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Combining exome/genome sequencing with data repository

analysis reveals novel gene—disease associations for a wide
range of genetic disorders

Aida M. Bertoli-Avella@®'®, Krishna K. Kandaswamy', Suliman Khan', Natalia Ordonez-Herrera’', Kornelia Tripolszki', Christian Beetz’,
Maria Eugenia Rocha’, Alize Urzi', Ronja Hotakainen', Anika Leubauer’, Ruslan Al-Ali’, Vasiliki Karageorgou', Oana Moldovan?,
Patricia Dias?, Amal Alhashem?, Brahim Tabarki®, Mohammed A. Albalwi*>®, Abdulrahman Faiz Alswaid®’, Zuhair N. Al-Hassnan?,
Malak Ali Alghamdi®, Zahra Hadipour'®, Fatemeh Hadipour'®, Nadia Al Hashmi'’, Lihadh Al-Gazali'?, Huma Cheema'?, Maha S. Zaki'*,
Irina Hiining'>, Ahmed Alfares*'®, Wafaa Eyaid>’, Fuad Al Mutairi®’, Majid Alfadhel®’, Fowzan S. Alkuraya'’,

Nouriya Abbas Al-Sannaa'®, Aisha M. AlShamsi'?, Najim Ameziane', Arndt Rolfs"'® and Peter Bauer'

PURPOSE: Within this study, we aimed to discover novel gene-disease associations in patients with no genetic diagnosis after
exome/genome sequencing (ES/GS).

METHODS: We followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically
interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we
focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID),
which are the most common reasons for genetic testing referrals. Gene-disease association was assessed using our data repository
that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients.

RESULTS: We propose six novel gene-disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1,
RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published
evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID,
oral-facial-digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia.
CONCLUSION: Our results demonstrate the value of data repositories which combine clinical and genetic data for discovering and
confirming gene-disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of
undiagnosed patients and their families.

Genetics in Medicine (2021) 23:1551-1568; https://doi.org/10.1038/s41436-021-01159-0

INTRODUCTION Currently, most family-based approaches for disease gene identifica-

More than half of patients with genetic diseases remain
undiagnosed, even after conducting genome-wide diagnostic
approaches, such as exome and genome sequencing.' Despite
recent technological advances, the challenge of variant inter-
pretgtion remains, in part due to the missing gene-phenotype
link.

The methods applied for the identification of causal gene defects
for monogenic diseases have changed drastically in the last 10 years.
Genome-wide scans using polymorphic microsatellite markers or
single-nucleotide variants followed by linkage analysis were the
predominant genetic mapping approach used in the past.* This
changed dramatically after the implementation and routine
application of exome/genome sequencing in genetic research.

tion rely on the analysis of exome or genome data. Study designs
vary from including single unrelated individuals with a similar
phenotype to typical family-based studies with the inclusion of
several affected and unaffected relatives to focus on regions of
homozygosity or using the de novo approach.” Furthermore,
phenocentric (focused on specific patients and phenotypes) and
genocentric (focused on database analyses and algorithms)
approaches have been described.®’ Identification of candidate
genes/variants associated with disease is usually followed by
replication in other unrelated, similarly affected patients and/or
functional studies to validate variants’ pathogenicity.®

The unambiguous assignment of disease causality is often
difficult to achieve, and, in many cases, the initially collected
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CENTOGENE data repository ES/GS (55,782 individuals)

Rare variants (ExAC < 0.0001 or gnomAD < 0.0001)
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Summary of the applied strategies for identification of novel gene-disease associations. a Patient-centered approach to

systematically interrogate variants in genes not yet associated to human diseases in patients with no genetic diagnosis after exome/genome
sequencing (ES/GS). b Gene variant centered approach to analyze de novo variants in cases with ES/GS performed and no genetic diagnosis.

DP depth of reads, pLI probability of loss-of-function intolerance.

evidence is insufficient to prove causality. The rarity, severity, and
clinical heterogeneity of many genetic disorders complicates the
process of finding additional patients. Furthermore, the lack of
knowledge on the gene/protein function challenges the final
assignment of gene causality. Thus, the gene candidacy remains
inconclusive and is considered as a research gene.

Within this study, we analyzed exome/genome data together
with the respective clinical phenotypes of the patients using
Human Phenotype Ontology (HPO) to identify novel gene-disease
associations and to validate previously reported candidate
genes. We present six novel gene—disease associations and the
confirmation of 31 additional candidate genes. The outcome has
substantial implications for the diagnosis and counseling of the
patients and their families.

