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Abstract

Although voltage-gated Ca2+ channels (VGCC) are a major Ca2+ entry pathway in vascular

smooth muscle cells (VSMCs), several other Ca2+-influx mechanisms exist and play impor-

tant roles in vasoreactivity. One of these is store-operated Ca2+ entry (SOCE), mediated by

an interaction between STIM1 and Orai1. Although SOCE is an important mechanism of

Ca2+ influx in non-excitable cells (cells that lack VGCC); there is debate regarding the contri-

bution of SOCE to regulate VSMC contractility and the molecular components involved. Our

previous data suggest acid-sensing ion channel 1a (ASIC1a) is a necessary component of

SOCE and vasoconstriction in small pulmonary arteries. However, it is unclear if ASIC1a

similarly contributes to SOCE and vascular reactivity in systemic arteries. Considering the

established role of Orai1 in mediating SOCE in the systemic circulation, we hypothesize the

involvement of ASIC1a in SOCE and resultant vasoconstriction is unique to the pulmonary

circulation. To test this hypothesis, we examined the roles of Orai1 and ASIC1a in SOCE-

and endothelin-1 (ET-1)-induced vasoconstriction in small pulmonary and mesenteric arter-

ies. We found SOCE is coupled to vasoconstriction in pulmonary arteries but not mesenteric

arteries. In pulmonary arteries, inhibition of ASIC1a but not Orai1 attenuated SOCE- and

ET-1-induced vasoconstriction. However, neither inhibition of ASIC1a nor Orai1 altered ET-

1-induced vasoconstriction in mesenteric arteries. We conclude that SOCE plays an impor-

tant role in pulmonary, but not mesenteric, vascular reactivity. Furthermore, in contrast to

the established role of Orai1 in SOCE in non-excitable cells, the SOCE response in pulmo-

nary VSMCs is largely mediated by ASIC1a.

Introduction

Vascular smooth muscle cell (VSMC) contraction and relaxation play an important role in the

regulation of vascular resistance and blood pressure control. It is well established that contrac-

tion is triggered by an increase in intracellular free calcium concentration ([Ca2+]i) mediated
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by a rapid Ca2+ release from intracellular stores and transmembrane Ca2+ influx through a

variety of plasma membrane ion channels, exchangers, and transporters. Although Ca2+ influx

in VSMC is thought to be mediated primarily by L-type voltage-gated Ca2+ channels (VGCC),

it has become increasingly clear that Ca2+ influx through non-selective cation channels

(NSCC) plays an important role in regulating vascular tone. These include 1) receptor-oper-

ated channels (ROCs) which are regulated by agonist-receptor interaction and downstream

signal transduction [1]; 2) capacitative or store-operated channels (SOCs) which are activated

by depletion of intracellular Ca2+ stores [2, 3]; 3) mechanosensitive or stretch-activated chan-

nels (SACs) which are activated by membrane stretch [4, 5]; and 4) constitutively active cation

channels which are spontaneously active (reviewed in [6]). However, the molecular identity

and the functional role of these channels to mediate vasoconstriction is still a matter of debate.

Complicating matters is the fact that multiple Ca2+-permeable channels are expressed in a

given vascular bed and the functional relevance of different Ca2+ channels within the vascular

bed remains unclear. Therefore, it is necessary to gain a better understanding of the heteroge-

neity that exists in Ca2+ signaling among vascular beds.

Increases in VSMC [Ca2+]i in response to neurohumoral stimuli (norepinephrine/epineph-

rine) and vasoactive peptides (angiotensin II and endothelin-1) results from activation of

phospholipase C (PLC) associated G-protein coupled receptors [7]. Activation of PLC leads to

the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) generating the second messen-

gers, inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 activates IP3 receptors (IP3R)

on the sarcoplasmic reticulum (SR) and stimulates Ca2+ release. Plasma membrane SOCs are

activated secondary to depletion of SR Ca2+ stores, a mechanism known as store-operated Ca2

+ entry (SOCE) or capacitative Ca2+ entry. SOCE facilitates the refilling of Ca2+-depleted SR

stores and is therefore critical to SR Ca2+ homeostasis [8]. In VSMCs, SOCE is known to par-

ticipate in other physiological processes such as vascular tone regulation [9, 10], vasculogen-

esis, and cell proliferation [10, 11]. However, the coupling of SOCE to contraction has been

shown to differ widely among vascular beds. Snetkov et al. demonstrated that even though

induction of SOCE results in similar increases in [Ca2+]i in intrapulmonary, mesenteric, renal,

femoral, and coronary arteries; the corresponding contraction was only observed in intrapul-

monary arteries [12]. As the potential differential responses to SOCE between various vascular

beds are likely due to regional differences in the molecular components of SOCE, the objective

of this study is to identify the ion channels involved in coupling SOCE to vasoconstriction.

Stromal interaction molecule 1 (STIM1) is the key molecule involved in sensing levels of

Ca2+ in the SR [13, 14]. Upon store depletion, STIM1 undergoes a conformational change,

multimerizes, and translocate to regions of the SR adjacent to the plasma membrane where

subsequent binding of STIM1 to Ca2+-permeable channels triggers the influx of Ca2+ across

the plasma membrane [15]. Two different types of ionic current are evoked by store-depletion:

1) a high selectivity Ca2+ current mediated by a Ca2+ release-activated channel (CRAC) called

Orai1 [16] and 2) NSCC current [17, 18]. Several members of the transient receptor potential

canonical (TRPC) channel family have been proposed to act as SOCs (reviewed in [19, 20]),

although this topic continues to be widely debated [21–23]. Previous work from our laboratory

has shown that inhibition of acid-sensing ion channel 1a (ASIC1a) diminishes SOCE and asso-

ciated vasoconstriction in pulmonary VSMC [24]. ASIC1a is a NSCC that belongs to the

amiloride-sensitive degenerin/epithelial sodium channel (DEG/ENaC) superfamily. ASICs are

known to be permeable to Na+, however homomeric ASIC1a channels can also conduct Ca2+

[25–27]. Although the ASICs are classically activated by extracellular acidosis; various non-

proton ligands, effector proteins, and signaling molecules also regulate the function of ASICs

[28, 29]. It is unclear if ASIC1a similarly contributes to SOCE and vascular reactivity in sys-

temic arteries. Considering the established role of Orai1 in mediating SOCE in the systemic
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circulation, we hypothesize the involvement of ASIC1a in SOCE and resultant vasoconstric-

tion is unique to the pulmonary circulation. To test this hypothesis, we have examined the

roles of ASIC1a and Orai1 in SOCE- and endothelin-1-induced vasoconstriction in both small

pulmonary and mesenteric arteries.

