantation (Cuddapah et al., 2010).

Enhancer of zeste homolog 2 plays an important role
in maintaining T cell numbers and functions. It has been
documented that EZH2 is essential for the expansion of T-effector
cells (Yang X. P. et al., 2015) as well as differentiation and
characteristic maintenance of regulatory T cells necessary for
maintaining immune homeostasis (DuPage et al., 2015). EZH2
can also stimulate the expression of T cell multifunctional
cytokines by activating the Notch pathway, and promoting T
cell survival by Bcl-2 expression (Zhao et al., 2016). In addition,
EZH2 can protect key T cell development regulators from DNA
methylation so that they can be activated in a subsequent
differentiation stage (Wang C. et al., 2018). Treatment with
3-DZNep, a EZH2 inhibitor can induce selective apoptosis
of alloantigen-activated T cells and arrest persistent graft-
versus-host disease (GVHD) in mice after allogeneic bone
marrow transplantation (He et al., 2012). A recent study
was the first to demonstrate the relationship between EZH2
and allograft rejection. EZH2 in T cells was increased after
kidney transplantation in a rat model of kidney transplantation;
inhibition of EZH2 by DZNep reduced AR, reduced injury
and inflammatory infiltration of the transplanted kidney. The
cellular mechanisms are related to the inhibition of activation and
proliferation of alloreactive T cells, impairment of production of
inflammatory factors, and increased apoptosis of alloreactive T
cells in the transplanted kidney and peripheral blood) (Li et al.,
2016). However, the specific mechanism(s) of EZH2 in AR of
renal transplantation remains to be further studied.

CONCLUSION AND PERSPECTIVES

Enhancer of zeste homolog 2 is highly expressed in renal
tumors and many kidney diseases. Abnormal expression or
activation of EZH2 can lead to development and progression
of renal tumors and several kidney diseases as indicated in this
review. The molecular mechanisms of EZH2-mediated renal
pathology are associated with renal tubular cell injury, podocyte
dedifferentiation, renal interstitial fibroblast proliferation,
production of multiple cytokines/chemokines and infiltration of
inflammatory cells. Because EZH2 regulates expression of diverse
genes and activation of multiple signaling pathways associated
with pathogenesis of disease, its functional role may vary with
cell types, tissues and disease models. In this context, EZH2
activation has been shown to contribute to renal tubular cell
death, but protects against podocyte injury. Therefore, further
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studies are necessary to elucidate the detailed mechanistic actions
of EZH2 in the pathogenesis and progression of kidney diseases.

Given that preclinical studies have demonstrated that EZH2
inhibitors attenuate some renal diseases in animal models, EZH2
inhibitors alone, or in combination with other drugs may provide
beneficial effects to ameliorate or prevent kidney diseases. This
is encouraged by recent approval of tazemetostat (EPZ-6438),
one of EZH2 inhibitors, for treatment of adult patients with
relapsed or refractory (R/R) follicular lymphoma by the FDA
(Gulati et al., 2018a). Among the 203 patients who were evaluated
for efficacy, responses were seen in 24% patients who had received
tazemetostat administered as a single agent in both tumor types
and in EZH2 mutant and WT tumor (Gulati et al., 2018b). In
addition to tazemetostat, other EZH2 inhibitors such as GSK126
and CPT-1205 are being tested in treating lymphoma and several
other solid tumor types (Eich et al., 2020). Currently, there are
still no clinical trials of EZH2 inhibitors for the treatment of
kidney disease of any underlying cause. Based on the evidence
showing the efficacy of EZH2 inhibitors in animal models
of kidney disease, clinical trials assessing the effect of EZH2
inhibition may hold out the promise of treatment for some forms
of progressive kidney disease in humans. However, since genetic
and pharmacological inhibition of EZH2 potentiates podocyte

injury in murine models of glomerular disease (Majumder et al.,
2018), EZH2 inhibitors may not be suitable for treatment of renal
diseases associated with podocyte injury.
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