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The magnocellular system has been implicated in the rapid processing of facial emotions,
such as fear. Of the various anatomical possibilities, the retino-colliculo-pulvinar route
to the amygdala is currently favored. However, it is not clear whether and when
amygdala arousal activates the primary visual cortex (V1). Non-linear visual evoked
potentials provide a well-accepted technique for examining temporal processing in the
magnocellular and parvocellular pathways in the visual cortex. Here, we investigated the
relationship between facial emotion processing and the separable magnocellular (K2.1)
and parvocellular (K2.2) components of the second-order non-linear multifocal visual
evoked potential responses recorded from the occipital scalp (OZ). Stimuli comprised
pseudorandom brightening/darkening of fearful, happy, neutral faces (or no face) with
surround patches decorrelated from the central face-bearing patch. For the central
patch, the spatial contrast of the faces was 30% while the modulation of the per-pixel
brightening/darkening was uniformly 10% or 70%. From 14 neurotypical young adults,
we found a significant interaction between emotion and contrast in the magnocellularly
driven K2.1 peak amplitudes, with greater K2.1 amplitudes for fearful (vs. happy) faces
at 70% temporal contrast condition. Taken together, our findings suggest that facial
emotional information is present in early V1 processing as conveyed by the M pathway,
and more activated for fearful as opposed to happy and neutral faces. An explanation is
offered in terms of the contest between feedback and response gain modulation models.

Keywords: magnocellular, non-linear VEP, emotion, contrast, V1

INTRODUCTION

The magnocellular (M) visual system has been implicated in rapidly processing salient
facial emotions, such as fear because it provides the main neural drive into the rapid
collico-pulvinar route to the amygdala (Morris et al., 2001; Vuilleumier et al., 2003; de
Gelder et al., 2011; Rafal et al., 2015; Méndez-Bértolo et al., 2016). The M pathway is a
rapidly conducting neural stream providing motion and spatial localization information,
as well as transient attention (Laycock et al., 2008). It possesses high gain for luminance
contrast, and relative to the parvocellular (P) pathway it shows greater capability for high
temporal and low spatial frequency stimulation. The P visual system processes in parallel
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to the M system, however it is less sensitive to luminance
contrast, is chromatically (R/G) sensitive, and has a preference
for low temporal and high spatial frequency stimulation. The
P system is also considered to have slower conduction and
it appears to not contribute directly to the collicular pathway
(Livingstone and Hubel, 1988; Merigan and Maunsell, 1993).

Human anatomical evidence for the subcortical ‘‘low road’’
route (LeDoux, 1996) for emotional processing derives from
functional magnetic resonance imaging (fMRI; Morris et al.,
2001; Vuilleumier et al., 2003; Sabatinelli et al., 2009; de Gelder
et al., 2011; Kleinhans et al., 2011; Rafal et al., 2015; Méndez-
Bértolo et al., 2016), diffusion imaging (Tamietto et al., 2012;
Rafal et al., 2015), magnetoencephalography (MEG; McFadyen
et al., 2017) and computational modeling (Rudrauf et al., 2008;
Garvert et al., 2014). Supporting the notion of rapid subcortical
input to the amygdala, studies have found the estimated synaptic
integration time for the subcortical pathway (80–90 ms) to be
faster than that of the cortical visual pathway (145–170 ms;
Morris et al., 1999; Öhman, 2005; Garvert et al., 2014; Silverstein
and Ingvar, 2015; McFadyen et al., 2017). Furthermore, the
superior colliculus comprises predominantly M neural inputs
(Leventhal et al., 1985; Burr et al., 1994; Márkus et al., 2009).

Recently, these findings were confirmed
electrocorticographically, where M-biased low spatial frequency
fearful faces were found to evoke early activity in the lateral
amygdala, 75 ms post-stimulus onset (Méndez-Bértolo et al.,
2016). Additionally, several studies have reported faster and
greater P100 amplitude responses to low spatial frequency fearful
faces compared to neutral (Pourtois et al., 2005; Vlamings et al.,
2009), with a recent study by Burt et al. (2017) pointing to
specific M contribution. Taken together, the rapid colliculo-
pulvinar-amygdala pathway forms the dominant hypothesis for
the early facilitation of salient visual information processing
(Öhman, 2005).