Materials and methods

All protocols employed were reviewed and approved by the Institutional Animal Care and Use

Committee of the University of New Mexico School of Medicine (Albuquerque, NM) and

abide by the National Institutes of Health guidelines for animal use. Fifty-two adult male Wis-

tar rats (200–250 g body wt, Envigo) were used in this study. Animals were housed in poly-

acrylic cages (1–3 per cage) supplied with bedding (shredded paper) and polycarbonate rodent

tunnels and other items for environmental enrichment. Animals were housed in a specific

pathogen-free animal care facility and maintained on a 12:12 hour light-dark cycle. Water and

standard chow (Teklad soy protein-free diet no. 2920; Envigo) were provided ad libitum. Rats

were anesthetized with an overdose of pentobarbital sodium (200 mg/kg ip) and immediately

euthanized by exsanguination after the loss of consciousness.

Assessment of SOCE and vasoreactivity in isolated, pressurized pulmonary

and mesenteric resistance arteries

To determine simultaneous changes in vasoreactivity and [Ca2+]i, small resistance arteries

were cannulated and pressurized for dimensional and fluorescence analysis as previously

described [24, 30]. Following euthanasia, the lungs or mesentery were removed and immedi-

ately placed in PSS [pH adjusted to 7.4 with NaOH containing (in mM) 130 NaCl, 4 KC1, 1.2

MgSO4, 4 NaHCO3, 1.8 CaC12, 10 HEPES, 1.18 KH2PO4, 6 glucose]. Fourth- to fifth-order

pulmonary (~ 125 μm inner diameter) and third- to fourth-order mesenteric arteries

(~ 150 μm inner diameter; Table 2); of *1-mm length and without visible side branches were

dissected free and transferred to a vessel chamber (CH-1, Living Systems). The proximal end

of the artery was cannulated with a tapered glass pipette, secured in place with a single strand

of silk ligature, and gently flushed to remove any blood from the lumen. The vessel was

stretched longitudinally to approximate in situ length and pressurized with a servo-controlled

peristaltic pump (Living Systems) to 12 mmHg (pulmonary) or 75 mmHg (mesenteric). Arter-

ies were required to hold steady pressure on switching off the servo-control function to verify

the absence of leaks; any vessel with apparent leaks was discarded. The vessel chamber was

superfused with PSS; at 5 ml/min at 37˚C. Images were obtained using an Eclipse TS100

microscope (Nikon) and IonOptix CCD100M camera to measure inner diameter, and dimen-

sional analysis was performed by IonOptix Ion Wizard software (IonOptix). Arteries were

incubated at room temperature with PSS containing the cell-permeable ratiometric

Table 2. Baseline inner diameter and vessel wall [Ca2+]i in pulmonary and mesenteric arteries treated with vehicle, diltiazem (50 μM), PcTX1 (20 nM), or AnCoA4

(20 μM).

Pulmonary Mesenteric

Diameter P-Value Fura-2 ratio (F340/F380) P-Value N Diameter P-Value Fura-2 ratio (F340/F380) P-Value N

(μm) (μm)

Vehicle 124 ± 7 0.79 ± 0.06 7 149 ± 15 0.66 ± 0.06 6

Diltiazem 125 ± 19 >0.9999 0.61 ± 0.11 0.9665 4 165 ± 12 0.8575 0.64 ± 0.02 0.9823 6

PcTX1 119 ± 9 0.9763 0.82 ± 0.06 0.9699 7 166 ± 11 0.8648 0.75 ± 0.03 0.5156 5

AnCoA4 122 ± 11 0.9982 0.78 ± 0.06 0.9999 7 139 ± 17 0.9535 0.59 ± 0.05 0.6305 7

https://doi.org/10.1371/journal.pone.0236288.t002
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Ca2+-sensitive fluorescent dye fura-2 acetoxymethyl ester (fura-2 AM, 2 μM; Life Technolo-

gies, F1201, lot #2021739) and 0.02% pluronic acid (Life Technologies, P3000MP, lot

#1990297) for 45 min, as previously described [31]. Fura-2-loaded vessels were alternately

excited at 340 and 380 nm at a frequency of 1 Hz with an IonOptix Hyperswitch dual-excita-

tion light source, and the respective 510-nm emissions were collected with a photomultiplier

tube. After subtracting background fluorescence, emission ratios (F340/F380) were calculated

with Ion Wizard software (IonOptix) and recorded continuously throughout the experiment.

Experiments were conducted in the absence or presence of the L-type VGCC inhibitor, dil-

tiazem (50 μM; Sigma, D2521, lot #MKCD7486); the specific ASIC1a inhibitor, psalmotoxin 1

(PcTX1; 20 nM; Phoenix Peptides, 063–22, lot #433599); or the specific Orai1 inhibitor,

AnCoA4 (20 μM; Millipore Sigma, 532999, lot #3030527). We have previously demonstrated

that this concentration of diltiazem (50 μM) prevents increases in the vessel [Ca2+]i and vaso-

constriction-induced by the depolarizing stimulus, KCl (50 mM) [32]. PcTX1 has been

reported to selectively inhibit ASIC1a isoform over other ASICs [33]. Furthermore, we have

previously shown that this concentration of PcTX1 has similar effects to those seen in pulmo-

nary VSMCs of ASIC1 null mice [34, 35]. AnCoA4 reduces the Orai1 association to STIM1

and consequently blocks SOCE [36]. We have previously determined this concentration of

AnCoA4 inhibits SOCE in pulmonary arterial endothelial cells and pulmonary microvascular

endothelial cells [37].

