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Abstract
For more than a decade now, we can discover and study thousands of cerebral connections with the application of diffusion

magnetic resonance imaging (dMRI) techniques and the accompanying algorithmic workflow. While numerous connec-

tomical results were published enlightening the relation between the braingraph and certain biological, medical, and

psychological properties, it is still a great challenge to identify a small number of brain connections closely related to those

conditions. In the present contribution, by applying the 1200 Subjects Release of the Human Connectome Project (HCP)

and Support Vector Machines, we identify just 102 connections out of the total number of 1950 connections in the

83-vertex graphs of 1064 subjects, which—by a simple linear test—precisely, without any error determine the sex of the

subject. Next, we re-scaled the weights of the edges—corresponding to the discovered fibers—to be between 0 and 1, and,

very surprisingly, we were able to identify two graph edges out of these 102, such that, if their weights are both 1, then the

connectome always belongs to a female subject, independently of the other edges. Similarly, we have identified 3 edges

from these 102, whose weights, if two of them are 1 and one is 0, imply that the graph belongs to a male subject—again,

independently of the other edges. We call the former 2 edges superfeminine and the first two of the 3 edges supermasculine

edges of the human connectome. Even more interestingly, the edge, connecting the right Pars Triangularis and the right

Superior Parietal areas, is one of the 2 superfeminine edges, and it is also the third edge, accompanying the two super-

masculine connections if its weight is 0; therefore, it is also a ‘‘switching’’ edge. Identifying such edge-sets of distinction is

the unprecedented result of this work.

Keywords Connectome � Braingraph � SVM � Linear separation � Sex differences � Superfeminine edges �
Supermasculine edges

Introduction

One of the most important challenges in brain science is

establishing the cellular and anatomical causes of neuro-

physiological or psychological differences between human

subjects. In the last decade, by the spectacular develop-

ments in magnetic resonance imaging (MRI) of the brain,

together with the data-processing pipeline for the data

collected, our knowledge of the cerebral connections has

been increased enormously (e.g., Sporns et al. 2005; Van

Essen et al. 2012; Szalkai et al. 2019a).

Diffusion MRI (dMRI) is capable of discovering the

spatial anisotropy of the movement of water molecules in

the brain: since in the axonal fibers of the white matter the

water molecules have a diffusion movement along the

axons, the axonal fibers can be tracked and traced, without

any contrast material, with refined tractography algorithms
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(Tournier et al. 2012). With the reliable identification of

the cortical- and sub-cortical gray matter areas (Fischl

2012), we can construct the connectome, or the braingraph

as follows: the nodes (or vertices) of this graph are the

anatomically identified gray matter areas, and two nodes

are connected by an (undirected) edge if the tractography

algorithm finds axonal fibers between the brain areas,

corresponding to these two nodes.

Numerous results were published in the last decade,

analyzing the human braingraph (Hagmann et al. 2008;

Szalkai et al. 2015a; Kerepesi and Grolmusz 2017; Hag-

mann et al. 2012; Szalkai et al. 2019b; Craddock et al.

2013; Kerepesi et al. 2018b; Szalkai et al. 2017b; Ortiz

et al. 2014). Several works describe the connections of the

healthy human brain (Ball et al. 2014; Kerepesi et al. 2016;

Bargmann 2012; Kerepesi et al. 2017; Batalle et al. 2013;

Szalkai et al. 2017a; Kerepesi et al. 2018b; Graham 2014),

while others establish relations between psychiatric dis-

eases or conditions and the connectome (Agosta et al.

2014; Alexander-Bloch et al. 2014; Baker et al. 2014;

Szalkai et al. 2019a; Besson et al. May 2014; Bonilha et al.

2014).

Sex differences

It is known for several years that the female and the male

connectomes have different properties as graphs. The work

of Ingalhalikar et al. (2014) has proven—on a publicly un-

available dataset—that the ratio of inter-hemispheric con-

nections vs. the intra-hemispheric connections differs in

males and females.

Our group has shown on a publicly available dataset

(Kerepesi et al. 2017) that several deep graph-theoretical

properties, which are usually applied in the characteriza-

tion of the quality of large computer interconnection net-

works (Leighton 1992), are better in the braingraphs of

women than in men (Szalkai et al. 2015b, 2021). We have

proven that women’s braingraphs are better expanders,

have greater minimal bisection width, more spanning trees,

larger minimum vertex cover than that of men. In the work

of Szalkai et al. (2018) we have proven that the advantage

in the graph-quality parameters of women is due to the sex

differences, and not to the size differences: we have

compared the graphs of 36 large-brain women and 36

small-brain men, such that the brain volumes of all men

were smaller than the brain volume of the smallest-brain

woman in the group. We have found that men did not have

better parameters than women in this test, and, addition-

ally, many of the advantages of the women remained valid.