Critically, however, many of these studies only focus on how
the salient visual information reaches the amygdala, and not
what happens after. There is considerable evidence suggesting a
relationship, or re-entry, between activity in the amygdala and
primary visual cortex (V1; Morris et al., 1998; Sabatinelli et al.,
2009) via the M pathway. The separation of M and P projections
remains intact from retinal ganglion cells to V1 (Nassi and
Callaway, 2009), with the M pathway terminating primarily in
layer 4Cα of V1 and the P pathway terminating primarily in layer
4Cα of V1 (Fitzpatrick et al., 1985). However, little is known as
to whether facial emotional stimuli reach V1 via M or P inputs,
or with what timing. Also, direct inputs from the geniculo-
cortical stream possess small receptive fields insufficient to code
for a whole face. Hence, inputs to the occipital cortex from
other regions that can code faces and particularly facial emotion
are required.

It is possible to discriminate temporal M and P contributions
to V1 with nonlinear multifocal visual evoked potentials (VEP;
Baseler and Sutter, 1997; Klistorner et al., 1997; Jackson et al.,
2013; Hugrass et al., 2018). In multifocal VEP experiments,
multiple patches of light are flashed and de-correlated in
pseudorandom binary sequences. Not only does this method
allow for simultaneous recordings across the visual field, but

it also analyses higher-order temporal nonlinearities through
Wiener kernel decomposition (Sutter and Tran, 1992). The
K1 kernel response measures the overall impulse response
function of the neural system. The K2.1 response measures
the nonlinearity (neural recovery) over one video frame, while
K2.2 measures the recovery over two video frames (Sutter,
2000). Klistorner et al. (1997) proposed that the K2.1 response
reflects M pathway activity due to its high contrast gain and
a saturating contrast response function. Similarly, the main
component (N95-P130) of the K2.2 response is thought to reflect
P functioning as the response waveform has low contrast gain
and a non-saturating contrast response function (Klistorner
et al., 1997). However, the notion of isolating M and P
contributions to cortical processing has been questioned, with
Skottun (2013) suggesting that the M signal cannot be isolated
by high temporal frequencies because temporal filtering occurs
between the lateral geniculate nucleus and V1, with a reduction
in temporal frequency cutoff of around 10 Hz found in primate
single-cell studies (Hawken et al., 1996). Further, Skottun (2014)
proposed that attributing VEP responses to the M and P systems
based on contrast-response properties is problematic because of
the mixing of inputs. In response, we argue that non-zero higher-
order Wiener kernels of the VEP exist precisely because of such
cortical filtering. Thus, the M and P nonlinear contributions to
the VEP are heavily weighted to the first and second slices of
the second-order response respectively (Klistorner et al., 1997;
Jackson et al., 2013), based on contrast gain, contrast response
functions, and peak latencies, and hence are easily separable.
This identification has been backed up by recent studies
investigating individual differences in behavior and physiology
with correlations demonstrated between psychophysical flicker
fusion frequencies and K2.1 peak amplitudes from the multifocal
VEP (Brown et al., 2018). Here, we address the question of
whether different emotional states affect the nonlinear structure
of occipitally generated evoked responses. Any variation in
response to emotional salience likely relates to the functional
connections from emotion parsing regions such as the amygdala
to the visual cortex.

The question of whether facial emotional stimuli reach V1
via M or P inputs has not been reported in human non-linear
multifocal VEP recordings. Thus, the current study aimed
to utilize this well-validated technique to evaluate whether
emotional stimuli such as fearful, happy, and neutral faces would
affect the early cortical (V1) M and P signatures.

MATERIALS AND METHODS

Participants
Fourteen participants (nine males, fix females; M = 24 years,
SD = 3.65 years) gave written informed consent and participated
in the experiment at the Swinburne University of Technology,
Melbourne, Australia. The first author was included in the
sample. All participants had normal, or corrected-to-normal,
visual acuity, and no neurological condition. The study was
conducted with the approval of the Swinburne Human Research
Ethics Committee and following the code of ethics of the
Declaration of Helsinki.
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Visual Stimuli
The achromatic stimuli were presented on a 60 Hz LCDmonitor
(ViewSonic) with linearised color output (measured with a
ColorCal II), at a viewing distance of 70 cm. The 9-patch
multifocal dartboard was created using VPixx software (version
3.21)1, with a 5.4◦ diameter central patch and two outer rings of
four patches (21.2◦ and 48◦ diameter; Hugrass et al., 2018). The
luminance for each patch fluctuated between two levels, under
the control of a pseudorandom binary m-sequence (m = 14) and
modulated at the video frame rate of 60 Hz. All participants
completed eight VEPs of varying temporal luminance contrasts
(10% and 70% Michelson) for the outer patches, with an overall
mean screen luminance of 65cd/m2. Of important note, unlike
previousmultifocal VEP studies (Sutherland and Crewther, 2010;
Jackson et al., 2013; Crewther et al., 2015, 2016; Burt et al.,
2017; Hugrass et al., 2018) that used a diffuse central patch,
fearful, happy, neutral faces (or no face) from the Nimstim
Face Set (Tottenham et al., 2009) were superimposed on the
luminance fluctuation of the central patch. The spatial contrast
(Michelson) of the central patch was either 30% (face) or 0%
(no face). Thus, each pixel of this central image underwent a
pseudorandom binary sequence of increases and decreases in
luminance (Figure 1).