Store-operated Ca2+ entry. Fura-2-loaded arteries were superfused with Ca2+-free, PSS

(in mM: 130 NaCl, 4 KC1, 1.2 MgSO4, 4 NaHCO3, 10 HEPES, 1.18 KH2PO4, 6 glucose, 3

EGTA; pH adjusted to 7.4 with NaOH) containing 50 μM diltiazem to prevent Ca2+ entry

through L-type VGCC, and 10 μM cyclopiazonic acid (CPA; Calbiochem, 23905) to deplete

intracellular Ca2+ stores and prevent Ca2+ reuptake through the sarcoplasmic reticulum

Ca2+-ATPase for 15 minutes before replenishing the perfusate with Ca2+. The changes in

[Ca2+]i were determined upon the repletion of HEPES-based PSS containing 1.8 mM CaCl2 in

the continued presence of diltiazem and CPA. SOCE was calculated as the change (Δ) in fura-2

ratio between Ca2+-depleted state and Ca2+-depleted state.

Endothelin-1 responses. Endothelin-1 (ET-1; Sigma-Aldrich, E7764, lot #088M4849V)

induced vasoconstrictor reactivity and changes in the vessel wall [Ca2+]i were assessed by

superfusion (5 ml/min at 37˚C) of cumulative concentrations of ET-1 in isolated pulmonary

(10−11 to 10−7 M) and mesenteric (10−11 to 10−8 M) arteries.

Generation of primary pulmonary and mesenteric smooth muscle cell

cultures

Intrapulmonary and mesenteric arteries (~2nd-5th order) were dissected from surrounding

tissue and enzymatically digested. Pulmonary arteries were digested in reduced-Ca2+ Hank’s

balanced salt solution (HBSS) containing papain (26 U/ml), type-I collagenase (1,750 U/ml),

dithiothreitol (1 mg/ml), and BSA (2 mg/ml) at 37˚C for 30 min. Mesenteric arteries were

digested in reduced-Ca2+ HBSS containing HEPES (15 mM), elastase (11.25 U/ml), soybean

trypsin inhibitor type 1-S (1 mg/ml), type-I collagenase (180 U/ml), and BSA (2 mg/ml) at

37˚C for 45 min. Single smooth muscle cells were dispersed by gentle trituration with a fire-

polished pipette in Ca2+-free HBSS. Pulmonary VSMC were plated in Ham’s F-12 media sup-

plemented with 5% fetal bovine serum and 1% penicillin/streptomycin. Mesenteric VSMC

were plated in DMEM media supplemented with 10% fetal bovine serum, L-glutamine (2

mM), HEPES buffer (25 mM), and 1% penicillin/streptomycin. All cells were grown in a

humidified atmosphere of 5% CO2-95% air at 37˚C. Pulmonary and mesenteric VSMC purity

was verified by morphological appearance and the presence of smooth muscle 22α (transgelin;
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S1 Fig). Furthermore, PCR showed the appearance of smooth muscle α-actin and lacked

expression of the neuronal marker, calcitonin gene-related peptide (S1 Fig).

Determination of ASIC1a and Orai1 expression

RT-PCR. Total RNA was extracted using TRIzol from pulmonary and mesenteric arteries.

Brain tissue was used as a positive control. One μg of total RNA was reversed transcribed into

cDNA using the Transcription First-Strand cDNA Synthesis kit (Roche). PCR was performed

on cDNA with the iCycler PCR system (Bio-Rad) using REDExtract-N_Amp PCR ReadyMix

(Sigma) and specific primers (Table 1) to detect transcripts for ASIC1a, Orai1, and β-actin.

PCR products were separated using gel electrophoresis on a 3% agarose gel and stained with

ethidium bromide for visualization under UV light.

Western blotting analysis. Orai1 and ASIC1a protein expression were determined by

Western blot analysis. Pulmonary and mesenteric arteries were homogenized in 10 mM

Tris�HCl homogenization buffer (containing 255 mM sucrose, 2 mM EDTA, 12 μM leupeptin,

1 μM pepstatin A, and 0.3μM aprotinin) with a glass homogenizer. The lysate (60 μg) was sepa-

rated by SDS-PAGE (7.5% or 12% Tris/glycine) and transferred to a polyvinylidene difluoride

membrane. The blot was blocked for 1 h with 5% milk and then incubated at 4˚C with rabbit

anti-Orai1 (1.5 hrs @ 1:300; Proteintech: 14443-1-AP; expected MW 35–44 kDa) or rabbit

anti-ASIC1a (48 hrs @ 1:500; Millipore: AB5674P; reported MW ~60 and ~100 kDa). For

immunochemical labeling, blots were incubated with anti-rabbit IgG-horseradish peroxidase

(1 hr @ 1:3,000; Bio-Rad). Following chemiluminescence labeling (ECL; Pierce), Proteins were

detected by exposing the blot to chemiluminescence-sensitive film (GeneMate).

Determination of ASIC1a-STIM1 and Orai1-STIM1 colocalization

Protein-protein interactions were determined in smooth muscle cells using Duolink in situ

proximity ligation assay (PLA) as previously described [34, 38]. Cells were plated on 18-well

slides (Ibidi) and grown until ~75% confluent. In some experiments, cells were pretreated with

Ca2+ free PSS plus CPA to induce SOCE before the cells were fixed with 2% paraformaldehyde.

Following fixation, samples were incubated with Duolink blocking buffer for 30 min at 37˚C

then incubated overnight with mouse anti-STIM1 (1:50; BD Biosciences 610954) and goat

anti-ASIC1a (1:50; Santa Cruz Biotechnology: sc-13903) or rabbit anti-Orai1 (1:100; Alomone

ACC-062). We have previously determined the specificity of goat anti-ASIC1a using wild-type

and knockout mice [39], and the specificity of rabbit anti-Orai1 using control and siRNA-

treated cells [37]. Cells were then incubated with anti-mouse PLUS and anti-goat MINUS or

Table 1. Primers and base pair (bp) product size used for RT-PCR for ASIC1a, Orai1, and β-actin.