The adjective ‘‘better’’ and the noun ‘‘advantage’’ refer

to the quality parameters of the large computer intercon-

nection networks (Leighton 1992); their beneficial effects

on the human brain functions are not proven yet (Szalkai

et al. 2015b, 2021).

Parameters, defined a priori versus a posteriori

In the studies of Ingalhalikar et al. (2014), Szalkai et al.

(2015b), Szalkai et al. (2021), Szalkai et al. (2018), Fellner

et al. (2020b), the authors compared parameters, which

were identified a priori, i.e., the examination of these

parameters were decided before the braingraphs were

analyzed. In the present work, we intend to identify a

posteriori parameters, i.e., edge-structures in the course of

the analysis of the braingraphs, in which the male and

female connectomes differ. Additionally, we intend to

discover the smallest possible edge-sets of the braingraphs,

which already determine the sex of the subject.

First, we constructed and trained a deep artificial neural

network (ANN, see, e.g., Szalkai and Grolmusz 2017, 2018

for definitions and examples) for classifying the sex of the

subject, using only his/her braingraph. While these efforts

were moderately successful, we have found that not the

deep networks, but, on the contrary, the one-level networks

gave the best results for predicting the sex of the subject. In

a certain sense, one-level neural networks are similar in

their capabilities to linear tests or Support Vector Machines

(SVMs). In the ‘‘Methods’’ section, we give a short intro-

duction to SVMs.

It is important to note that we have not used artificial

intelligence tools (ANNs and SVMs) for making predic-

tors. We have used these tools for data analysis: we have

found the ‘‘minimal SVM’’ which distinguished the sexes,

then apply this SVM as a mathematical model to identify

distinguished edges of the male and female connectomes.

Few edges, which imply biological properties

It is a great challenge to identify one edge or a small set of

edges in the human braingraph, which imply some

important biological properties of the subject. In other

words, the task is to find the most important brain con-

nections, which relate to some biological conditions (bio-

logical property, or diseased status, or mental ability or

disability). Up to now, more complex graph-theoretical

properties—instead of just identifying a few graph edges—

were published in this direction: for example, for the sex of

the subjects, complex graph-theoretical differences were

found in Szalkai et al. (2015b), Szalkai et al. (2021),

Szalkai et al. (2018), Fellner et al. (2020a), Fellner et al.

(2019). For intelligence-related psychological tests, some

frequent neighbor sets of the hippocampus were identified,

which are correlated with good and bad test results in

Fellner et al. (2020b). Interrelations between graph-
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theoretical properties of the connectome and physiological

properties were described in Szalkai et al. (2019a).

Finding one, two, or three edges whose strengths

(measured in fiber numbers, cf. the ‘‘Methods’’ section)

imply important biological properties is one of the results

of the present work. These edges are the most important

ones in relation to the property studied. This problem is

analogous to finding the most important vertices in a graph,

which was solved by Google Inc., by their famous

PageRank algorithm (Page et al. 1999; Brin and Page

1998): The PageRank scoring has made the Google web

search engine in front of their competitors.

Here, we identify superfeminine and supermasculine

edges of the braingraph based on the largest cohort avail-

able today. These edges are described as follows.

Few edges, which simply determine the sex
of the subject

Applying Support Vector Machines and integer program-

ming algorithms, we were able to identify a small set of

connectome edges, which precisely determine the female

and male brains, without any error. Additionally, and

perhaps more surprisingly, we have identified 2 and 3

particular edges with the following property: if the scaled

weight of both edges is 1, then the connectome belongs to a

female subject. If the scaled weight of the first two of the

three edges is 1, and the scaled weight of the third is 0, then

the connectome belongs to a male subject. The edge

weights correspond to the fiber numbers, and the scaling

means that the fiber number is multiplied by an edge-

specific number such that the resulting value is between 0

and 1 (the exact definition of the edge weights is given in

the ‘‘Methods’’ section). We call these edges superfeminine

and supermasculine edges, respectively.

More exactly, we are considering graphs on 83 vertices.

