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Abstract

In the current biomedical data movement, numerous efforts have been made to convert and 

normalize a large number of traditional structured and unstructured data (e.g., EHRs, reports) to 

semi-structured data (e.g., RDF, OWL). With the increasing number of semi-structured data 

coming into the biomedical community, data integration and knowledge discovery from 

heterogeneous domains become important research problem. In the application level, detection of 

related concepts among medical ontologies is an important goal of life science research. It is more 

crucial to figure out how different concepts are related within a single ontology or across multiple 

ontologies by analysing predicates in different knowledge bases. However, the world today is one 

of information explosion, and it is extremely difficult for biomedical researchers to find existing or 

potential predicates to perform linking among cross domain concepts without any support from 

schema pattern analysis. Therefore, there is a need for a mechanism to do predicate oriented 

pattern analysis to partition heterogeneous ontologies into closer small topics and do query 

generation to discover cross domain knowledge from each topic. In this paper, we present such a 

model that predicates oriented pattern analysis based on their close relationship and generates a 

similarity matrix. Based on this similarity matrix, we apply an innovated unsupervised learning 

algorithm to partition large data sets into smaller and closer topics and generate meaningful 

queries to fully discover knowledge over a set of interlinked data sources. We have implemented a 

prototype system named BmQGen and evaluate the proposed model with colorectal surgical 

cohort from the Mayo Clinic.
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1. Introduction

Researchers and health care practitioners prefer to conduct research in an evidence-based 

practice by using available research results when making decisions in health care. The main 

challenge we are facing to support evidence-based research is the big data problem along 

with large, complex, and dynamic medical data (e.g., clinical research data, EHRs, 

ontologies). A lot of medical ontologies and tools have been developed for biomedical 
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research and applications. However, these are not sufficient for integrating or mapping 

unstructured data to structured data that will be significant for evidence-based research. It is 

mainly due to the lack of the ability to integrate data from such a variety of sources and 

extract both a cohesive structure and semantics from structured or unstructured data to 

support evidence-based research.

In order to extract a cohesive structure and semantics, it is essential to know what 

information exists and what significant relationships are among the related domains (e.g., 

discover genes responsible for a disease). Semantic Web is able to provide a platform of 

information exchange for biomedical knowledge. Increasingly, we are also seeing the 

emergence of biomedical and scientific collaborations. The first notable effort toward 

connecting scattered medical data is to materialize a data movement by the biomedical 

community (i.e., Bio2RDF, OBO, LinkedCT) [1]. In addition, the Semantic Web Health 

Care and Life Sciences Interest Group (HCLSIG) [2] is aimed at utilizing Semantic Web 

technologies for innovative research and collaboration in the health care and life science 

domains. In this drive, large amounts of medical data have been specified and shared via 

machine-readable formats, such as the Resource Description Framework (RDF) and 

Ontology Web Language (OWL). The ontologies are developed to easily extend the work of 

others and share across different domains. These Semantic Web technologies make it easier 

and more practical to integrate, query, and analyze the full scale of relevant biomedical and 

healthcare data, as well as EHRs for cost effective health care systems [3].

However, to make seamless interoperability and interchange among heterogeneous datasets, 

there still exist significant difficulties. There are some existing promising semantic 

approaches for linking different datasets; however, they are computationally expensive and 

impractical for large scale ontologies since these works may still require human 

intervention. Furthermore, as the size of data increases drastically, it is difficult to discover 

information from structured/unstructured data in a single domain or cross domains, 

especially for those researchers with expertise in a specific domain. Thus, we need to reduce 

human intervention with the help of process automation in extraction and integration of 

semantics from structured or unstructured data.

For extraction of a cohesive structure and semantics from structured or unstructured data, 

identification of meaningful linking, either together within or across a large number of 

biomedical ontologies, is necessary. vSparQL is introduced to enable application ontologies 

to be derived from these large, fragmented sources such as the FMA [4]. A series of queries 

may be generated using large ontologies like the NCI thesaurus by extracting relevant 

information that is desired for applications [5]. The GLEEN project aims to develop a useful 

service for simplified, materialized views of complex ontologies [6]. However, these works 

are limited due to the lack of the comprehensive semantic analysis of large sources and the 

usage of the knowledge for query processing. We need to connect related information 

through a reference ontology that becomes a platform to link together multiple ontologies 

that cover a broad range of related information. Advanced techniques are needed to analyze 

these larger reference ontologies, rather than simply getting a slice of a reference ontology 

and applying it for a query process or decision support [5]. There is also some related work 
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on using K-Means and Fuzzy C-Means for clustering microarray data [7] [8], but neither of 

them are concerned about the semantics of data nor hierarchical clustering.