Primer Pair Sequence Product Size, bp

Orai1 357 bp

Forward 5’-ACGTCCACAACCTCAACTCC-3’

Reverse 5’-ACTGTCGGTCCGTCTTATGG-3’

ASIC1a 305 bp

Forward 5’-GCCTATGAGATCGCAGGG-3’

Reverse 5’-AAAGTCCTCAAACGTGCCTC-3’

β-actin 244 bp

Forward 5’-AGTGTGACGTTGACATCCGT-3’

Reverse 5’-GACTCATCGTACTCCTGCTT-3’

https://doi.org/10.1371/journal.pone.0236288.t001
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anti-rabbit MINUS PLA probes (1:5) for 1 h at 37˚C. Negative controls were completed by

incubation of each primary antibody individually. Samples were amplified with Duolink In

Situ Detection Reagent Orange (excitation/emission: 554/579 nm; Sigma- Aldrich) for 100

min at 37˚C. SYTOX Green (1:10,000; Invitrogen) was used as a nuclear stain and actin was

stained with Alexa Fluor 647 Phalloidin (1:100; Invitrogen). Samples were mounted with Duo-

link mounting media and Z-stack images of the PLA interaction were acquired using a confo-

cal microscope (TCS SP5; Leica). Each puncta was considered a positive protein-protein

interaction. The number and size (pixel2) of puncta per cell were determined using ImageJ

(National Institutes of Health).

Calculations and statistics

All data are expressed as means ± SE. Values of n refer to the number of animals in each group

unless otherwise stated. Statistical significance was tested at the 95% (P< 0.05) confidence

level using an unpaired t-test, one-way analysis of variance (ANOVA), or two-way ANOVA as

appropriate (GraphPad Prism). If differences were detected by ANOVA, individual groups

were compared with the recommended post-hoc test which is specified in the figure legends.

Normal distribution was tested using the Shapiro-Wilks Normality Test (P > 0.05), any data

sets that were not normally distributed were analyzed by non-parametric analysis. Data that

were represented as percent were normalized by arcsine transformation before statistical

analysis.

Results

L-type Ca2+ channels contribute to ET-1-induced constriction of

mesenteric but not pulmonary arteries

Since L-type Ca2+ channels are considered to be a major contributor to VSMC Ca2+ influx, we

first determined the role of L-type VGCC to ET-1 induced vasoconstriction in small pulmo-

nary and mesenteric arteries. In pulmonary arteries, inhibition of L-type VGCC with diltiazem

did not significantly alter baseline diameter or vessel wall [Ca2+]i (Table 2). Furthermore, dilti-

azem did not affect vasoconstriction (Fig 1A, top panel) or changes in vessel wall Ca2+ (Fig 1A,

bottom panel) in response to increasing doses of ET-1. In mesenteric arteries, inhibition of L-

type VGCC with diltiazem did not significantly alter baseline diameter or vessel wall [Ca2+]I

(Table 2). However, ET-1-induced vasoconstriction in mesenteric arteries was significantly

attenuated by diltiazem (Fig 1B, top panel) and tended to decrease changes in vessel wall Ca2+

but was not statistically significant (Fig 1B, bottom panel).

Orai1 and ASIC1a mRNA and protein expression in pulmonary and

mesenteric arteries

We next evaluated mRNA and protein expression of Orai1 and ASIC1 in small pulmonary

and mesenteric arteries. We found Orai1 and ASIC1 transcripts (Fig 2A) and protein (Fig 2B)

were expressed in both pulmonary and mesenteric arteries. Brain tissue was used as a positive

control. Orai1 was detected around the expected MW of 35 kDa and a larger band around 75

kDa (a potential dimer). Similar to previous reports [40], we detect two bands for ASIC1 pro-

tein, ~100 kDa and 60 kDa. Interestingly, the 60 kDa band is more intense in mesenteric arter-

ies compared to pulmonary arteries or brain samples.
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Store-operated Ca2+ entry is coupled to vasoconstriction in pulmonary but

not mesenteric arteries

Induction of SOCE in isolated pressurized small pulmonary arteries resulted in a substantial

and sustained increase in [Ca2+]i (Fig 3A and 3B) that was associated with an ~25% vasocon-

striction (Fig 3C and 3D). In mesenteric arteries, induction of SOCE also resulted in a sus-

tained increase in [Ca2+]i. However, SOCE was significantly less compared to pulmonary

Fig 1. L-type Ca2+ channels contribute to ET-1 induced vasoconstriction in mesenteric but not pulmonary arteries.

Representative traces (top panels) and summary data showing vasoconstriction (percent baseline inner diameter; middle panels)

and changes in fura-2 ratio (F340/F380; bottom panels) in response to endothelin-1 (ET-1; 10−11–10−7 or 10−11–10−8) in the

presence or absence of diltiazem (50 μM) in small pulmonary (A; left panels) or mesenteric (B; right panels) arteries. n = 4–6 per

group, values are means ± SEM. �p� 0.05 vs. vehicle; �� p< 0.01; analyzed by two-way ANOVA followed by Sidak’s multiple

comparisons test.

https://doi.org/10.1371/journal.pone.0236288.g001
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Fig 2. Orai1 and ASIC1a are expressed in pulmonary and mesenteric arteries and VSMC. Representative PCR gels

(A) showing expression of Orai1 (357 bp) and ASIC1a (305 bp) in intact pulmonary arteries (PA), mesenteric arteries

(MA), and brain tissue (positive control). All lanes were loaded with 5 μL cDNA. β-actin (244 bp) was used as a loading

control for intact arteries. Representative western blots (B left) showing protein expression of Orai1 and ASIC1 (~100

kDa and 60 kDa) in intact PA, MA, and brain tissue (positive control). Coomassie blue staining shows equal protein

loading between samples (B; right). Each experiment was replicated 3 times.

https://doi.org/10.1371/journal.pone.0236288.g002
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arteries (Fig 3A and 3B). Furthermore, SOCE was not associated with a significant change in

vessel inner diameter in mesenteric arteries (Fig 3C and 3D).