From these 83 vertices, one can form

83

2

� �
¼ 3403

vertex-pairs, i.e., this is the maximum number of edges on

83 vertices. Note that each of the 1064 braingraphs con-

tains exactly 83 vertices, and all of these vertices corre-

spond to the very same 83 gray-matter areas of the brain

(sometimes called ROIs, Regions of Interest).

In our dataset of 1064 subjects, the union of all edges of

the 1064 braingraphs contains 1950 edges. That means that

out of the possible 3403 edges, only 1950 are present in the

union of all the 1064 braingraphs. This is not a surprising

observation since, for example, few areas from the left

hemisphere are connected directly to the areas of the right

hemisphere (see Supporting Fig. 1 in the on-line supporting

material). As our first result, we have succeeded in finding

a hyperplane in the 1950-dimensional Euclidean space,

which perfectly separates the 1064 points, corresponding to

the male and the female subjects (see Fig. 1). In general, it

is not a great surprise: if we take an nþ 1-vertex simplex in

the n-dimensional space, then—for any ?1 and -1 label-

ing of those nþ 1 vertices—there exists a hyperplane

which perfectly, without any error separates the -1 and the

?1 labeled points as in Fig. 1. Finding a separating

hyperspace in much lower dimensions is difficult and often

impossible.

It is a great challenge to find the smallest possible set of

edges, which still implies the sex of the subject. This small

set of connections may carry the most important features,

which differentiate the braingraphs of the sexes. If there

existed a single graph edge e with weight w(e), such that

for all braingraphs of men wðeÞ[ c and for all braingraphs

for women wðeÞ� c, then this single edge e would separate

the sexes in a very simple way. If no such single edge

exists, but there existed two edges, e and f, and three

constants a, b, c, such that awðeÞ þ bwðf Þ[ c for all men

and awðeÞ þ bwðf Þ� c for all women, then these two

edges, e and f, would separate the sexes by a linear test.

Unfortunately, no one knows one or two edges, separating

the braingraphs of the sexes by simple linear tests.

We were able to identify 102 edges, which already

determine the sex of the subjects (Fig. 1). Moreover, these

edges determine the sex in a very simple, linear way,

Fig. 1 A simple example for Support Vector Machine data classifi-

cation (Cortes and Vapnik 1995) on the plane. The blue and red points

describe two classes of data (for example, each point corresponds to a

braingraph, blue points to male, red points to female connectomes).

The green line perfectly distinguishes the two classes: the blue ones

are on one side, the red ones on the other side of the green line. In the

102-dimensional space (instead of the 2-dimensional space on the

figure), we have succeeded in distinguishing the male and female

braingraphs in a similar way: all the male graphs are on one side, all

the female graphs are on the other side of our hyperplane. The

coordinates of the separating hyperplane are given in the Supporting

material. (Color figure online)
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described below (the method of the identification of these

102 edges is detailed in the ‘‘Methods’’ section).

For describing this phenomenon, let us correspond each

graph to a length-102 vector, with coordinates equal to the

edge-weights on the chosen 102 edges. This way, we have

1064 vectors, each with 102 coordinates. In other words,

we have a 102-dimensional Euclidean space with 1064

points (vectors) in it. In this space, we have determined a

hyperplane, which separates the male and female graphs in

the following way: all the 102-dimensional vectors made

from the female graphs are on one side of the hyperplane,

while all the 102-dimensional vectors, made from the male

braingraphs are on the other side of the hyperplane. Con-

sequently, (1) 102 edges out of the 1950 edges already

determine the sex of the subject, and (2) in a very simple,

exact, and linear way, by a separating hyperplane. Figure 1

gives a simple example for the data separation on the plane

(in 2 dimensions) with a line (i.e., a line is a hyperplane on

the plane).

Figure 2 depicts the 102 edges, which already determine

the sex of the subject. The list of these 102 edges is given

in Supporting Table 1. An Excel file performing the

actual separation-computation with all data is available at

http://uratim.com/agysvm/agy-svm.zip. An interactive

chart visualizing the separation can be viewed at http://

pitgroup.org/static/interactive_chart/abra.html

Superfeminine and supermasculine edges

Our second main result is the identification of very few

connections, out of the 102 edges, in a way that if each of

these edges has specific (either high or low) weights, then

the sex of the subject is uniquely determined.

Let us recall that the weight of an edge is the number of

the axonal fibers found running between its two endpoints

in the tractography algorithm, scaled for individual edges

to be between 0 and 1 (the details are given in the

‘‘Methods’’ section).