In this paper, we applied RDF predicate oriented pattern analysis methodology and 

combined the advantages of Machine Learning with the added rigor of machine-readable 

semantics in extracting information and generating queries applicable for decision support in 

clinics [9]–[12]. The approach to converting free text to ontologies is based on text 

classification methods by identifying related information connected through relationships 

and classifying them according to their relevance. In addition, queries are evaluated by 

measuring the content of information, identifying possible extensions or compositions of 

queries and making a comparison with an existing query benchmark. We have implemented 

a prototype of the BmQGen system and evaluated the proposed query model based on the 

predicate oriented clustering with the colorectal surgical cohort from the Mayo Clinic.

2. Methods

The proposed framework BmQGen is based on the following steps: 1) extracting key words 

from report; 2) converting unstructured (free text) data to semantically structured (RDF/

OWL) data; 3) arranging them into groups in a semantically meaningful manner; 4) 

generating queries for evidence-based practice; 5) providing visualization based query 

analytics tool.

The main contribution of this paper is knowledge discovery from multiple domains by 

defining a predicate-oriented model for pattern-based fuzzy clustering, and processing cross-

domain queries automatically generated from clustered patterns. Figure 1 summarizes the 

proposed system architecture. As seen in this figure, the Free Text Normalizer component 

first reads unstructured free text documents from doctors’ notes and patients’ records then 

uses MedTagger [13] to filter unnecessary terms out and convert free text terms to 

normalized ones. The Graph Generator component then applies TextRunner [14] on each 

unstructured normalized document and simplifies the term to generate a RDF triplet. The 

RDF/OWL data model [15] specifies resources (information on the entities and their 

relationship in the given document) in the form of triples <subject (S)-predicate (P)-object 

(O)>, where S denotes the resource, and P denotes aspects of the resource and expresses a 

relationship between S and O. In the Semantic Cluster component, many such triplets group 

n different ontologies, and these ontologies can be clustered into m semantic groups. The 

cluster graph is composed of the predicates either from a single domain or different 

domains. In the Query Graph Crawler component, semantically related queries will be 

generated for each of the m clusters crawling RDF/OWL (predicate) graphs by crawling the 

cluster graph to generate the query graph with one domain or across domains. The Graph 

Analytics component allows users to visualize the graphs and generate SPARQL queries 

through an interactive query interface for selected query graphs.

We first explain how to convert unstructured data to a linked data structure (RDF). We then 

present a fuzzy clustering algorithm to cluster the RDF/OWL graph. Finally, we evaluate the 

proposed model through the queries automatically generated from the clusters. The dataflow 

of the BmQGen framework is shown in Figure 2.
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The basic steps of the BmQGen framework are described in the remainder of this section.

Step 1: Feature Selection and Concept Annotation—We extracted various free text 

reports and then performed preprocessing to maintain terms consistently and exclude 

irrelevant terms, using filtering. Inequality of the likelihood holds between two different 

values to describe their correlations. To get the inequality of the likelihood between any 

pairs of words, we then extracted co-occurring terms from free text clinical notes, and 

calculated the inequality score to cluster them into a different category (domain). In this 

study, we used MedTagger, which is an open source concept detection and normalization 

tool through open health natural language processing. Specifically, this tool identifies 

phrases present in MedLex, a general semantic lexicon created for the clinical domain [16].

The point-wise mutual information was used to assess the inequality of the likelihood for 

given terms [17].

N is the number of observations (e.g., the number of cases for all patients), N(c) is the 

number of cases having the concept c, N(c,o) is the concept c and the number of cases with a 

specific complication o, and N(o) is the number of cases with a specific complication o.

As the example showed in Figure 2, a given input text, “the patient was UCI’d with plans to 

have the catherter indwelling”, MedTagger recognized the uci and catheter concepts and we 

also found these terms come from ILEUS report. Then we used the point-wise mutual 

information measurement to calculate any inequality likelihood between these concepts (uci 

and catheter) and ILEUS. For example, the total number of cases is 1980, number of ILEUS 

cases is 400, the number of concept uci among all cases is 600, and the number of concept 

uci along with ILEUS cases is 500. Based on equation, the inequality between uci and 

ILEUS is 1.69. We did the same for all other concepts and ranked these concepts by their 

inequality score and only chose the top 60 of them. Then for any free text which contains top 

60 concepts with inequality score, we used OpenIE [18] to get the triple <S-P-O> from the 

free text annotated with the concepts recognized by MedTagger. For this purpose, we first 

got a triple {the patient, UCI’d, catherter indwelling}. To make the triple normalized, we 

looked up the MedTagger concept in the dictionary again and converted the triple to 

{patient, uci, catherter}. For each complication case, we did the same work above in order to 

generate six ontologies, respectively.

In Table 1, we list some examples about how to map among clinical free text, MedTagger 

normalized terms and triplets.