Store-operated Ca2+ entry is dependent on ASIC1a in pulmonary but not

mesenteric arteries

To determine the contribution of Orai1 and ASIC1a to SOCE in small pulmonary and mesen-

teric arteries, we repeated experiments in the presence of the ASIC1a inhibitor, PcTX1; or the

Orai1 inhibitor, AnCoA4. Inhibition of ASIC1a largely attenuated the SOCE and associated

vasoconstrictor responses in pulmonary arteries; however, Orai1 inhibition did not alter

responses to store depletion compared to the vehicle (Fig 4A). In contrast, we observed a mini-

mal SOCE response, in mesenteric arteries, which did not induce vasoconstriction. SOCE was

not altered by PcTX1 in mesenteric arteries. Although AnCoA4 tended to blunt SOCE in

mesenteric arteries, this effect was not significant (P = 0.0717). Neither PcTX1 nor AnCoA4

Fig 3. Store-operated Ca2+ entry is coupled to vasoconstriction in pulmonary but not mesenteric arteries.

Representative traces and summary data of SOCE (A & B) and SOCE-induced vasoconstriction (C & D) in pulmonary

and mesenteric resistance arteries. All studies were done in the presence of diltiazem (50μM) and cyclopiazonic acid

(10μM). n = 7–10 animals/group. ���p� 0.001 or ���� p� 0.0001 vs. pulmonary; analyzed by unpaired t-test.

https://doi.org/10.1371/journal.pone.0236288.g003
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affected the lack of vasoconstriction in mesenteric arteries. However, the power of statistical

comparison is low (0.435) in mesenteric arteries and may be due to the small effect size that we

see in the mesenteric SOCE response. Together, these data demonstrate SOCE in mesenteric

arteries is a negligible Ca2+ influx pathway compared to pulmonary arteries.

ASIC1a and Orai1 interact with STIM1 in VSMC

As Ca2+ levels in the SR decrease, STIM1 undergoes a conformational change, multimerizes,

and translocates to regions of the SR adjacent to the plasma membrane where subsequent

binding of STIM1 to Ca2+-permeable channels triggers an influx of Ca2+ across the plasma

Fig 4. Store-operated Ca2+ entry is dependent on ASIC1a in pulmonary but not mesenteric arteries. SOCE-

induced changes in fura-2 ratio (Δ F340/F380; top panels) and associated vasoconstriction (% baseline; bottom panels) in

small pulmonary and mesenteric arteries, respectively. Studies were conducted in the presence or absence of PcTX1

(20 nM) or AnCoA4 (20 μM). Vehicle data are the same as Fig 3. n = 5–10 animals/group. ��p� 0.01 vs. vehicle; ���

p� 0.001 vs. vehicle; analyzed by one-way ANOVA and individual groups compared with the Tukey’s multiple

comparison test.

https://doi.org/10.1371/journal.pone.0236288.g004
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membrane [15]. Thus we first examined the mRNA and protein levels of STIM1 in pulmonary

and mesenteric arteries and found that STIM1 was expressed in both vascular beds (S2 Fig).

Furthermore, an examination of STIM1, Orai1, and ASIC1 mRNA showed expression in both

primary cultured pulmonary and mesenteric VSMCs (S3 Fig). Therefore, we examined the

potential interaction and clustering of STIM1 with both Orai1 and ASIC1a in pulmonary and

mesenteric VSMCs using Duolink proximity ligation assay. Under basal conditions, we found

that Orai1 interacts with STIM1 in both pulmonary (Fig 5A and 5C) and mesenteric (Fig 5D

and 5F) VSMCs. Upon store depletion with CPA in pulmonary VSMC, there was neither a dif-

ference in the number of puncta (interactions) per cell (Fig 5B) nor puncta size (Fig 5C). In

mesenteric VSMC there tended to be both an increase in the number of puncta per cell

(p = 0.0593) and a significant increase in puncta size, suggesting an increase in Orai1-STIM1

clustering. However, the size of the puncta is substantially smaller than the puncta measured

in pulmonary arteries. The changes observed in mesenteric VSMC may be due to possible phe-

notypic changes that can occur in VSMs in cell culture from a quiescent to the proliferative

state. Furthermore, the power of statistical comparison was lower than expected when analyz-

ing the number of puncta per cell in mesenteric VSMCs (0.623).

ASIC1a also interacts with STIM1 under basal conditions in both pulmonary (Fig 6A) and

mesenteric (Fig 6D) VSMCs. Upon store depletion in pulmonary VSMC there was a signifi-

cant increase in the number of puncta (interactions) per cell (Fig 6B) and a significant increase

in puncta size (Fig 6C), indicating clustering of ASIC1a and STIM1 proteins. Compared to

pulmonary VSMC, there were significantly fewer puncta/cell in mesenteric VSMC. In addi-

tion, store depletion in mesenteric VSMC resulted in a significant decrease in the number of

puncta (interactions), per cell (Fig 6E) but no change in puncta size (Fig 6F).

In negative control experiments, we incubated each primary antibody individually and

observed no positive interactions (S4 Fig). Taken together, these data demonstrate a physical

interaction between ASIC1a and STIM1 in pulmonary VSMCs and support our findings that

ASIC1a functions as a SOC in the pulmonary circulation.