Stimuli comprised pseudorandom brightening/darkening of
fearful, happy, neutral faces (or no face) with surround patches
decorrelated from the central face-bearing patch. For the central
patch the spatial contrast of the faces was 30% while the temporal
contrast of the per-pixel brightening/darkening was 10% or 70%
(Klistorner et al., 1997; Jackson et al., 2013; Brown et al., 2018;
Hugrass et al., 2018).

M-sequences allow information from all stimulus patches
to be available through rotation of the starting point of the
binary sequence for each patch, resulting in full decorrelation
(Sutter, 2000). For this experiment, we only analyzed responses
to the central patch. Separate recordings were made with happy,
neutral, fearful, and no face conditions at the different temporal
contrasts. For each experimental condition, the m-sequences
were split into four approximately one-minute recording
segments, with the recordings lasting 32 min in total for the
eight conditions. Participants were instructed to maintain strict
fixation on the central patch during the recordings and to rest
their eyes between recordings.

Non-linear VEP Recording and Analysis
Non-linear achromatic multifocal VEPs were recorded using
a 64-channel Quickcap and Scan 4.5 acquisition software
(Neuroscan, Compumedics). Electrode site Fz served as ground
and linked mastoid electrodes were used as a reference (Burt
et al., 2017; Hugrass et al., 2018). EOG was monitored by
positioning electrodes above and below the left eye.

EEG data were processed using Brainstorm (Tadel et al.,
2011). EEG data were band-pass filtered (0.1–40 Hz) and
signal space projection was applied to remove the eye-blink
artifact. Custom Matlab/Brainstorm scripts were written for the
multifocal VEP analyses to extract K1, K2.1, and K2.2 kernel

1http://www.VPixx.com

responses for the central patch. K1 is the difference between
responses to the light and dark patches. K2.1 measures neural
recovery over one frame by comparing responses when a
transition did or did not occur. Similarly, K2.2 measures neural
recovery over two frames but includes an interleaving frame of
either polarity (refer to Klistorner et al., 1997; Sutter, 2000 for
in-depth descriptions of the kernels).

For each participant, the electrode with the highest amplitude
responses was selected for group-level averages. The highest
amplitude responses were recorded at Oz for all participants.
Peak amplitudes and latencies of kernels K1, K2.1 and
K2.2 were identified using Igor Pro 8.03 (Wavemetrics, Lake
Oswego), establishing latency windows for peak identification
from the grand mean averages. Values were then exported
to SPSS (Version 20, IBM). To control for amplitude outliers
a Winsorizing approach (Hastings et al., 1947; Dixon, 1960)
was applied, limiting extreme values to the values of the
95th and 5th percentiles. For this outlier control, the data
for the eight conditions associated with K2.1N60-P90 (FE70%:
2 cases; HA10%:1) and K2.1N103-P127 (FE70%: 1 case; HA70%:
2 cases; HA10%: 1 case; NE70: 1 case) amplitudes were
adjusted for a small number of cases. These values were then
used for linear mixed-effect modeling analysis and to present
the mean values shown in the figures below. To allow for
multiple comparisons, an alpha value of 0.006 was used for any
follow-up pairwise comparisons (based on the eight stimulus
conditions: FE30%, HA30%, NE30%, NoForm30%, FE70%,
HA70%, NE70%, NoForm70%), and a 99% confidence interval
was used for comparisons of marginal means associated with
significant interactions.