We have found that if the weights of both edges below

are 1, then, independently from the weights of the

remaining 100 edges out of the 102 sex-determining con-

nections, the sex of the subject is female:

F1: (rh.superiorfrontal, Left-Putamen)

F2: (rh.parstriangularis, rh.superiorparietal)

We call the set of edges F1. F2 ‘‘superfeminine’’ edges.

Similarly, we have found three edges, such that, if the

weights of the first two are high and the weight of the third

Fig. 2 A braingraph of a subject, with 83 vertices and the 102 edges,

whose weights (i.e., fiber numbers) already determine the sex of the

subject. Labels on the axes are voxel coordinates in mm. In the

102-dimensional space, the male- and female braingraphs are

perfectly separated by a hyperplane, similarly as the green line

separates the blue and red dots in Fig. 1. The nodes from the distinct

hemispheres are colored differently; the frontal lobe is on the top of

the figure. The list of these 102 edges is given in Supporting Table 1

in the supporting material. An Excel file performing the actual

separation-computation with all data is available at http://uratim.com/

agysvm/agy-svm.zip. An interactive chart visualizing the separation

can be viewed at http://pitgroup.org/static/interactive_chart/abra.html.

(Color figure online)
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one is low, then, independently of the other edge-weights

of the remaining 99 edges out of the 102 connections, the

sex of the subject is male:

M1: (1h.rostralmiddlefrontal, Left-Thalamus-Proper)

M2: (Right-Hippocampus, lh.supramarginal)

F2: (rh.parstriangularis, rh.superiorparietal)

The superfeminine and supermasculine edges are

depicted in Fig. 3.

We call edges M1 and M2 ‘‘supermasculine’’ edges.

Note that edge F2 is present in both sets: if the weight of F1

and F2 are high, then it implies that the graph belongs to a

female subject, and if the weight of F2 is low, and the

weights of M1 and M2 are high, then the graph belongs to a

male subject. We call the edge F2 a ‘‘switching’’ edge. We

refer to the exact definition of the ‘‘switching’’ edge in the

‘‘Methods’’ section.

Methods

Graph construction

Our data source is the 1200 Subjects Release of the Human

Connectome Project (HCP) (McNab et al. 2013), available

at the https://www.humanconnectome.org site. The sub-

jects were healthy adults between 22 and 35 years of age.

The data acquisition methodology of the Human Connec-

tome Project is detailed in the ‘‘WU-Minn HCP 1200

Subjects Data Release: Reference Manual’’ at the site

https://www.humanconnectome.org/storage/app/media/doc

umentation/s1200/HCP_S1200_Release_Reference_Man

ual.pdf.

We have applied the 3T MR diffusion imaging data and

processed it with the Connectome Mapper Tool Kit

(CMTK) (Daducci et al. 2012).

Our goal was the construction of graphs, or connec-

tomes, which describe the connections between the dis-

tinct, anatomically identified cortical and sub-cortical,

gray-matter areas of the brain of the subjects. The nodes (or

vertices) of our graphs corresponded to the anatomically

identified gray matter areas, and we connected two nodes

by an edge if the workflow described below found axonal

fibers running between the areas that corresponded to the

nodes. We emphasize that the study of the connectome

instead of the whole MR image deals with exclusively the

connections between the gray matter areas and does not

take into account the exact orbit of the axonal fibers run-

ning in the white matter of the brain. This way, we can

work with graphs instead of very redundant spatial imagery

gained from the processing of the diffusion MR images.

We note that the (mathematical) graph theory, which was

established in 1741 by a work of Euler (1741), has very

rich structures and several of the most complex and deepest

proofs and tools in mathematics (e.g., Szemeredi 1975;

Chudnovsky et al. 2006; Erdos et al. 1946). Therefore, the

transition from images to graphs facilitates the application

of the well-developed techniques of the (mathematical)

Fig. 3 The superfeminine (blue)

and supermasculine (red) edges,

and the switching edge (purple).

If the fiber numbers of both the

blue edge and the purple edge

are high, then the subject is

female. If the fiber number of

both the red edges are high and

the purple edge is low, then the

subject is male, independently

of the fiber numbers of the other

edges. (Color figure online)
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graph theory to one of the most complex organs on Earth,

the human brain.