MATERIALS AND METHODS
Patients

Written informed consent included several sections: consent for genetic
testing related to the disease(s) of the patient, and consent for research
(related to the main concern, but implicating genes not yet associated to
human diseases). Additionally, the consent declaration included informa-
tion regarding storage of the data and further processing for research
purposes. Written informed consent was given by patients, parents, or
referring physicians. Consent for scientific publication of patient photo-
graphs was obtained as well. Data regarding country of origin, family
history, consanguinity, clinical phenotype, and previous genetic testing
were extracted from our database.

Exome and genome sequencing (ES/GS)
DNA was extracted from EDTA blood or from dried blood spots on filter
cards (CentoCard®) using standard, spin column-based methods.

ES was performed as previously described.? In short, the Nextera Rapid
Capture Exome Kit (lllumina, San Diego, CA), the SureSelect Human All
Exon kit (Agilent, Santa Clara, CA) or the Twist Human Core Exome was
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used for enrichment, and a Nextseq500, HiSeq4000, or Novoseq 6000
(Illumina) instrument was used for the actual sequencing, with the
average coverage targeted to at least 100x or at least 98% of the target
DNA covered 20x. When carrying out GS, genomic DNA was fragmented
by sonication, and Illlumina adapters were ligated to generated
fragments for subsequent sequencing on the HiSegX platform (lllumina)
to yield an average coverage depth of at least 30x. Data analysis,
including base calling, de-multiplexing, alignment to the hg19 human
reference genome (Genome Reference Consortium GRCh37), and variant
calling, was performed using the HiSeq Analysis Software v2.0 pipelines
(Illumina, Inc., San Diego, CA), as previously described® (Supplementary
information).

Variants with suboptimal quality were confirmed via Sanger sequencing
according to our established criteria® or quantitative polymerase chain
reaction (qPCR), multiplex ligation-dependent probe amplification (MLPA),
or chromosomal microarray (CMA) for copy-number variations (CNVs).
An extended Methods section can be found in the Supplementary
Information.

Variant evaluation and classification

The clinical information was translated into HPO terms, registered in our
data repository, and applied for each individual analysis during variant
filtration and prioritization as previously described.”'® Variant nomen-
clature followed standard Human Genome Variation Society (HGVS)
recommendations.'’ Variants in established diagnostic genes were
classified according to the published guidelines of the American College
of Medical Genetics and Genomics (ACMG) and Association for Molecular
Pathology (AMP) as pathogenic (P), likely pathogenic (LP), and variant of
unknown significance (VUS).'?

For patients with no relevant variant(s) identified during the diagnostic
process, a second analysis was conducted with the aim of identifying
variants in genes not yet associated to any human phenotype. The results
were reported to the referring physician as research findings in a dedicated
section of the genetic report. The workflow is summarized in Fig. 1a.
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Analysis of own data repository

Patients’ reports containing research findings were retrieved from the
database (2016-2019). Reported variants were reassessed taking into
consideration current knowledge on the gene function and compatibility
with the patient phenotype (e.g., based on animal models). Only cases with
negative or inconclusive (VUS) diagnostic findings were included (Fig. 1a).
As a second step, the data repository was queried for other rare variants in
the respective candidate gene and the overlapping clinical features of the
individuals.

Our data repository (CentoMD®)'® contains ES/GS data from 55,782
individuals (50,023 ES/5,759 GS), of whom 33,280 individuals (29,842 ES/
3,438 GS) have clinical descriptions that include at least one HPO term.
Neurodevelopmental delay (NDD) or intellectual disability (ID) are among
the most frequent reasons for genetic consultation and testing. Thus, a
second, gene-centered approach was applied to identify de novo variants
in patients with NDD/ID. Variants that are rare in external databases (ExAc
<0.0001 or gnomAD <0.0001) and have a high or moderate predicted
impact on protein structure or function (missense, affecting splicing sites,
nonsense, frameshift, indels) and high CADD raw score (above 4) were
prioritized. Only variants with satisfactory quality scores were considered
(read depth =20, frequency =20 and quality score >220).° In addition,
variants mapping to 3,230 genes with high probability of loss-of-function
intolerance (pLl) scores EXAC calculations of pLl >0.90) were prioritized.
Genes with an associated clinical phenotype in OMIM or ClinVar were
excluded from this analysis. Finally, only index cases with parental samples
available who had no established genetic diagnosis during former ES/GS
evaluations were included. Figure 1b summarizes the filtering strategy.