Step 2: RDF Graph Construction—First, the top K concepts were selected and each 

sentence with these concepts in the datasets was annotated with the selected terms. We then 

extracted the assertions (RDF/OWL triples) from a given free test dataset considering the top 

K concepts of each domain and generated RDF/OWL triples, respectively. We used OpenIE 
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to extract the triples from the free text. The OpenIE that is based on TextRunner, ReVerb 

[19] using (PoS) patterns, extracted a significant relation without any relation-specific input. 

OpenIE used a conditional random field (CRF) classifier to automatically extract triples 

representing binary relations (Arg1, Relation, Arg2) from sentences. The triples generated 

from OpenIE were connected to generate RDF graphs.

Step 3: Assertion Clustering and Query Generation—Our assumption for the 

predicate neighboring patterns (PNP) is that a predicate plays an important role in sharing 

information and connecting entities among heterogeneous data. For any given domain, the 

number of unique relations is much less than the number of concepts. Thus, this is another 

scalable approach for mapping domains than the concept-centric approach. A group of terms 

(subjects) can be connected to a group of terms (objects) through a single predicate unlike 

the concept-driven approach. From the unit of <subjects-predicate-objects>, a specific 

context can be discovered from the associated concepts (subjects, objects). From the 

neighbors of the predicates, a specific context can be discovered from the association of 

predicates and their subjects and objects. We can infer/predict missing predicates or missing 

concepts based on existing contexts. Therefore, we generated a hypothesis that when a graph 

can be clustered based on PNP patterns, data in the same clustered group have a closer 

relationship than when in different ones. Predicate neighboring patterns are important to link 

data together with a variety of domains.

3. Query Generation for Knowledge Discovery

3.1. Predicate Neighboring Patterns

A predicate P is representing a binary relation between two concepts (c1 and c2) in ontology. 

In RDF/OWL, P is represented as a property to express a kind of relationship (e.g., 

rdfs:subClassOf) between domain (subject) and range (object). The subject and object can 

be either from the same ontology or from different ontologies. In our study, relationships are 

defined by the empirical analysis of ontology data. We are particularly interested in 

predicates (relationships) that are different from existing approaches like PSPARQL [20] 

and SPARQLer [21]. Apart from being similar, predicates may share other aspects, e.g., 

sharing the same subjects or the same objects as well as the connectivity between predicates. 

This forces not only on concepts among graphs but also relationships of the concepts. In this 

paper, the two types of predicate patterns are defined as follows.

Share Patterns—As Table 2 shows, this pattern describes the resources sharing 

relationships between interacting concepts such as shared subjects or shared objects through 

the given relationship. Assume that two predicates are given as follows: P1 <Si, Oi> and P2 

<Sj, Oj> where Si, Sj are a set of subjects and Oi, Oj are a set of objects in given ontologies.

Connection Patterns—According to Table 3, the connection pattern is a frequently 

recurring pattern with predicates observed during query processing as the basis for joining 

one query pattern to another. This pattern is based mainly on the connectivity of concept(s) 

through the respective predicates. This type of pattern describes the comprehension of the 

connectivity relationships between interacting predicates. Assume that two predicates are 
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given as follows: P1 <Si, Oi> and P2 <Sj, Oj> where P1 is directly connected to P2 in the 

given ontologies Oi, Oj.

We gave the definition of predicate neighboring measurement in our previous paper [9]–

[12]. Figure 3 gives an example to describe how neighboring pattern can be used to measure 

the closeness among predicates and how similarity matrix can be used to determine the 

clustering results. Figure 3(a) gives a RDF graph with 5 different predicates. In this graph, 

p1 and p2, p1 and p3, p3 and p4, p4 and p5 are in share patterns. Similarly, p1 and p4, p1 

and p5, p2 and p3, p2 and p4, p2 and p5, p3 and p5 are in connection patterns. Based on 

different patterns each pair of predicates possesses, we calculated their similarity score and 

build the symmetric similarity matrix as Figure 3(b) shows. Then we applied Hierarchical 

Fuzzy C-Means (HFCM) clustering algorithm on this similarity matrix and built different 

clusters. As Figure 3(c) presents, p1, p2 and p3 are in cluster 1, p3, p4 and p5 are in cluster 

2, specifically, p3 is the fuzzy predicate for cluster 1 and cluster 2.

3.2 Hierarchical Fuzzy C-Means Clustering

We posited that predicate clustering is a required step for efficient query processing 

involving the alignment and integration of ontologies. Here we clarify our approach to 

efficient query processing and query generation within the above theoretical framework. A 

query processing consists of a collection of several relationships between multiple 

properties. Given that properties are more closely related to some properties than others, 

property clustering and partitioning can be utilized for efficient query processing—the task 

of classifying a collection of properties into clusters. The guiding principle is to minimize 

inter-cluster similarity and maximize intra-cluster similarity, based on the notion of semantic 

distance.