RESULTS

Grand averages for the K1, K2.1, and K2.2 responses were
calculated for all experimental conditions (happy, fearful and
neutral facial expressions, low and high temporal contrasts)
and are presented in Figures 2–4, respectively. As expected,
the cortically recorded VEP responses produced variations in
amplitude according to contrast across all kernels (Klistorner
et al., 1997). Separate linear mixed-effects models were computed
to investigate the effects of emotion (fear, happy, neutral, no
form) and temporal contrast (10%, 70%) on separate early and
late peak amplitudes of the K1 (N58-P80; N94-P118), K2.1 (N60-
P90; N103-P127), and K2.2 (N85-P104; N119-P157) responses.
Time windows for peak estimation were established to account
for individual differences across conditions. Some departures
from the data of Klistorner et al. (1997), Jackson et al. (2013),
and Hugrass et al. (2018) are apparent, due to differences
in stimulus frame rate, reference/ground location (mastoid/Fz
vs. Fz/mastoid).

K1 Amplitude
Klistorner et al. (1997) suggested that the first-order response
(K1) is produced by complex interactions between the M and P
pathways. Separate linear-mixedmodel analyses for early and late
K1 peak-trough amplitudes produced no significant main effects
of emotion, K1N58-P80: F(3,27) = 1.202, p = 0.328; K1N94-P118:
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FIGURE 1 | Example of a fearful condition with 70% temporal modulation. Stimuli comprised of pseudorandom brightening/darkening of fearful, happy, neutral
faces (or no face) with surround patches decorrelated from the central face-bearing patch. For the central patch, the spatial contrast of the faces was 30% while the
temporal contrast of the per-pixel luminance increment/decrement was 10% or 70%. Note that for each condition (happy, fearful, neutral) faces of different actors
changed every second, but maintained emotional state. Consent was obtained for the use of NimStim stimuli.

F(3,27) = 0.748, p = 0.535; nor were there any significant
emotion by contrast interactions, K1N58-P80: F(2,53) = 0.139,
p = 0.870; K1N94-P118: F(2.55) = 0.444, p = 0.644. As expected,
there was a significant main effect of contrast on K1 but only
for the earlier peak amplitudes, with greater responses at 70%
(Figures 2A–C) than 10% temporal contrast (Figures 2D–F),
K1N58-P80: F(1,62) = 7.895, p = 0.007. In summary, short-latency
K1 peak amplitudes are greater in magnitude when the central
patch is modulated at high contrast, but they are not affected by
facial emotion.

K2.1 Amplitude
Klistorner et al. (1997) and Jackson et al. (2013) suggest that the
K2.1N60-P90 waveform is of M pathway origin, based on contrast
gain, contrast saturation, and peak latencies. Figure 3 illustrates
K2.1 waveform for 70% temporal contrast (Figures 3A–C) and
10% temporal contrast (Figures 3D–F). One can see that the
mean value of no form 10% in Figure 3H appears larger than
the other emotions, which may suggest that the inclusion of
facial stimuli in the central stimulus patch appears to have had
some effect.

The linear-mixed model analysis showed a significant main
effect of contrast on K2.1N60-P90 amplitude, F(1,85) = 10.688,
p = 0.002, but no significant main effect of emotion, F(3,46) = 2.26,
p = 0.094. There was a significant interaction between emotion
and contrast, F(3,41) = 4.823, p = 0.030, with the greatest
amplitude for fearful faces in the 70% temporal contrast
(Figure 3D), and greatest amplitude for no form in the 10%
temporal contrast condition (Figure 3H). To ensure that the no
form condition did not induce spurious effects, we conducted
a post hoc separate linear mixed effect model without the no
form condition and found a significant main effect of contrast,
F(1,63) = 5.399, p = 0.023, and significant emotion and contrast
interaction, F(2,52) = 4.951, p = 0.011.

No significant main effects or interactions were found for the
later K2.1 peaks (K2.1N103-P127: p > 0.05).

K2.2 Amplitude
Previous studies (Jackson et al., 2013) indicate that the small
early K2.2N85-P104 peak is also of M origin. The linear mixed-
effect model showed there was no significant main effect
of contrast on the K2.2 N85-P104 amplitude, F(1,48) = 1.025,
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FIGURE 2 | Grand mean average K1 responses. Solid red, green and purple lines correspond to the averaged waveforms for the 70% temporal contrast conditions
with (A) fearful, (B) happy, and (C) no form stimuli superimposed in the central stimuli, respectively, all plotted against neutral (gray). Dashed red, green and purple
lines correspond to the averaged waveforms for the 10% temporal contrast conditions with (D) fearful, (E) happy, and (F) no form superimposed in the central patch,
respectively, all plotted against (gray).