The axonal fibers are discovered from the diffusion MR

images by tractography algorithms. Probabilistic tractog-

raphy was applied, with 1 million streamlines, by using

MRtrix 0.2 tractography software. For each subject, the

tractography program was run 10 times. In each run, the

number of fibers was determined for each edge. If in any of

the ten runs an edge was non-existent, that is, it was not

defined by any fiber in the tractography, then that edge was

discarded. Next, from these 10 runs, for each edge, the

maximum and minimum numbers of fibers were deleted,

and the average of the remaining 8 fiber numbers was

assigned to the edge; this number is used as the weight of

the edge. This way, the false positive and false negative

edges were dealt with, and large errors, leading to the

maximum or minimum fiber numbers of an edge, were

discarded: they did not influence the average value (Varga

and Grolmusz 2021).

For each subject, 5 graphs, each with resolutions of 83,

129, 234, 463, and 1015 nodes were computed, by applying

the CMTK’s implementation of the FreeSurfer suite of

programs for parcellation (Fischl 2012; Desikan et al.

2006; Tournier et al. 2012).

The HCP public release contains the data of 1206 sub-

jects. From these, 1113 contained structural scans. Our

workflow (Varga and Grolmusz 2021) was successfully

completed for the data of 1064 subjects. From the subjects,

there were 575 females and 489 males. The resulting

graphs, with 5 resolutions for each subject, can be down-

loaded from the site http://braingraph.org/download-pit-

group-connectomes/. For the detailed description of the

graph-constructing workflow and the resulting graph

dataset, we refer to the publication (Varga and Grolmusz

2021).

In the present work, we apply only the coarsest 83-node

resolution, i.e., we consider 1064 graphs of 1064 subjects,

each on 83 vertices. We have found 1950 edges by taking

the union of the edges of the 1064 braingraphs on 83

vertices.

In braingraph u the edge v is denoted by euv , for

u ¼ 1; 2; . . .; 1064, v ¼ 1; 2; . . .; 1950. The weight of the

edge euv , denoted by wðeuvÞ, is the average number of axonal

fibers found running between its endpoints in the 8 trac-

tography computations.

An edge-specific weight-scaling method

We would like to scale individually the weights of the

edges such that all the resulting edge-weights are between

0 and 1, as follows:

y‘i :¼
wðe‘i Þ �min

k

u¼1
wðeui Þ

max
k

u¼1
wðeui Þ �min

k

u¼1
wðeui Þ

ð1Þ

if the denominator is not zero; otherwise, let y‘i be zero;

k ¼ 1064. This way, for each braingraph, and for each

edge, the smallest weight is transformed to 0, and the lar-

gest (if differs from the smallest) to 1. From now on, we

use this scaled weights y‘i , instead of the original ones. Let

y‘ ¼ ðy‘1; y‘2; . . .; y‘sÞ; s ¼ 1950.

In other words, for any ‘, y‘ describes a braingraph, with

the new, scaled edges as its coordinates.

In what follows, we do not use the superscript ‘ if the

meaning of x is clear from the context.

An SVM-based technique with heuristic
improvements

The support vector machines (SVMs) are frequently used

tools in artificial intelligence to classify the elements of

large data sets (Cortes and Vapnik 1995).

Suppose that we have k data points x1; x2; . . .; xk in the n-

dimensional Euclidean space Rn, and a function

f : Rn ! f0; 1g. We intend to find an n-dimensional

hyperplane, such that

(1) one side of the hyperplane contains all xi’s with

f ðxiÞ ¼ 1, and the other side of the hyperplane

contains all xj’s with f ðxjÞ ¼ 0, and

(2) the hyperplane separates the data points with the

largest margin, that is, the distance of the closest data

point to the hyperplane is maximized.

If n� k then the requirement (1) can always be met if the

x1; x2; . . .; xk points are in a general position in the n-di-

mensional Euclidean space Rn (one can see this simply by

solving a linear system of equations with a non-zero

determinant for finding the normal vector of the hyper-

plane). If n\k, then (1) (i.e., the perfect separation with a

hyperspace) is not always satisfiable. We refer to Cover’s

theorem for probability estimations for the satisfiability of

(1) when n\k (Cover 1965).

In the present work, first, we solved (1) and (2) for the

n ¼ 1950 dimensional space, with k ¼ 1064, by using the

Python Scikit-Learn suite (Hao and Ho 2019). Next, we

intend to reduce the coordinates (i.e., the number of edges),

which are present in the separation. In other words, we

needed to find as few coordinates as possible, such that the

male and female connectomes can be separated by a

hyperspace, using only the chosen coordinates.