To discover the neighboring relation between predicates, we used an innovative Hierarchical 

Fuzzy C-Means (HFCM) clustering algorithm. We extended a Fuzzy C-Means clustering 

algorithm [22] with a hierarchical approach applying a heuristic function. In general, we 

defined a fuzzy hierarchy for clustering setting a machine capacity threshold α to denote a 

certain number of triplets that each cluster for each level of the hierarchy can hold. The 

hierarchy can be constructed by applying the Fuzzy C-Means algorithm on each cluster until 

the number of triplets for each cluster is less than or equal to the threshold α or no further 

change of numbers of elements for each cluster can be made. To get the optimal number of 

clusters, we used Silhouette Width to evaluate results and chose the one with the biggest 

score. The HFCM algorithm is given in Algorithm 1.

Algorithm 1

Hierarchical fuzzy C-Means clustering (HFCM).

// P is an n × n predicate similarity matrix, n is the number of predicates in ontologies

// δ is the threshold of silhouette width Cij

Input: P, δ

// a hierarchy with a set of clusters Cij the jth cluster at ith level

Output: C = {C11,C12,···,Cij}
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1. i=1

2. repeat

3.  // n is the number of input predicates, m is the number of predicates of cluster j at level i,

4.  // optimal k (k≤m≤n) from m predicates of the cluster at level i (Ci) using nsw(ci) function

5. sw1 = nsw(ci) //compute Neighborhood silhouette width

6.  k = Optimal K(Ci,sw1) //fine the optimal k based on nsw(Ci)

7. Change1 = false

8. If (k > 1) then

9. Change1 = true

10.   for j = 1 to k

11. μij = RM(pj1, pj2,···, pjm) (// random mean for predicates in Cij (cluster j at level i)

12.   end

13. for each pij ∈ Pi do

14.

 is the degree, m is the fuzzifier

15.   end

16. Change2 = false

17. sw = 0

18.   repeat

19. for each μij ∈ Ui do

20. Update Cluster(μij)

21.    end

22. for each pij ∈ Pi do

23. NCen = Argmin(pij,μij) j ∈ {1,···,k}

24.     if NCen ≠ μij then

25. μij = NCen

26. Cij = Cij ∪ pij

27. Changed2 = true

28. end if

29. sw2 = Silhouette Width (Cij) //computesil houette width

30.   while Changed2 == true

31.  while Change1 == true and sw2 ≥ δ

3.3. Query Generation

From the HFCM clustering step, predicates are grouped into a number of clusters according 

to the similarity measurement of the predicate neighboring patterns (PNP). Each cluster will 

have a graph, called the cluster graph that is composed of the predicates either from a single 

domain or different domains. The Query Graph Crawler will take over and start crawling the 

cluster graph to generate the query graph with one domain or across domains. Figure 4 

shows how the Query Graph Crawler generates queries: m clusters are generated after 

executing the HFCM algorithm and one of them has three predicates, namely uci from the 

ILEUS domain, transferred from the ABSCESS domain and held from the BLEED domain. 

As seen in Figure 4, we started to generate a query, first visiting the predicate that had the 

Shen et al. Page 7

Intell Inf Manag. Author manuscript; available in PMC 2017 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



highest in-degree and out-degree and expanded it with its neighbors. In this example, we 

started with uci and then visited all its neighbors in a descending order of their similarity 

scores. As the similarity score between uci and held is 0.6, uci visits held first. And then uci 

visits transferred with the similarity score 0.5. After all uci’s neighbors were visited, we 

started to select its neighbor that had the highest similarity score. In this example, held takes 

turns to reach its neighbor and find transferred. The algorithm runs in an iterative way until 

there no more neighbors can be visited within the cluster. For example, if a query is 

generated with a predicate’s similarity score t ≥ 0.6, then the generated graph will include 

only uci and held. Finally, a SPARQL query will be generated by replacing the names of 

subjects and objects with variables.

4. Results and Discussion

4.1. Specification

The BmQGen prototype system was implemented using Java in an Eclipse Juno Integrated 

Development Environment [23]. Apache Jena API [24] was used to parse OWL/RDF 

datasets and retrieve triple information. We used the R computing environment [25] for our 

experimental validation. We implemented a software plugin for query and schema graph 

visualization using CytoScape 3.0.2 [26]. In addition, we set the machine capacity threshold 

α as 1/3 of the total size of the triples.