RESULTS

We applied two different strategies to identify novel gene—disease
associations. For the first approach (patient-centered), we
extended the ES/GS evaluation to genes with no known disease
association, according to the OMIM database. A summary of the
implemented workflow is shown in Fig. 1a. In using this strategy,
we identified 191 candidate genes in patients with a wide range of
clinical phenotypes. Furthermore, we used a second approach
(gene-centered) oriented toward identifying unreported, de novo
variants in patients with NDD/ID. We focused on NND/ID as these
are among the main reasons for genetic testing referrals. The main
parameters applied are summarized in Fig. 1b. We identified 287
candidate genes using this approach.

Then, we reviewed the evidence supporting variant/gene
pathogenicity and individual patient data. We took into con-
sideration the OMIM database, PubMed, Uniprot, and the Human
Protein Atlas. With this evaluation, we detected genes that were
already recognized by us as candidates and for which indepen-
dent publications were ongoing, for example ADAMTS19'* and
EMC10."® Additional genes had recently been published as causal
for genetic disorders, such as FBXW11,'® GRIA2,"” PPP1R21,'® and
TAOK1, which was recently published by us.'® Other genes such as
TANC2%® and NEK10?" were published as causative in the months
following our initial analysis and during the preparation of this
paper. These examples can be considered as a proof of principle,
confirming the effectiveness of the applied approaches.

For the identification of novel gene-disease associations, we
focused on genes with more than one hit and no previous
association to a human disease. We selected genes with variants
in at least two unrelated cases and published genetic or
functional evidence indicating a role in disease, or with at least
three unrelated patients if there was limited available evidence
on gene function. This analysis enabled the identification of
novel gene-disease associations based on 38 patients with
variants in six genes: BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1,
and ZNF699 (Table 1).

The related disorders are described as follows: three different
neurodevelopmental disorders with features of (1) severe ID,
leukodystrophy, seizures, and visual impairment (BLOC1S7, four
patients); (2) NDD, seizures, and microcephaly (PLK1, five
patients); and (3) NDD, dysmorphic features, and hypotonia
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(RAP1GDS1, four patients). We also identified three new syn-
dromic associations: (1) a connective tissue disorder resembling
Loeys-Dietz syndrome (LDS) (IPO8, nine patients); (2) Alagille-like
syndrome with liver cholestasis and congenital heart defects
(MMP15, three patients); and (3) a multiple malformation
syndrome (ZNF699, 13 patients). Variant details and patient
phenotypes are summarized in Table 1. All cases presented
homozygous variants compatible with autosomal recessive
disorders. Selected examples are described below.

BLOC1S1

Four patients from three families presented rare homozygous
variants in this gene and a similar neurological phenotype.
Additional testing in one family confirmed cosegregation of the
variant in two siblings (affected sibling—homozygote and
unaffected sibling—heterozygote). BLOC1S1 is a component of
the ubiquitously expressed BLOCT multisubunit protein complex,
which is required for normal biogenesis of specialized organelles
of the endosomal-lysosomal system.?> The gene was originally
identified as GCN5LT; it has been shown to play crucial roles in
mitochondria, endosomes, lysosomes, and synaptic vesicle pre-
cursors.?® Knocking out this gene in mice results in lethality; mice
embryos fail to develop beyond ~E12.5.2* Furthermore, mutant
flies lacking the conserved Blos1 subunit displayed eye pigmenta-
tion defects, as well as abnormal glutamatergic transmission and
behavior.”> BLOC153 is another component of the ubiquitously
expressed BLOCT multisubunit protein complex. Biallelic patho-
genic variants in BLOC1S3 cause Hermansky-Pudlak syndrome
(OMIM 614077), a sort of incomplete oculocutaneous albinism and
platelet dysfunction that includes visual defects.

IPO8

Six different homozygous LoF variants were identified in the /PO8
gene in nine unrelated patients (Table 1 and Fig. 2). Phenotypi-
cally, the patients presented dysmorphic features, hypotonia, and
features reminiscent of a connective tissue disease such as high
palate, pectus deformities, hernias, gray-blue sclera, cutis laxa,
tortuosity of cerebral arteries, and congenital heart defects. For
some cases, clinical suspicion included LDS and Ehlers-Danlos
syndrome. The IPO8 gene has not been associated to any human
phenotype so far. Interestingly, Imp8 is involved in preferential
nuclear importing of Smad1, Smad3, and Smad4. The TGFB
pathway and receptor SMADs (SMAD2/3) are central in the
pathophysiology of LDS with causative variants detected in the
TGFBR2/3,%° TGFB2/3,°"*® SMAD2/3.2°3°