p = 0.316. There was, however, a significant main effect of
emotion, F(3,41) = 7.012, p = 0.001, with greater amplitude for
the no form condition compared to happy (Mdiff = −20.876,

p = 0.002) and neutral (Mdiff = −20.290, p = 0.004) faces.
There was no significant emotion by contrast interaction,
F(3,41) = 1.813, p = 0.160.
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FIGURE 3 | Grand mean average K2.1 responses. Solid red, green and purple lines correspond to the averaged waveforms for the 70% temporal contrast
conditions with (A) fearful, (B) happy, and (C) no form stimuli superimposed in the central stimuli, respectively, all plotted against (gray). Dashed red, green and purple
lines correspond to the averaged waveforms for the 10% temporal contrast conditions with (D) fearful, (E) happy, and (F) no form superimposed in the central patch,
respectively, all plotted against (gray). Mean peak amplitude values of K2.1N60-P90 for 70% and 10% temporal contrast conditions across all emotions are shown in
(G,H), respectively, to illustrate the significant emotion by contrast interaction.

The second peak K2.2N119-P157 is thought to be of P origin
(Jackson et al., 2013). Figure 4 illustrates a greater K2.2N119-P157
amplitude to 70% temporal contrast (Figures 4A–C) compared

to 10% temporal contrast (Figures 4E–G), compared to K2.1
(Figure 3). As such, the linear mixed-effect model produced a
significant main effect of contrast, F(1,66) = 40.251, p < 0.001.
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FIGURE 4 | Grand mean average K2.2 responses. Solid red, green, gray, and purple lines correspond to the averaged waveforms for the 70% temporal contrast
conditions with (A) fearful, (B) happy, neutral, and (C) no form stimuli superimposed on the central patch, respectively. Dashed red, green, gray, and purple lines
correspond to the averaged waveforms for the 10% temporal contrast conditions with (D) fearful, (E) happy, neutral stimuli, and (F) no form superimposed on the
central patch, respectively.

There was no significant main effect of emotion, F(3,39) = 0.109,
p = 0.954, or interaction between contrast and emotion,
F(3,39) = 0.015, p = 0.997. Overall, it suggests that any emotional
effect on the occipital VEP is of M and not P origin.

DISCUSSION

Nonlinear multifocal VEP recordings of the visual cortex
have become perhaps the best available method for measuring
human M and P temporal processing (Baseler and Sutter,
1997; Klistorner et al., 1997; Jackson et al., 2013; Brown
et al., 2018; Hugrass et al., 2018). These studies typically
examine M and P responses to flashing unstructured
patches with a range of temporal contrasts, although Baseler
and Sutter (1997) used contrast reversing checkerboards.
However, no study to date has extended this technique to
controlled luminance fluctuation of emotional faces, where,

despite the random flicker, a clear percept of facial emotion
is possible.

Considering the M and P pathways are known to contrast
saturating and non-saturating, respectively (Kaplan et al., 1990;
Klistorner et al., 1997; Jackson et al., 2013), there was no surprise
that we found overall minimal K2.1 response differences between
10% and 70% temporal contrast, but greater difference when
compared to K2.2N119-P157 waveforms. While some divergence in
overall appearance of kernel waveforms compared with previous
publications was observed, this can be partly explained by
electrical reference/ground choices (auralmedulla ref/Fz ground)
rather than Fz as a reference with the aural ground as used
by Klistorner et al. (1997) and Jackson et al. (2013). Another
possible explanation for variation in response amplitudes relates
to the presence or not of a facial percept. The presence of a
percept implies higher-order visual processing that may result
in feedback in area V1 (Fang et al., 2008). Also, the facial
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stimuli are likely to activate orientation-selective receptive fields
of neurons in area V1 which the no form stimuli are less likely
to stimulate, with differences in latency and waveform (Crewther
and Crewther, 2010).