4.2. Case Study

As a case study, the Mayo Clinic’s colorectal surgical reports were used to generate queries 

by categorizing relationships among six colorectal postsurgical complications (deep vein 

thrombosis/pulmonary embolism, bleeding, wound infections, myocardial infraction, ileus 

and abscess/leak). Postsurgical complications are related to general or certain type of 

surgeries. Clinical data of six complications after colorectal surgery were attempted, 

analyzed to find interesting patterns/associations in a single or multiple complications, and 

generated comprehensive cross-domain queries that might be useful in conducting evidence-

based practice by using available research results. We assume six postsurgical complications 

represent six domains. Predicate profiles and association patterns are important to link data 

together with a variety of domains.

4.3. Convert Colorectal Surgical Cohort to Ontology

Our case study has 1980 colorectal surgical cases for 1416 patients between 2005 and 2013 

enrolled at the Mayo Clinic in Rochester, MN. We used our previous work, MedTagger to 

extract concepts from clinical notes written about any complications within 30 days after 

surgery in cohort. The top 60 concepts (by their inequality scores) were used for information 

extraction. The definition of the 6 complications is shown in Table 4.

We built six ontologies based on the top 60 terms ranked by their inequality scores. Figure 5 

gives visualizetions for each of the six ontologies. We used different colors to indicate 

different domains, so that ABSCESS is in green, BLEED is in gray, DVTPE is in blue, 

ILEUS is in pink, MI is in red and INFECTION is in orange. Table 5 shows the statistics of 

each ontology. Among the six ontologies, there are a total of 445 subjects, 83 predicates, 482 
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objects and 1210 triples involved. We then integrated six ontologies together to make them 

interlinked and prepared to apply a Hierarchical Fuzzy C-Means clustering algorithm on it.

4.4 Hierarchical Fuzzy C-Means (HFCM) Clustering Approach

We applied Hierarchical Fuzzy C-Means (HFCM) clustering for integrated ontology on an 

input predicate similarity matrix with size 83 × 83. As a result, we got eight different topics. 

The hierarchical clustering graph is showed in Figure 6. The original integrated ontology 

was partitioned into three intermediate sub-topics based on the optimal Silhouette Width. In 

addition, three intermediate sub-topics can be further split into eight smaller topics with the 

best Silhouette Width. Because eight topics cannot be further clustered, then BmQGen 

stopped the HFCM algorithm and produced eight topics as the final output. We collected the 

top five predicates for each topic by their total in-degrees and out-degrees and summarized 

each topic with those predicates. What is more, out of the top five ranked predicates, we also 

selected top two unique predicates with the most in-degrees and out-degrees for each topic. 

Unique predicates indicate those predicates that appear in only one topic. Therefore, some 

topics have unique predicates but some do not. Based on the top predicates and unique 

predicates, we generated a signature for each topic to summarize the content of each topic.

Figure 7 shows topics 1–4. Topic 1 includes 3 complications (ABSCESS, BLEED and 

INFECTION) with 24 predicates in total. The top five predicates for Topic 1 are abv: 
developed, inv: healing, abv: drainage, bv: anemia and bv: blood, and the top two unique 

predicates for Topic 1 are abv: abscess and abv: replacement. By analyzing the signature of 

Topic 1, we found that Topic 1 describes the close relationship among drainage, anemia, 

blood and incision healing. Similar to Topic 1, Topic 2 also covers three complications 

(ABSCESS, BLEED and INFECTION) with 16 predicates. Top 5 predicates for Topic 2 are 

abv: developed, bv: held, inv: discontinued, inv: packed and bv: drop, and there are no 

unique predicates for Topic 2. From this signature, Topic 2 explains that the drop of some 

life indicators (e.g., hemoglobin) for a patient may be related to the complication (e.g., 

abscess) developed by such patient; the patient’s wound infection is discontinued for the 

reason that the infection area is packed with gauze. Topic 3 introduces four complications 

(ABSCESS, BLEED, DVTPE and MI) with 13 predicates. Top 5 predicates for Topic 3 are 

mv: held, bv: held, mv: signs, abv: drainage and bv: blood, and the unique predicates for 

Topic 3 are none. This signature illustrates BLEED and MI might hold the same symptoms, 

which are also related to drainage and blood. Topic 4 mentions three different complications 

(BLEED, DVTPE and ILEUS) with 30 predicates. The top five predicates for Topic 4 are 

bv: held, bv: drop, ilv: clamp, ilv: fluid and ilv: dilated, and the top two unique predicates 

for Topic 4 are dv: therapeutic and ilv: bolus. From this signature, we conclude that fluid has 

a potential relationship with the dilated, drop of life indicator and ng tube; therapeutic is 

associated with bolus.