This goal can be formalized as follows:

Let kwk0 denote the number of the non-zero coordinates

of vector w. Then we need to find
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min kwk0; ð2Þ

satisfying

w � xþ b� 0 for all x; ð3Þ

corresponding to a female braingraph, and

w � xþ b\0 for all x; ð4Þ

corresponding to a male braingraph.

By the best of our knowledge, no optimization method is

known for solving this problem exactly in polynomial time.

Here we have applied the combination of two simple

heuristic solution methods, by which we were able to

reduce kwk0 from 1950 to 102. In other words, we can

identify 102 coordinates of x ¼ y or, equivalently, 102

edges of the graph, such that the sex of the corresponding

subject can be expressed by the sign of the linear expres-

sion w � xþ b . The value of b and the 102 non-zero

coordinates of w are given in the Supporting material, in

Supporting Table 2.

The first heuristic algorithm is a Weight-Based

Dimension-Reduction Algorithm (WBDRA): Here, we

start with a w, which separates linearly, and next delete the

smallest weight coordinates of w. A rate parameter r de-

fines that the r fraction of the smallest coordinates needs to

be deleted. If the new w does not separate, then we back-

track and decrease r. The code of the algorithm is given in

the Supporting Material, as Program Code 1.

The second procedure is a Single Dimension Deleting

Algorithm (SDDA): Here, we start with a separating w, and

take a random order of the non-zero coordinates of w, and

attempt to delete one dimension if the separation property

remains valid. If not, then we try to delete the next

dimension. The code of SDDA is given as Program Code 2

in the Supporting Material.

With the application of the two heuristic algorithms

(WBDRA, SDDA), we have succeeded in reducing the

kwk0 to 102.

We need to add that we cannot prove the optimality of

the 102-dimensional solution: we think that even better

results can be reached. However, by using Cover’s theorem

(Cover 1965), the probability that randomly 0–1 labeled,

randomly chosen k ¼ 1064 points are separable by a

hyperplane in 102 dimensions is much less than 2�100.

Since our data points are not randomly distributed, we

intended to investigate the specialty of the existence of the

102-dimensional SVM for our 1064 data points.

We have focused on our main tool, the WBDRA algo-

rithm: using only this procedure, we were able to identify a

115-dimensional sex-separating weight vector—by using

SSDA—this dimension was reduced to 102. Since the

WBRDA algorithm is much faster than the SSDA, we used

WBRDA in the tests below.

We have performed the following tests 50 times for our

specific data points:

• We assigned randomly 575 1-labels, and 489 0-labels to

the 1064 data points y, corresponding to weighted-edge

brain graphs;

• next, we have applied the WBRDA algorithm.

The smallest dimension we find was 223, the largest 293,

the average 256.6. Therefore, the 115-dimensional sepa-

ration of the sexes, found by using the WBRDA algorithm

exclusively is a surprising result, even for the specific

y points, representing our 1064 braingraphs.

Finding superfeminine and supermasculine
edges

Our goal is to identify edges, which have the greatest

impact on decisions (3) and (4). These edges may have

very important roles in the sex-specific development and

functioning of the human brain. Simply stated, the most

important edges would have the coordinates with the lar-

gest absolute values in vector w in (3) and (4). In what

follows, we formally define 0-generator and 1-generator

coordinates for a given function f : ½0; 1�N ! f0; 1g; in our

application f maps weighted edge-sequences to the sex of

the subject.

Let [N] denote the set f1; 2. . .Ng.
For y 2 ½0; 1�N and I � ½N� let yjI 2 ½0; 1�N denote:

yjIðjÞ ¼
yj if j 2 I

0 otherwise.

�

Let G denote the set of our 1064 braingraphs, each repre-

sented by an x 2 ½0; 1�N ; originally, N ¼ 1950, i.e., each

braingraph was represented by a 1950 weighted edges. In

the previous section, we have seen that we can reduce

N ¼ 102.

For an I � ½N� let GjI :¼ fxjI : x 2 Gg.

Definition 1 We say that I � ½N� is a 1-generator for f with
a seed x 2 ½0; 1�N jI , if 8y 2 Gj½N��I f ðxþ yÞ ¼ 1. Similarly,

we say that I � ½N� is a 0-generator for f with a seed x 2
½0; 1�N jI if 8y 2 Gj½N��I f ðxþ yÞ ¼ 0 is satisfied.