Vasoconstrictor and arterial wall [Ca2+]i responses to ET-1 are attenuated

in response to ASIC1a inhibition and augmented in response to Orai1

inhibition in pulmonary arteries

Orai1 channels have also been shown to play a vasoactive role that is independent of SOCE

[41]. It is possible that both ASIC1a and Orai1 participate in ligand-activated Ca2+ entry in

VSMCs and vasoconstriction through a store-independent mechanism; therefore, we further

assessed the role of ASIC1a and Orai1 in ET-1-induced vasoconstriction. In both pulmonary

and mesenteric arteries, inhibition of ASIC1a or Orai1 did not significantly alter baseline

diameter or vessel wall [Ca2+]i (Table 2). Consistent with previous studies showing ASIC1a

contributes to agonist-induced vasoreactivity in small pulmonary arteries [31, 39, 42], PcTX1

reduced ET-1-mediated vasoconstriction and arterial wall [Ca2+]i responses in small pulmo-

nary arteries (Fig 7A). In contrast, Orai1 inhibition with AnCoA4 enhanced ET-1-induced

vasoconstriction but did not alter [Ca2+]i responses in pulmonary arteries (Fig 7A). Interest-

ingly, in mesenteric arteries we found that PcTX1 did not affect ET-1-induced vasoconstric-

tion but significantly attenuated arterial wall [Ca2+]i responses in small mesenteric arteries at

the highest concentration of ET-1 (Fig 7B). Further examination with AnCoA4 indicated no

change in vasoconstriction or arterial wall [Ca2+]i in response to ET-1 (Fig 7B). Together,

these studies suggest that ASIC1a and Orai1 play unique roles in pulmonary but not mesen-

teric artery constriction.
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Fig 5. Store depletion increases the interaction between Orai1 and STIM1 in VSMCs. Representative images of

Orai1/STIM1 interaction in pulmonary (A) and mesenteric (D) VSMCs under basal conditions (BL; left) or following

store-depletion (SD; right). Summary data showing the average number of puncta per cell (B and E) and puncta size (C

and F) in pulmonary (B-C) and mesenteric (E-F) VSMCs. The nuclei are labeled with SYTOX (green), actin is labeled

with Alexa Fluor 647 Phalloidin (blue), and puncta formation (white). N = 7–10; each data point represents an

individual well taken from 1–3 experiments (cell cultures generated from different animals and ran on different days).
�P� 0.05 vs. baseline.

https://doi.org/10.1371/journal.pone.0236288.g005
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Fig 6. Store depletion increases the interaction between ASIC1a and STIM1 in pulmonary, but not in mesenteric

VSMCs. Representative images of ASIC1a/STIM1 interaction in pulmonary (A) and mesenteric (D) VSMCs under

basal conditions (BL; left) and following store-depletion (SD; right). Summary data showing the average number of

puncta per cell (B and E) and puncta size (C and F) in pulmonary (B-C) and mesenteric (E-F) VSMCs. The nuclei are

labeled with SYTOX (green), actin is labeled with Alexa Fluor 647 Phalloidin (blue), and puncta formation (white).

n = 6–7 wells; each data point represents an individual well taken from 1–3 experiments (cell cultures generated from

different animals and ran on different days). �P< 0.05 vs. baseline; ��P< 0.01 vs. baseline; ��� p< 0.001 vs. baseline;

analyzed by unpaired t-test, except for C which was analyzed using Mann-Whitney test.

https://doi.org/10.1371/journal.pone.0236288.g006
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Discussion

The goal of this study was to compare the contribution of SOCE to vasoconstriction and

potential mediators of this response between small pulmonary and mesenteric arteries. The

major findings of this study are that 1) the contribution of L-type VGCC to agonist-induced

vasoconstriction in pulmonary and mesenteric arteries is minimal; 2) SOCE is functionally

linked to vasoconstriction in pulmonary but not mesenteric arteries; and 3) ASIC1a is the

major contributor of SOCE and SOCE-induced vasoconstriction in pulmonary arteries; while

Orai1 plays a minimal role in vasoconstriction in either bed. Together, these data demonstrate

a unique role for ASIC1a in the pulmonary circulation where it contributes to both SOCE-

induced and agonist-induced vasoconstriction; yet ASIC1a does not contribute to vasocon-

striction in the mesenteric circulation.

Fig 7. Vasoconstrictor and arterial wall [Ca2+]i responses to ET-1 are attenuated in response to ASIC1a inhibition and

augmented in response to Orai1 inhibition in pulmonary arteries. Vasoconstriction (percent baseline inner diameter; top

panels) and changes in fura-2 ratio (F340/F380; bottom panels) in response to endothelin-1 (ET-1; 10−11–10−7 or 10−11–10−8) in

the presence or absence of PcTX1 (20 nM) or AnCoA4 (20 μM) in small pulmonary (A) and mesenteric (B) arteries. N = 4–7 per

group, values are means ± SEM. �p� 0.05 vs. vehicle; �� p< 0.01, ��� p� 0.001, ���� p� 0.0001; analyzed by two-way anova

followed by Dunnett’s multiple comparisons test.

https://doi.org/10.1371/journal.pone.0236288.g007
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A variety of Ca2+ influx pathways have been identified in VSMC, including (but not limited

to) VGCC, SOC, and ROC. The contribution of these various Ca2+ influx pathways utilized by

VSMC to elicit contraction varies widely across different vascular beds. Therefore, we first

investigated the role of L-type VGCC in both pulmonary and mesenteric agonist-induced

vasoconstriction, using the antagonist diltiazem. Similar to other reports [31], there was little

effect of diltiazem on agonist-induced vasoconstriction of pulmonary arteries, suggesting little

role for Ca2+-influx through L-type VGCC in ET-1-induced vasoconstriction. Although diltia-

zem significantly reduced ET-1 induced vasoconstriction in mesenteric arteries, a large pro-

portion of the vasoconstrictor response remained along with the increased [Ca2+]i. These

findings are consistent with studies by Kawanabe et al. [43, 44] in rabbit basilar and internal

carotid arteries showing a large proportion of ET-1-induced contraction is L-type VGCC inde-

pendent. Although there is likely a component of T-type VGCC to ET-1 increases in Ca2+

influx, general inhibition of all VGCC does not abolish the inward calcium currents caused by

ET-1 [45]. Together, these data suggest the increases in [Ca2+]i and vasoconstriction in

response to ET-1 are mediated by a variety of sources.

Although SOCE has been demonstrated in several VSMC preparations, the relationship

between Ca2+ entry via this pathway and contraction remains unclear. Contraction due to

SOCE has been demonstrated in the aorta, intrapulmonary, cerebral, mesenteric and femoral

arteries [12, 46–48]; while others report that elevated [Ca2+]i due to SOCE appears to be disso-

ciated from contraction in the aorta, coronary, renal, and mesenteric arteries [12, 49].