Figure 8 shows topics 5–8. Topic 5 describes 5 complications (ABSCESS, DVTPE, 

INFECTION, ILEUS and MI) with 23 predicates. The top 5 predicates for Topic 5 are abv: 
developed, inv: healing, abv: drainage, bv: anemia and bv: blood. The top 2 unique 

predicates for topic 5 are mv: normalized and mv: aggressive. The top 5 predicates for Topic 

5 convey the exact same information as Topic 1 does. However, unique predicates from 
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Topic 5 tell us that the patient’s pain remained poorly-controlled even with an aggressive 

multimodal; meanwhile, the patient’s hypotension had normalized systolic pressure. Topic 6 

indicates 4 complications (ABSCESS, BLEED, DVTPE and ILEUS) with 29 predicates. 

The top 5 predicates for this topic are ilv: ng, ilv: remove, ilv: distension, abv: nausea and 

abv: ct. The top 2 unique predicates are ilv: experienced and ilv: pulled. This signature 

summarizes the scenario that a patient’s ng tube was pulled out, and this patient also felt 

nausea and distension. Topic 7 covers 2 complications (ABSCESS and ILEUS) with 11 

predicates. The top 5 predicates under Topic 7 are inv: discontinued, inv: packed, ilv: clamp, 

ilv: fluid and ilv: diurese. The top 2 unique predicates are none. This topic is also very 

similar to Topic 2 and Topic 4 but with more information on diuresis. Topic 8 is related to 3 

complications (ABSCESS, BLEED and MI) with 16 predicates. The top 5 predicates 

involved in this topic are bv: bleed, abv: pelvis, bv: sedated, abv: transferred and abv: read. 

The top 2 predicates are mv: intubated and bv: extubated. This topic describes the bleeding 

situation of the patient’s pelvis; such patient was sedated; intubated and extubated operations 

were also applied on this patient.

We also conducted an experiment among different clustering algorithms to validate that 

HFCM is the optimal approach to do topic discovery. Silhouette width is a method of 

validation of consistency within clusters of data. Figure 9 shows validation for four 

partitions for each level (one first level and three second levels) with five different clustering 

algorithms (Hierarchical Fuzzy C-means [22], K-means [27], Clara [28], Pam [29] and 

Hierarchical Clustering [30]) on the similarity matrix. Figure 9(a) shows the splitting from 

the original ontology to intermediate clusters. Clara, Pam and Hierarchical clustering 

algorithms showing a relatively stable Silhouette Width for many cases and could not find an 

optimal cluster number. Both HFCM and K-means give the highest Silhouette Width 0.65 

when the cluster number is 3. That shows the reason why the original ontology is split into 

three intermediate clusters. Similarly, Figures 9(b)–(d) present highest Silhouette Width for 

level 2-1, level 2-2 and level 2-3 splitting, which are 0.52, 0.55 and 0.58 with HFCM, 

respectively. This explains the reason why the Intermediate 1 Cluster is split into 3 clusters, 

Intermediate 2 Cluster is split into three clusters and Intermediate 3 Cluster is split into two 

clusters.

4.5. Validation of Clustering Results with Golden Standard

For those eight generated topics, we used a golden standard file provided by a medical 

expert, Dr. David W. Larson, in the Colon and Rectal Surgery department at the Mayo 

Clinics to validate our clustering output. This file lists indications of seven types of 

complications for 1505 patients after colorectal surgery from 2005 to 2013. In our study, we 

considered six types of complications by treating ABSCESS and LEAK as the same 

complication (unlike the golden standard) for the sake of simplicity. A patient may have had 

no complications or up to seven complications as the golden standard specified. We built 

correlation metrics based on this benchmark to find out which complications showed a 

strong positive correlation. Figure 10 represents the matrices with visualization. The number 

in red represents the top 3 relative strongest correlations for each complication. It is obvious 

to see that the complications ABCESS, BLEED and INFECTION have a relative stronger 

correlation than other complications that verifies that Topic 1 and Topic 2 are valid. ILEUS 
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has a relative stronger relationship with ABSCESS and BLEED, verifying that Topic 6 is 

valid. LEAK and ILEUS are also strongly associated, verifying that Topic 7 is valid. MI is 

strongly related to ABSCESS and BLEED, and we can also verify that Topic 8 is valid. 

DVTPE does not have a very strong relationship with other complications, but this weak 

correlation with ILEUS, BLEED and ABSCESS is captured by Topics 3, 4, 5 and 6. 

Therefore, the clusters we generated by the HFCM follow the same correlation provided by 

the golden standard benchmark.

4.6. Query Generation and Visualization

The SPARQL queries we generated for each cluster are sown in Figure 11 and Figure 12. 