In other words, the seed values in the coordinates in the

0-generator or 1-generator I already determine the value of

our f.

Our goal is finding the smallest 0- and 1-generators for f,

where f gives the sex of the subject: f ðxÞ ¼ 0 for males, and

f ðxÞ ¼ 1 for females:
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f ðxÞ ¼
1 if w � xþ b� 0

0 if w � xþ b\0

�

For this f, finding the minimal 0- and 1-generators is

essentially a version of a knapsack problem, solvable by

integer programming methods. For the reduction, we need

some definitions and simple statements:

Definition 2 For any fixed w 2 ½0; 1�N , let zF 2 ½0; 1�N be

defined

zFðiÞ ¼
1 if wi � 0

0 if wi\0

�

Let zM 2 ½0; 1�N be defined

zMðiÞ ¼
1 ha wi � 0

0 ha wi [ 0

�

It is easy to see that x ¼ zF maximizes and x ¼ zM
minimizes w � xþ b.

We show the reduction for 1-generators; for 0-genera-

tors a similar reduction works.

Lemma 1 If I � ½N� is a 1-generator for f with seed x 2
½0; 1�N jI then it is also a 1-generator with seed zFjI
Proof Let y 2 Gj½N��I , then

w � ðzFjI þ yÞ þ b�w � ðxþ yÞ[ 0. h

The next Corollary is obvious:

Corollary 2 If I the smallest 1-generator with any seed,

then it is also the smallest 1-generator with seed zF jI . h

Lemma 3 Let ni denote the coordinates of the 0–1char-

acteristic vector of set I: ni ¼ 1 if and only if i 2 I. Then I is

a 1-generator for f with a seed zF jI if and only if 8x 2 G,
f ðxÞ ¼ 0 implies

PN
i¼1 ni � wiðzFðiÞ � xiÞ[ � w � x� b.

Proof

XN
i¼1

ni � wiðzFðiÞ � xiÞ þ w � xþ b ¼ w � ðzFjI þ xj½N��IÞ þ b

ð5Þ

is non-negative. h

Note that for any x : f ðxÞ ¼ 1, the (5) is also non-

negative.

From Lemma 3, the optimization problem, which gives

the minimum 1-generator, can be written: MinimizePN
i¼1 ni, with the condition that for all x 2 G :

XN
i¼1

ni � wiðzFðiÞ � xiÞ� � w � x� b:

Definition 3 The edges in 1-generators, where the corre-

sponding zF seed coordinates are ones, are called super-

feminine edges. The edges in 0-generators, where the

corresponding zM seed coordinates are ones, are called

supermasculine edges. An edge e is called a switching

edge, if any of the following two properties holds for it:

(1) e is a superfeminine edge and it is also in a 0-

generator with the corresponding zM seed coordinate

0; or

(2) e is a supermasculine edge, which is also in a 1-

generator with the corresponding zF seed value 0.

The distinction of by the 1 seed-coordinates are made

since the weights correspond to fiber numbers, and the

‘‘strong’’ graph edges, defined by many fibers, are called

superfeminine or supermasculine edges; we do not intend

to call ‘‘weak’’ edges, i.e., edges with the fewest fiber tracts

superfeminine or supermasculine, even if they are the part

of a 0- or 1-generator (e.g., we do not call F2 a super-

masculine edge). The superfeminine and supermasculine

edges we found are depicted on Fig. 3.

Software used

The braingraphs were computed by using the CMTK suite

(Daducci et al. 2012), with the details given in the begin-

ning of the section. The figures were created by using

Python Matplotlib mplot3D and Networkx packages. The

1950-dimensional SVM was computed using the Python

Scikit-Learn suite of programs (Hao and Ho 2019). The

heuristic improvements, resulting in the 102-dimensional

separation, were found by the programs given in the Sup-

porting Material in the Program codes section. For IP

optimization, we used the Python Pulp package.

Discussion and results

Most cerebral sex dimorphism studies to date were done on

very small (up to 40–80 subjects) cohorts and applied

mostly volumetric investigations (Frederikse et al. 1999;

Koscik et al. 2009; Maleki et al. 2012; Butler et al. 2006).

Our previous works (Szalkai et al. 2015b, 2021, 2018;

Fellner et al. 2019, 2020a, 2020c) first demonstrated sex

dimorphisms in a priori defined graph parameters; in most

cases the better connectivity-related parameters were found

in the female connectomes.

Here we first demonstrate relatively small edge-sets,

which determine the sex of the subjects on a very large,

1064-member cohort.