MMP15

Upon the detection of the homozygous variant NM_002428.3:
¢.1058delC, p.Pro353fs in a patient with dysmorphic features,
complex congenital heart defects (double outlet of the right
ventricle, hypoplastic left ventricle, septal defects), and cholestasis,
we queried our data repository for additional cases. A sibling was
similarly affected and was homozygote for the same variant. An
additional unrelated patient was identified with a different variant
in the MMP15 gene (Table 1). The patient presented cholestasis,
hepatomegaly, high hepatic transaminases, and congenital heart
disease. Alagille syndrome and progressive familial intrahepatic
cholestasis were the differential diagnoses. MMP15, a member of
the matrix metalloproteinases family, is an excellent candidate for
this phenotype. In mice, Mmp15 is a direct target of Snail1 during
endothelial to mesenchymal transformation and endocardial
cushion development.' A Snail1/Notch1 signaling axis controls
embryonic vascular development. Snail1 acts as a VEGF-induced
regulator of Notch1 signaling and DIl4 expression.>? In humans,
genes from the NOTCH pathway (JAGT and NOTCH2) are
implicated in Alagille syndrome type 1 and 2 (OMIM 118450 and
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610205), which has high similarity with the phenotype described
here in patients with homozygous variants in MMP15. Interest-
ingly, while these syndromes present with an autosomal dominant
mode of inheritance, the patients reported in this study with
MMP15 variants show an autosomal recessive disease.

SPRINGER NATURE

6 7-13 14-16 E Cardiovascular abnormality
3 B Skin abnormality
3 G Skeletal abnormality
rid
i E Neurological abnormality

Thirteen patients from 12 families were identified with homo-
zygous loss-of-function (LoF) variants in this gene (Fig. 3). These
patients presented with a clear malformation syndrome with
coarse facial features and abnormalities of the cardiovascular,

Genetics in Medicine (2021) 23:1551-1568
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Fig. 2 The phenotype associated with /IPO8 homozygous loss-of-function (LoF) variants. Upper panel: photographs illustrating clinical
features. Patient 7, with umbilical hernia, brachydactyly of hands, proximal placement of the thumbs, short nails, genus varus, pes planus,
brachydactyly of foot, and short toenails. Patient 9 with low-set ears, sparse scalp hair, broad and sparse eyebrows, hypertelorism, long
palpebral fissures, and depressed nasal bridge. Patient 13 with frontal bossing, wide, sparse eyebrows, hypertelorism, large palpebral fissures
(downslanted), deep philtrum, and thin vermilion of the upper lip. Joint hypermobility (wrist and thumb), as well as long foot, long toes,
hindfoot valgus, and pes planus. Lower panel: family trees of patients with /PO8 homozygous LoF variants and clinical abnormalities. Patients
presented with a complex phenotype that included abnormalities of the cardiovascular system (congenital heart defects, cardiomyopathy,
engorged brain vasculature), the skeletal system (joint hypermobility, pectus deformities, genus valgus/varus, scoliosis), and the skin (cutis
laxa). Most patients presented hypotonia, neurodevelopmental delay (NDD), and failure to thrive. Other features included intestinal

malrotation, Gastroesophageal reflux (GER), and hydronephrosis.

gastrointestinal (gastroesophageal reflux, intestinal atresia), geni-
tourinary (renal dysplasia/hypoplasia, ambiguous genitalia), and
skeletal system (syndactyly, preaxial polydactyly, absent thumbs).
Other common features included anemia/pancytopenia, prema-
ture graying of hair, and sensorineural hearing impairment. All
patients presented severe NDD.

The first patient identified was a 2-year-old female born
preterm (32 weeks) to consanguineous parents (patient 26,
Table 1, Fig. 3). She has a similarly affected sibling, who is also
homozygote for the same ZNF699 variant. A clinical summary of
the patients from three families is presented in the Supplemen-
tary Information (patients 26, 35, and 38, Table 1, Fig. 3). Despite
the clear phenotypical similarity of the 13 patients identified with
homozygous LoF variants in ZNF699, little is known about the
function of this gene, which was initially described in Drosophila
in a study of alcohol dependence.®* The gene encodes a large
nuclear zinc-finger protein, suggesting a molecular role in nucleic
acid binding.>*