For the predicate graphs across six domains, we used a rectangle to identify the query 

boundary out of the whole predicate graph. Queries 1 to 6 are cross domain queries that are 

automatically generated from each cluster. These queries identify the relationships among 

different post-surgical complications. For example, INFECTION, ABSCESS and BLEED 

are closely related to each other through the predicates of wound, bleeding or fever. DVTPE 

and BLEED are usually related through the predicate clot. ABSCESS and ILEUS are 

usually related to each other through abdominal collections and distention. MI and BLEED 

are closely related to each other through anemia and coronary. Queries 7 to 12 are about 

queries within a single complication. We also find some interesting query patterns for each 

of the six complications. For instance, in ABSCESS, sepsis usually comes with drainage. In 

BLEED, transfusion connects to anemia and hemoglobin. In DVTPE, coumadin and clot 
occur together. In ILEUS, ct scan and pelvis have a close relationship. In INFECTION, 

patients discontinue wound after the wound be packed. In MI, pressure and volume overload 

can be a good treatment for a problem exacerbated by radiation.

4.7. Discussion

Many efforts exist on semantic annotation of data and knowledge discovery on biomedical 

data [31]–[34]. Especially for [31], the authors annotated a different knowledge domain into 

their ontology. Moreover, [31] provided a solution to extract existing links among nodes and 

is capable of predicting potential links or missing links between source and destination. 

Compared to these works, our research puts more effort on the predicates’ relationship 

detection instead of on the concept nodes.

Furthermore, various data normalization and integration frameworks have been built to 

complete single domain, as well as cross domain, knowledge discovery. Commonly used 

medical ontologies are Bio2RDF [35], TMO (Translational Medicine Ontology) [36], 

Chem2Bio2RDF [37], SIO (Semanticscience Integrated Ontology) [38], ATC (Anatomical 

Therapeutic Chemical) and DrugBank integration [39], Chem2Bio2OWL [40], Linked Life 

Data [41], Linked open drug data LODD [42] and LinkedCT: A Linked Data Space for 

Clinical Trials [43]. These datasets provide a convenient and efficient way for researchers to 

explore and retrieve valuable information. Similar to these works, we also normalized terms 

and built our own ontology. However, we used an inequality of likelihood to select top 

relevant terms and then built ontologies based on these terms.
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Meanwhile, a variety of research has been conducted to do systematical and computational 

knowledge discovery for cross domain knowledge. Specifically, HeteSim [44] and [45] are 

general systems for relationship extraction and linking detection for heterogeneous datasets. 

iPHACE [46] investigated a model to acquire knowledge between drug-target interactions. 

ChemProt [47] provided a database to discover relationships between disease and chemical 

biology. STITCH 3 [48] retrieved information between chemicals and proteins. In [49], the 

authors built an integrated platform of drugs, targets and clinical outcomes aimed at 

supporting drug repurposing. Kinnings et al. [50] were able to discover a relationship 

between drug and disease by deploying chemical systems biology. Campillos et al. [51] were 

able to identify a drug target by using side-effect similarity, and thus found association 

among the drug, target, and side effect. The Connectivity Map [52] made the use of gene-

expression signatures to discover a relationship among small molecules, disease, genes and 

drugs. In our work, we applied an innovative, unsupervised learning algorithm on a 

similarity matrix and partitioned the original datasets into several meaningful topics.

Some research focuses on predicate based mining. Shi and Weninger [53] provided a 

predicate oriented path finding approach to do fact checking in a large knowledge graph. 

VEPath Cluster [54] proposed a combination of a vertex-centric and edge-centric approach 

for metapath graph analysis to enhance the clustering quality of cross domain datasets. In 

addition, pattern analysis was also widely used in data mining and knowledge discovery. In 

paper [55], the author proposed an interactive way to do data mining by applying pattern 

mining. In paper [56], the authors used electronic health record data as a use case to 

introduce an approach to perform data mining and visual analysis on clinical event patterns. 

WHIDE [57] is a tool for colocation pattern mining in multivariate bio-images. Huang et al. 
[58] accomplished the goal of clinical pathway pattern discovery by using probabilistic topic 

models. Lasko et al. [59] introduced a computational phenotype pattern discovery with 

unsupervised learning on clinical data. Our research focuses on predicates oriented pattern 

analysis. In BmQGen, we used our defined predicate neighborhood pattern measurement to 

quantify the closeness relationship among predicates in RDF.

The limitation in this work is that the datasets we used in this paper were quite noisy and 

some false positive and true negative cases exist in the mapping between words/phrases and 

complications. Therefore, the inequality metrics generated by the previous work may not 

represent the true inequality of the likelihood. What is more, although we built six 

ontologies, they are mixed with both instances and schemas, so contents within ontologies 

are not in an abstract level, therefore, clustering results and query outputs will be refined if a 

more accurately normalized input is given. To provide a better solution, words/phrases 

identified with a high inequality of likelihood need to be selected to get more normalized 

data. We also need to try different ontologies and dictionary tools to acquire a better 

annotated dataset for query generation.