Although Snetkov et al., reported that SOCE resulted in a similar increase in Ca2+ between pul-

monary and mesenteric arteries, regardless of coupling to contraction [12], we found the

SOCE response to be significantly less in mesenteric compared to pulmonary arteries. Conse-

quently, it is possible that the smaller SOCE response in mesenteric arteries is not sufficient to

induce vasoconstriction. Interestingly, this smaller SOCE response in mesenteric arteries

seems to be associated with lower ASIC1 mRNA and protein expression in mesenteric com-

pared to pulmonary arteries, although these were not statistically compared. The failure of

SOCE to elicit mesenteric vasoconstriction is supported by the observations that ASIC1a and

Orai1 inhibition did not affect ET-1-induced vasoconstriction. These data suggest the compo-

nent of ET-1-induced vasoconstriction that is VGCC-independent is not mediated by SOCE

but rather other Ca2+ signaling pathways. ROCs such as TRP channels or other non-selective

cation channels may play a role in ET-1-induced Ca2+ in mesenteric arteries. Furthermore,

cytosolic Ca2+ levels may be altered due to the production and signaling of IP3 to activate IP3

receptors and release Ca2+ from Ca2+ stores. It is also possible that Ca2+ sensitization is playing

a role in ET-1-induced vasoconstriction. Specifically, Ca2+ sensitization occurs when vasocon-

striction is regulated by increasing phosphorylation of the myosin regulatory light chain

independent of changes in [Ca2+]i [50]. Therefore, it is possible that the ET-1-induced vaso-

constrictor responses we see are due to ET-1-stimulated Ca2+ sensitization.

Expression of Orai1 was similar between pulmonary and mesenteric arteries; and although

inhibition of Orai1 tended to diminish SOCE in mesenteric arteries, it did not affect pulmo-

nary SOCE. Furthermore, inhibition of Orai1 did not affect vasoconstrictor responses in

mesenteric vessels. This is in contrast to other studies showing that silencing of Orai1 or its

functional inhibition with monoclonal antibodies diminishes SOCE and agonists-induced

contraction in coronary and aortic rings [10, 47]. These studies suggest that in some vascular

beds, Orai1 is present and functions as a SOC. Although the role of Orai1 in VSMC has been

studied in several cultured VSMC preparations, it is important to note that the above studies

([10, 47]; as well as Figs 5 & 6) were conducted in freshly isolated tissue as opposed to cultured

cells. Indeed, it has been shown that expression of Orai isoforms is relatively low in contractile

VSMCs; however, expression of Orai1 and STIM1 dramatically increase along with SOCE in
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cultured VSMCs [51, 52]. VSMCs in culture are known to undergo a phenotypic switch to a

synthetic or proliferative state, which often correlates with a more prominent SOCE response

[53, 54]. This may explain why we observed increased clustering (indicated by increased

puncta size) between Orai1 and STIM1 in response to store depletion in transiently cultured

mesenteric VSMC even though Orai1 did not significantly contribute to SOCE responses in

freshly isolated tissue. Together these data suggest there may be a minimal contribution of vas-

cular Orai1-dependent SOCE to normal vascular homeostasis; however, SOCE may become a

more important mechanism of Ca2+ influx in cardiovascular diseases involving VSMC dys-

function leading to a more proliferative, synthetic state of the VSMC [46, 55].

Although inhibition of Orai1 did not significantly alter SOCE in pulmonary arteries, it

unexpectedly augmented the vasoconstrictor response in these endothelium-intact vessels.

Receptors for ET-1 are expressed on both VSMC (ETA and ETB), where activation results in

vasoconstriction, and endothelial cells (ETB), which mediate vasodilation. Since we have previ-

ously shown an important role of Orai1 in SOCE response in pulmonary arterial endothelial

cells and pulmonary microvascular endothelial cells [37], it is likely AnCoA4 inhibited endo-

thelial Orai1 and thus ET-1 vasodilatory responsiveness leading to augmented ET-1 vasocon-

striction. We did not observe a corresponding increase in the vessel wall [Ca2+]i, however, this

is likely a result of Ca2+ sensitization of the contractile apparatus that occurs in pulmonary

arteries [56]. It is possible that within the pulmonary circulation, ASIC1a plays a larger role in

VSMC SOCE while Orai1 mediates endothelial SOCE. This is consistent with the idea that in

non-excitable cells whole-cell currents activated by Ca2+ store depletion are predominantly

mediated by Ca2+ release-activated Ca2+ current (ICRAC) through Orai1. Whereas, in excitable

muscle cells there is a greater contribution of Ca2+-permeable NSCC with a linear current-

voltage relationship that contributes more to the SOC current (ISOC) (reviewed in [57]).

Although it remains controversial, transient receptor potential (TRP) channels have long been

proposed as SOC candidates [22, 58].

Numerous TRP channels contribute to the regulation of membrane potential and vascular

tone. Of the various subtypes, it is the canonical (TRPC) subfamily, particularly TRPC1 that

has been proposed as a SOC. Several studies using siRNA knockdown or neutralizing antibod-

ies towards TRPC1 show incomplete inhibition of SOCE in various VSMCs including the

aorta, pulmonary, cerebral, and portal vein [59–62]. In addition to minimal inhibition of

SOCE by targeting TRPC1, these studies were also completed in cultured cells which may alter

the SOCE response. Interestingly, Dietrich et al. [63] demonstrated VSMCs of TRPC1-/- mice

freshly isolated from aortas and cerebral arteries showed no difference in SOCE induced by

thapsigargin, IP3, or cyclopiazonic acid compared to cells from wild-type mice. Further inves-

tigation into the role of TRPC1 in SOCE found that TRPC1 only contributed to SOCE when

both STIM1 and Orai1 were present, suggesting that TRPC1 is not be directly activated by

store depletion, but rather is activated secondarily to STIM1 and Orai1 [64–66]. Therefore,

although VSMC TRPC channels play an important role in vascular homeostasis, it is unlikely

through SOCE.