We also detected variants in known candidate genes that had
insufficient published evidence supporting causality (and no
OMIM associated phenotypes). Our current data provides further
evidence supporting confirmation of 31 candidate genes in 56
patients with a wide range of clinical phenotypes. These include
cases with syndromic and nonsyndromic forms of NDD/ID,
ciliopathy, oral-facial-digital syndrome, cardiomyopathy, syndro-
mic short stature, and skeletal dysplasia. The identified genes are
APC2, CAP2, EIF3F, GYG2, IFT57, ITFG2, LGI3, NEK10, NRAP, PAPPA2,
PPP1R13L, WIPI2, ZNF526 (autosomal recessive, X-linked inheri-
tance, Supplementary table 1); AFF3, BCORL1, CHD6, CNOTT, CTR9,
DMXL1, FRYL, KLF7, MYCBP2, NRXN2, PHF21a, RAB11a, RALA, SPEN,
TAF4, TANC2, ZNF292, ZNF462 (autosomal dominant, de novo
variants, Supplementary Table 2). Selected examples from this
group are described in the following sections.

PAPPA2

Dauber et al. reported the finding of two homozygous variants
(missense and frameshift) in two unrelated families, with several
children having significant postnatal growth retardation, long
thin bones, long fingers and toes, mild microcephaly, abnormal
dentine and teeth enamel, and mild dysmorphisms. In vitro
analyses demonstrated that both variants caused a complete
absence of PAPPA2 proteolytic activity;*> however, no additional
patients have been reported to date. We identified two novel
homozygous nonsense variants in PAPPA2, in two patients with
short stature and dysmorphic features with no evident NDD. The
phenotype is highly similar to the previously reported cases
supporting a causal role of PAPPA2 in a novel short stature
syndrome.

TAF4

A heterozygous de novo variant (frameshift) was reported in TAF4
by Kosmicki et al,, in a patient with autism.>® The gene has no
phenotypic association in OMIM (accessed 12 October 2020).
Within this study, we identified two additional de novo LoF
variants (splicing and nonsense) in two unrelated patients with
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dysmorphic features and NDD. TAF4 is highly intolerant to LoF as
documented in gnomAD (pLi=1). Expression of TAF4 varies
during development and in the processes of cell differentiation;
TAF4 is detected in various regions of the human brain, and it is
believed to control the differentiation of human neural progenitor
cells having a role in the regulation of neural development and
brain function.?” The current data suggests that TAF4 haploinsuf-
ficiency leads to NDD in humans.

RAB11a

Hamdan et al. described three patients with developmental and
epileptic encephalopathy as well as de novo missense variants in
the RAB11a gene®® We identified two additional variants in the
same GTPase region of RAB11a in patients with microcephaly,
NDD, and specific brain abnormalities. Dendritic spines are
postsynaptic protrusions at excitatory synapses that are critical
for proper neuronal synaptic transmission. RAB11a is part of the
cascade controlling spine formation and function.3®> When
combined, the genetic and functional data support a causative
role of RAB11a for NDD with epileptic encephalopathy and
microcephaly.

MYCBP2

This gene is not associated to any phenotype in OMIM (accessed 12
October 2020). Neale and Kosmicki et al3®*° reported de novo
missense and frameshift variants in patients with autism spectrum
disorder after screening a large cohort of patients. Recently,
Takahashi et al. identified two variants (one of them confirmed as
arisen de novo) in two cases with uterovaginal aplasia with
concomitant defects, such as renal, skeletal malformations, hearing
defects, and rare cardiac and digital anomalies known as
Mayer—Rokitansky-Kuster-Hauser (MRKH) syndrome.*’ Within this
study, we detected three additional de novo variants (one likely
affecting splicing and two missense) in three patients with NDD,
microcephaly, and seizures. One case presented bilateral bifid
thumbs, talipes, and scoliosis, without vaginal or uterine anomalies
(two female patients, both were prepubertal). Our results support a
causal link of MYCBP2 de novo variants and ID/NDD.

DISCUSSION

The ACMG/AMP guidelines for the interpretation of genetic
variants are restricted to genes with established causality in
human diseases,'? while variants in genes for which this evidence
is insufficient are considered genes of unknown significance
(“research” or “candidate” genes).12 Therefore, in routine diag-
nostics, many genes are excluded during the filtering process of
exome/genome data.