The 102 edges, which already define the sex of the

subjects – without any error—are listed in the Supporting
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material as Supporting Table 1. Obviously, numerous

edges connect subcortical nuclei with other parts of the

brain. 13 of these 102 edges are inter-hemispheric.

The most frequently appearing nodes in these 102 edges,

without considering lateralization, are the inferiorparietal

(10 times), posteriorcingulate (9 times), precuneus (9

times), superiorparietal (8 times).

It is known that the inferior parietal lobule, which is a

part of the heteromodal association cortex (HASC), shows

sexual volumetric dimorphisms (Frederikse et al. 1999;

Koscik et al. 2009).

The sex differences in the development of migraine and

the role of precuneus were reported in Maleki et al. (2012)

and in mental rotation (Butler et al. 2006).

Counting with lateralization, the most frequent nodes

are the rh.precuneus (7 times), rh.inferiorparietal (6 times),

rh.posteriorcingulate (6 times) and the right-pallidum (6

times), all in the right hemisphere.

To the best of our knowledge, we are the first showing

that not only these nodes of the braingraph, but rather their

important connections, listed in Supporting Table 1, carry

substantial sex dimorphisms.

Additionally, we are the first to show the existence of

superfeminine and supermasculine edges.

The superfeminine edges we have found are

F1: (rh.superiorfrontal, Left-Putamen)

F2: (rh.parstriangularis, rh.superiorparietal).

The two supermasculine edges with the F2 ‘‘switching’’

edge are:

M1: (1h.rostralmiddlefrontal, Left-Thalamus-Proper)

M2: (Right-Hippocampus, lh.supramarginal)

F2: (rh.parstriangularis, rh.superiorparietal)

The weights in fiber numbers of these edges are between

0 and 13.5 for F1; 0 and 385.375 for F2; 0 and 2010.5 for

M1 and 0 and 27 for M2. Note that the weights are com-

puted for each edge as the average of 8 tractography runs;

therefore, they are not always integers.

The most interesting edge is F2, which, with high

weight, is a superfeminine edge, and with low weight, and

with M1 and M2 with high weights, it implies the male sex

of the subject. We note that we use the terms ‘‘high’’ and

‘‘low’’ here, instead of 1 and 0 here. This is because if we

set the weight of F1 and F2 both to 1, then the test will

decide that the subject is a female (see Corollary 2); but it

may happen that no actual female braingraph has the

weight of F1 and F2 equal to exactly 1.

The area of Pars Triangularis was related to hormonal

(oxytocin and arginine vasopressin) effects in men, and the

same hormones to the parietal cortex—instead of Pars

Triangularis—in women (Rubin et al. 2017). It is striking

that just this edge, connecting the Pars Triangularis and the

Superior Parietal area in the right hemisphere, has this

distinguished ‘‘switching’’ property. Other publications

also report sex differences in Pars Triangularis and the

parietal cortex in context with hormonal regulation

(Striepens et al. 2014; Hecht et al. 2017; Skvortsova et al.

2020), speech-language production (Foundas et al. 1998;

Frederikse et al. 1999; Yao et al. 2020), in mental rotation

performance (Koscik et al. 2009).

There exist numerous other sets of edges with the

superfeminine and supermasculine property; we demon-

strated these since they were the smallest set we have

found. We note that knowing only the weights of F1, F2 or

M1, M2 and F1 will not imply the sex in general; except

when their weights are extremal.

Conclusions

Instead of ‘‘a priori’’ hypotheses, we have followed an ‘‘a

posteriori’’ way of search for edges in the human connec-

tome, which determine the sex of the subjects. We have

identified 102 edges that determine the sex in a very sim-

ple, linear way in a 1064-member cohort. Instead of con-

sidering all the possible 1950 edges, only these 102 edges

imply the sex of the subject without any error.

First in the literature, we have found two and three

edges, out of the 102 ones, whose weights being properly

set, imply the sex of the subject, independently of the other

edges in the graph. The right Pars Triangularis area is

present as an endpoint in these edges. This area is related to

hormonal (oxytocin and arginine vasopressin) effects in

men and the same hormones to the parietal cortex – instead

of Pars Triangularis—in women (Rubin et al. 2017). The

parietal cortex is also present as an endpoint in these edges.

The novel edge-specific scaling of the weights of the

edges, given by the formula (1), contributed to the defini-

tion of the superfeminine and the supermasculine edges.
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