5. Conclusions

In this study, we presented the idea of predicate based pattern analysis, investigated the use 

of ontology and applied an unsupervised machine learning approach to integrate a 

heterogeneous unstructured resource with a semi-structured knowledge base. In application 
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level, we achieved specific topic based pattern analysis as well as query generation for cross 

domain knowledge discovery. A BmQGen framework was proposed to process any 

RDF/OWL datasets from heterogeneous resources. For the evaluation purpose, we adopted a 

case study with colorectal postsurgical complications and demonstrated that the BmQGen 

framework was capable of extracting a cohesive structure and semantics, as well as 

interesting patterns from structured/unstructured complication datasets. By using the 

colorectal surgical reports from the Mayo Clinic and golden standard, we successfully 

validated our clustering results, thereby providing solid evidence for automatic query 

generation.

In future work, we will improve the accuracy of information extraction by refining the data 

normalization workflow with different ontologies and extraction/normalization tools (e.g., 

MetaMap [60]). We will also get more support from domain experts to improve the 

annotation quality of the datasets. In addition, to improve system performance and 

scalability, we will utilize a distributed and parallel platform to fulfill efficient clustering and 

query generation in order to handle big data in biomedical research.
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Figure 1. 
The BmQGen framework.
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Figure 2. 
The BmQGen dataflow.
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Figure 3. 
Predicate neighboring level and weighted similarity.
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Figure 4. 
Clustering predicate graph for query generation.
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Figure 5. 
Visualization of 6 complication ontologies.
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Figure 6. 
Visualization of hierarchical fuzzy C-Means clustering.
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Figure 7. 
Detailed information for Topics 1–4.
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Figure 8. 
Detailed information for Topics 5–8.
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Figure 9. 
Predicate oriented clustering decision making on different levels.
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Figure 10. 
Correlation matrices for golden standard.
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Figure 11. 
Cross complications queries.
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Figure 12. 
Single complication queries.
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Table 1

Mapping among Clinical Free Text, MedTagger terms and RDF triples.

Clinical Free Text MedTagger Terms RDF Triples

1 Patient’s abdominal wound was 
exacerbated by dressing changes

Abdominal wound exacerbated by 
dressing change {abdominal_wound, exacerbated_by, dressing_change}

2 Any problems including increased 
erythema around the wound

Problems including erythema around 
wound {problems, erythema, wound}

3 The residual urine levels drop below 
certain level Urine drop below level {urine, drop, below_level}

4 There is substantial further elevation in 
patient’s troponins Place has further elevation in troponins {place, elevation, troponins}

5 More hypotension requiring initiation of 
pressor, to achieve satisfactory blood 
pressure

Hypotension requiring blood {hypotension, requiring, blood}
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Table 2

Predicate sharing patterns.

Patterns Sharing with S and O through P

Subject-Object Share Si = = Sj & & Oi = = Oj

Subject Share Si = = Sj

Object Share Oi = = Oj
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Table 3

Predicate connectivity patterns.

Patterns
Connecting between S and O through P

Symbol Condition

Path Connectivity Si → P1 → Oi → P2 → Oj P1 ≠ P2 && Oi = Sj

Cycle Connectivity Si → P1 → Oi → P2 → Oj P1 ≠ P2 && Oi = Sj && Si = Oj
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Table 4

Definition of colorectal postsurgical complication.

Postsurgical Complication Description

Abscess/Leak (ABSCESS) An abscess is a painful collection of pus, usually caused by a bacterial infection. Coloanal 
anastomoses have the highest rates.

Bleeding (BLEED)
Minor and major bleeding is common in anastomotic complications. Epinephrine and saline 
retention enemas are used to manage serious bleeding. Surgical intervention is necessary if situation 
is getting worse.

Deep vein thrombosis (DVT)/
pulmonary embolism (PE) (DVTPE)

DVT is a condition wherein a blood clot forms in a vein of the deep system. A piece of the clot can 
break off and travel through the lung, which can cause heart failure, known as PE.

Ileus (ILEUS) Ileus is defined as bowel obstruction. For small bowel obstruction, 90–100% sensitivity can be 
achieved by a CT scan of the abdomen and pelvis.

Myocardial infraction (MI) Myocardial infarction is commonly known as a heart attack. It occurs during surgery or within 30 
days after surgery.

Wound infection (INFECTION) Wound infections commonly present around the fifth postsurgical day and 5–15% of patients have 
such complication after colorectal surgery.
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Table 5

Colorectal surgical cohort.

# of Subjects # of Predicates # of Objects # of Unique Triples

ABSCESS 63 13 89 220

BLEED 58 13 73 142

DVTPE 19 10 26 32

ILEUS 227 21 204 624

MI 52 12 53 132

INFECTION 26 14 37 60

Total 445 83 482 1210
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