Based on the popular notion that the M pathway feeds into
the colliculo-pulvinar-amygdala for rapid emotional processing
we were interested in whether emotional content would have any
effect on early occipital kernel responses. Interestingly, at the 70%
temporal contrast level, we found fearful faces produced greater
K2.1 amplitude compared to happy faces (which produced
the smallest K2.1 amplitude) and neutral faces, which aligns
with previous measures showing stronger and faster amygdala
activation to fearful cf neutral faces (Öhman, 2005; Adolphs,
2008; Garvert et al., 2014; Méndez-Bértolo et al., 2016) and
early visual cortical ERP by emotional faces (Vlamings et al.,
2009; Burt et al., 2017). Before the current study, little was
known as to the functional anatomy by which facial emotional
information reaches V1, and with what timing. Thus, the
current study provides evidence that emotional information is
included in the first evoked response recording in V1 and is
conveyed through the M pathway. Also, the recent literature
on the normalization model of attention (Reynolds and Heeger,
2009; Herrmann et al., 2010; Zhang et al., 2016) needs to be
considered, wherein neuronal firing rates of cortical neurons are
dependent on the extent of the attentional field. Specifically, it
has been found that both negative and positive emotional faces
increase V1 activity relative to neutral faces, but at the same
time, negative emotions narrow the attention field in V1 while
positive emotion broadens the attention field (Zhang et al.,
2016). Such articles introduce the notion of response gain as an
attentional effect.

Emotional salience acts similarly to attention, with neural
theories invoking response gain modulation of the pulvinar
by amygdalar activity (Williams et al., 2004; van den Bulk
et al., 2014). Previous studies have found the pulvinar to be
crucial in gating and controlling information outflow from
V1 (Purushothaman et al., 2012). Some studies (Vlamings
et al., 2009; Attar et al., 2010; Burt et al., 2017) have found
contrast response gain effects of the amygdala to fearful
expressions to increase hMT and extrastriate early cortical
responses (i.e., P100), thus potentially explaining why the
M component, which should be saturated at 70% contrast,
is being altered by emotional expression. Moreover, primate
data are supportive, showing fast conducting projections from
the inferior pulvinar to area middle temporal (MT; Warner
et al., 2010; Kwan et al., 2019). But, while there is evidence
of strong pulvinar-amygdala input, there is little evidence of
a direct amygdala-pulvinar feedback pathway. The absence of
such a pathway presents a problem in explaining very rapid
changes in visual processing. However, transmission modulation
of the pulvinar by the amygdala through verified projections
onto the Thalamic Reticular Nucleus (TRN; Zikopoulos and
Barbas, 2012), acting as an ‘‘emotional attention’’ mechanism
(John et al., 2016), is highly plausible. This idea is further
strengthened with evidence from optogenetic manipulation
of amygdala activity producing strong contrast gain effects
(Aizenberg et al., 2019).

Cortico-cortical feedback of emotional parsing by the
amygdala back to the visual cortex is an alternative mechanism
demanding exploration. The amygdala possesses myriad
connections with the extrastriate cortex, including the insular
cortex (Jenkins et al., 2017). Another alternative feedback
pathway relates to the orbitofrontal cortex (OFC), a recipient
of amygdala projections feeding information back to V1,
with a role in further evaluation of the salient information.
Kveraga et al. (2007) reported M information projected
rapidly and early (∼130 ms) to the OFC. Furthermore,
analyses of effective connectivity using dynamic causal
modeling showed that M-biased stimuli significantly
activated pathways from the occipital visual cortex to
OFC (Kveraga et al., 2007). However, these multisynaptic
pathways likely have slower conduction to the striate
cortex, and hence are less likely to contribute to the early
K2.1 VEP component.

The biological and social significance of the human face, as a
shape, needs to also be considered when interpreting our results.
Previous studies have reported faces to capture attention more
efficiently than non-face stimuli (Theeuwes and der Stigchel,
2006; Langton et al., 2008; Devue et al., 2009). For example,
Langton et al. (2008) found that participants’ ability to search
an array of objects for a target butterfly was slowed when an
irrelevant face appeared in the array. This demonstrates that even
when a non-face object is the target of a goal-directed search,
the presence of a face prevails over other stimuli. However,
electrophysiologically, Thierry et al. (2007) found that when
showing pictures of faces and cars, it was not the category that
evoked a greater N170 amplitude, but rather the within-category
variability such as position, angle, and size of the stimuli that
resulted in amplitude modification. Moreover, the difference in
K2.1 response amplitude to fearful, happy, neutral, and no form
provides strong evidence for an emotional effect. Future research
should consider implementing other non-face emotional stimuli
to address the question of stimulus specificity.

Taken together, we were able to detect responses to emotional
faces in early V1 processing via nonlinear multifocal VEPs over
the occipital cortex, implying that there is differential early visual
processing of emotional faces with the M pathway connections
of V1. In particular, we found that fearful faces at 70% temporal
contrast produce a greater M pathway nonlinearity than do
happy or neutral faces. Further exploration of putative feedback
and response gain modulation models will be needed to fully
explain the VEP differences observed.
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