In contrast to TRPC1-/- mice where there was no observable change in VSMC SOCE

response [63], ASIC1a-/- mice have significantly reduced SOCE in pulmonary VSMCs [34, 38,

39]. Furthermore, transfection of the ASIC1a gene into pulmonary VSMCs from ASIC1a−/−

mice restores SOCE to a level similar to that in wildtypes, further demonstrating ASIC1a, per
se, is an essential component of SOCE [39]. ASIC1a conducts both Na+ and Ca2+ [25–27], and

it is possible ASIC1a-mediated Na+ influx leads to VSMC depolarization and secondary activa-

tion of VGCC. However, this effect is unlikely in the present study since all SOCE responses

were performed in the presence of diltiazem. Further, diltiazem and PcTX1 had very different

effects on ET-1-induced vasoconstriction, suggesting different mechanisms are involved.
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Consistent with the possibility that ASIC1a functions as a SOC in pulmonary VSMC, we

found an increased interaction between ASIC1a and STIM1 in pulmonary VSMC that was not

present in mesenteric VSMCs in response to store depletion. Furthermore, we observed an

increase in the ASIC1a-STIM1 association upon store depletion in pulmonary VSMCs.

Although we observed an association between ASIC1a and STIM1 in mesenteric VSMC, we

did not measure any increase after store depletion. Therefore, suggesting that ASIC1a is not

involved in SOCE in mesenteric VSMCs. It is possible that the basal interaction that we

observe between ASIC1a and STIM1 in mesenteric VSMC is due to the effects of cell culture

where the cells can undergo phenotypic switches possibly leading to enhanced expression of

ASIC1a and STIM1 in the cells. Although we did not investigate the role of ASIC1a to SOCE

in other systemic vascular beds beyond the mesenteric circulation, these studies suggest

ASIC1a may have a pulmonary-specific role. Indeed, we found ASIC1a-/- mice are protected

from the development of chronic hypoxia-induced pulmonary hypertension [39]. More specif-

ically, in response to chronic hypoxia, ASIC1a-/- mice showed no increase in the SOCE

response, vasoconstrictor reactivity, vascular remodeling, right ventricular systolic pressure or

right ventricular hypertrophy observed in wildtype mice [39], suggesting a unique role for

ASIC1a in development of pulmonary hypertension.

In addition to pulmonary hypertension, SOCE dysregulation is associated with several vas-

cular disorders including atherosclerosis, systemic hypertension, and restenosis. In STIM1

smooth muscle and endothelial cell-specific knockout animals, basal systolic blood pressures

were similar to those of wild-type animals [67]. However, angiotensin-II-induced hyperten-

sion was significantly attenuated in the smooth muscle-specific STIM1-/- compared to wildtype

animals [68], suggesting that STIM1 within the smooth muscle is a critical player in the role of

angiotensin-II-induced hypertension. Similarly, the mRNA and protein levels of STIM1 and

Orai1 were significantly higher and there was a significant increase in SOCE and force genera-

tion in aortic rings in stoke-prone spontaneously hypertensive rats (SHRSP) compared to Wis-

tar-Kyoto (WKY) controls [47]. In addition, SOCE-induced contraction was dramatically

increased in mesenteric arteries from aged (22 months) compared to young (3 months) rats

[46]. These data suggest SOCE plays a larger role in vascular function in diseased/aged states.

Therefore, although we do not see a role for ASIC1a and Orai1 in basal SOCE responses in

mesenteric arteries, these channels may exhibit a larger role in the enhanced SOCE response

associated with cardiovascular diseases.

In summary, this study demonstrates the vast heterogeneity that exists between vascular

beds. Whereas SOCE is very prominent in the pulmonary circulation and contributes to pul-

monary vasoconstriction; in the mesenteric circulation the role of SOCE to vascular reactivity

is negligible. Moreover, we have found that VSMC expression of ASIC1a plays a unique role in

the pulmonary circulation to mediate vasoconstriction. As this study only investigated pulmo-

nary versus mesenteric arteries, further investigation is warranted to determine the importance

of SOCE and ASIC1a in other systemic vascular beds. In addition, it is important to determine

whether SOCE is enhanced and becomes a fundamental signaling pathway that mediates the

vascular dysfunction that occurs with many cardiovascular diseases. This knowledge, and the

specific ion channels involved, will provide potential molecular targets to treat cardiovascular

diseases.

Supporting information

S1 Fig. Primary pulmonary and mesenteric VSMC homogeneity is verified by morpho-

logical appearance and presence of smooth muscle marker. A: representative immunoflu-

orescence images of pulmonary and mesenteric VSMC stained for smooth muscle 22α. B:
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representative PCR gels showing expression of smooth muscle α actin (F: 5’-ACTGCTGC
TTCCTCTTCTTC-3’; R: 5’-GGCCAGCTTCGTCATACTCC-3’), calcitonin gene-related

peptide (F: 5’-GTTCTCCCCTTTCCTGGTTG-3’; R: 5-’CTGGGGCTGTTATCTGTTCA-
3’) and β-actin.

(PDF)

S2 Fig. STIM1 is expressed in both pulmonary and mesenteric isolated arteries. Represen-

tative A: PCR gel showing mRNA expression of STIM1 in pulmonary (PA) and mesenteric

(MA) arteries and brain (positive control; F: 5’-ATGCCAATGGTGATGTGGAT-3’; R: 5’-
CCATGGAAGGTGCTGTGTTT-3’). B: Representative western blot showing protein expres-

sion in PA, MA, and brain (top; Abcam: ab108994), Coomassie blue was used to measure even

loading (B-bottom).

(PDF)

S3 Fig. STIM1, Orai1, and ASIC1 are expressed in both pulmonary and mesenteric VSMC.

Representative PCR gel showing mRNA expression of STIM1, Orai1, and ASIC1 in both pul-

monary and mesenteric primary cultured VSMC.

(PDF)

S4 Fig. Negative control proximity ligation assay experiments. Representative images of

negative control experiments where each primary antibody was incubated individually with

subsequent incubation with probes.

(PDF)

S1 Raw images.

(PDF)
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