Clear guidelines should be established to identify, classify, and
report variants located in candidate genes. Recently, Strande
et al.*? proposed a comprehensive framework within the ClinGen
initiative to evaluate relevant genetic and functional evidence
supporting or contradicting gene-disease associations. The
curation system covers gene variant evidence based on genetic
data, and functional or experimental evidence. Gene-supporting
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Patient 27

Patient 35

Patient 27 Patient 28

NM_198535.2:¢.1623_1626delTTAT, p.Tyr542fs

Patient 30

NM_198535.2:¢.349dupA, p.lle117fs

Patient 26 Patient 31

Patient 29

[’ Cardiovascular abnormality
E Genitourinary abnormality
E Skeletal abnormality

D Gastrointestinal abnormality

1 2 3 E Affected (unspecific NDD)

NM_198535.2:¢.1324dupA, p.Ser442fs

Patient 36

|4
1 2

NM_198535.2:c.51_54del, p.Ser442fs

Patient 32

IR

Patient 33 & 34 Patient 35
|
1 2 1 2
I 1l
1 r 2 1-2 3 4

NM_198535.2:¢.436_439del, p.Asp146llefs*10

evidence includes the identification of several unrelated patients
and variants, and the absence of contradicting data (i.e., high
variant frequency in controls).*? Experimental evidence com-
prises data on gene function, and cellular and animal models.*?
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Patient 37 Patient 38

As part of this study, we describe a patient-centered workflow
implemented for cases with inconclusive or no genetic diagnosis
after ES/GS. The process extends the search and evaluation to
variants detected in genes of unknown significance. From these,
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Fig.3 The phenotype associated with ZNF699 homozygous loss-of-function (LoF) variants. Upper panel: photographs showing phenotypic
features of two patients (patients 27 and 35, Table 1). Patient 27, male index has low anterior hairline, thick scalp hair, thick eyebrows,
synophrys, long eyelashes, long palpebral fissures, proptosis, strabismus, bulbous nose, low hanging columella, smooth philtrum, wide mouth,
micrognathia, short neck, brachydactyly, right preaxial polydactyly, and bilateral syndactyly of the second and third toes. Patient 35, male
index with coarse face, broad eyebrows, long palpebral fissures, wide mouth, thin vermilion of the upper lip, and bilateral absent thumbs. He
presented generalized hypotonia and was severely emaciated. The patient deceased at 9 months old. Lower panel: summarized family trees of
patients with ZNF699 homozygous LoF variants and clinical features. Patients presented with a severe phenotype that included congenital
heart defects, gastrointestinal (intestinal atresia, pyloric stenosis, GER, hepatosplenomegaly), genitourinary (renal hypoplasia, cryptorchidism,
chordee, hypospadias, ambiguous genitalia), and skeletal abnormalities (preaxial polydactyly, absent thumbs, syndactyly). Other recurrent
features were generalized hypotonia, sensorineural hearing impairment, and premature hair graying. All patients have severe

neurodevelopmental delay (NDD).

we suggest six novel disease-gene associations. The findings are
exclusively based on the analyses performed on our data
repository, which enabled further identification of unrelated
patients displaying similar phenotypes. As a follow-up, functional
work is needed to confirm and to understand the disease
mechanisms and related pathophysiology. This is particularly
relevant for genes such as IPO8 and ZNF699, as little is known
about their function. For both genes, the high number of affected
individuals identified, the similarities of their phenotype, and the
putative LoF nature of the homozygous variants detected are
compelling evidence favoring a gene-disease association. Further-
more, our results support causality of 31 additional candidate
genes. Following the ClinGen guidelines, these 31 gene-disease
associations can be upgraded from having “limited” evidence to
genes with “moderate” or “strong” evidence, based on 56 patients.

Traditionally, discovery of novel gene-disease associations has
been done by research labs; however, with this work, we show the
enormous potential of diagnostic labs to uncover and validate
candidate genes. Multiple strategies can be implemented to help
identify novel disease genes, which will ultimately benefit the
patients and families with rare genetic diseases. Genomic data
analysis beyond known disease genes can be implemented in a
routine diagnostic approach, as shown within this study. Finally,
for genetic labs, reporting of variants in diagnostic genes versus
candidate genes should be clearly differentiated since clinical
validity is restricted to the former. Communication with referring
physicians are critical for follow-up and further validation of the
gene-disease associations.

In conclusion, our work shows the benefits of performing
extended ES/GS analyses in patients with no genetic diagnosis
combined with further data repository mining. Dedicated analyses
of such data repositories that combine clinical and genetic
information can be routinely performed to identify and confirm
candidate genes. Genetic laboratories should be encouraged to
pursue such analyses for the benefit of undiagnosed patients and
their families.
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