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Abstract

Post-translational modification of proteins by members of the small ubiquitin-like modifier (SUMO) is involved in diverse
cellular functions. Many viral proteins are SUMO targets and also interact with the cellular SUMOylation system. During
human cytomegalovirus (HCMV) infection, the immediate-early (IE) proteins IET and |IE2 are covalently modified by SUMO.
IE2 SUMOylation promotes its transactivation activity, whereas the role of IET SUMOylation is not clear. We performed in
silico, genome-wide analysis to identify possible SUMOylation sites in HCMV-encoded proteins and evaluated their
modification using the E. coli SUMOylation system and in vitro assays. We found that only IET and IE2 are substantially
modified by SUMO in E. coli, although US34A was also identified as a possible SUMO target in vitro. We also found that
SUMOylation of IE1 and IE2 is temporally regulated during viral infection. Levels of SUMO-modified form of IE1 were
increased during the early phase of infection, but decreased in the late phase when IE2 and its SUMO-modified forms were
expressed at high levels. [E2 expression inhibited IE1 SUMOylation in cotransfection assays. As in [E2 SUMOylation, PIAST, a
SUMO E3 ligase, interacted with IE1 and enhanced IE1 SUMOylation. In in vitro assays, an IE2 fragment that lacked covalent
and non-covalent SUMO attachment sites, but was sufficient for PIAST binding, effectively inhibited PIAS1-mediated
SUMOylation of IE1, indicating that IE2 expression negatively regulates IE1 SUMOylation. We also found that the IE2-
mediated downregulation of IE1 SUMOylation correlates with the IE1 activity to repress the promoter containing the
interferon stimulated response elements. Taken together, our data demonstrate that IE1 and IE2 are the main viral SUMO
targets in HCMV infection and that temporal regulation of their SUMOylation may be important in the progression of this

infection.
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Introduction

Small ubiquitin-like modifier (SUMO) proteins are members of
the ubiquitin-like protein family. Covalent modification of proteins
by SUMO (SUMOylation) affects their activity, intracellular
localization, stability, and interaction with other proteins and
DNA. The cellular SUMOylation pathway, which is largely
analogous to the ubiquitin modification pathway, regulates many
important cellular processes [1,2]. In brief, SUMO precursors are
C-terminally processed to create an active form, which is activated
by the formation of a thioester bond between the C-terminal
glycine residue of SUMO and the active cysteine reside of a
heterodimeric El activation enzyme, which comprises SAE1 and
SAE2. SUMO is then transferred to the E2 conjugation enzyme,
Ubc9, via an analogous thioester bond, and finally to the lysine
residue of a substrate. SUMO E3 ligases, such as PIAS proteins,
RanBP2, and Pc2, help transfer SUMO from Ubc9 to the
substrate [3-5]. On most substrates, SUMO is conjugated to a
lysine residue through an isopeptide linkage within the consensus
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sequence WKxE/D (where ¥ is a bulky hydrophobic residue and
x is any amino acid), which is often found in the disordered region
of proteins [6-9]. Both Ubc9 and the E3 ligases appear to control
the substrate specificity of SUMOylation. SUMO can be released
from a substrate through cleavage by proteases called SENP;
therefore, SUMOylation is reversible [10-12]. Proteins also can
interact with SUMO non-covalently through a SUMO-interacting
motif (SIM), which is characterized by a stretch of hydrophobic
residues, often flanked by acidic residues [13-16].

Evidence is accumulating that the cellular SUMOylation
pathway plays a regulatory role in infection by many different
viruses, including human cytomegalovirus (HCMV) [17,18].
HCMYV is an opportunistic pathogen that can cause congenital
disease and produces serious disease complications in immuno-
compromised individuals. During the lytic cycle of HCMV
infection, viral genes are expressed in a cascade fashion with
immediate-early (IE), early, and late phases. The 72-kDa IE1 (also
known as IE1-p71 or IE72) and 86-kDa IE2 (IE2-p86 or IE86)
proteins are the major IE proteins that regulate activation of viral
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genes and modulate host cell functions [19]. Both IE1 and IE2 are
modified by SUMO during HCMYV infection.

IE2 is a strong transactivator that interacts with numerous
cellular transactivators and is essential for early and late viral gene
expression. IE2 is modified by SUMO at two lysine residues, K175
and K180. In transfection assays, SUMOylation of IE2 enhances
the transactivation of diverse cellular and viral promoters by IE2
[20,21]. Consistently, transactivation activity of IE2 has been
correlated with its degree of SUMOylation [22]. IE2 directly binds
to Ubc9 [20,21] and PIAS1 [23]. Mutation of both K175 and
K180 in a laboratory strain and a clinical isolate caused a modest
decrease in virus replication, indicating that IE2 SUMOylation
promotes the virus lytic cycle in the context of virus infection [24].
However, the effect of IE2 SUMOylation on viral growth appears
to depend on the virus strains and infection conditions, since
similar mutations in another laboratory strain did not significantly
affect viral growth [25]. IE2 also non-covalently interacts with
SUMO through a SIM adjacent to the SUMO conjugation sites.
This SIM is necessary for efficient SUMOylation and transactiva-
tion activity of IE2, thereby promoting viral growth [24,26]. The
IE2 SIM promotes transactivation by IE2 by recruiting other
SUMO-modified transcription cofactors, such as TAF12 [26].

IE1 is required for efficient viral gene expression, particularly at
a low multiplicity of infection [27,28]. IE] also plays a key role in
disarming host intrinsic and innate antiviral responses. IEl
disrupts PML nuclear bodies (NBs), also known as nuclear domain
10 (NDI10) [29-32]. This activity correlates with the loss of
SUMOylated PML NB components, such as PML and Sp100,
which repress incoming viral genomes [33-35]. IE1 also interferes
with type I interferon (IFN) signaling by directly targeting STAT?2
using its near C-terminal region, and, to a lesser extent, by binding
to STAT1 [36-38]. IE1 is modified by SUMO at K450 within the
acidic domain [39,40]. The role of IE1 SUMOylation in virus
infection is unclear. IE] SUMOylation has been reported to
promote viral growth, while other studies have found a lack of
significant impact [40-42]. We previously found that the SUMO-
modified form of IE1 failed to interact with STAT2, suggesting
that SUMOylation of IE]l may inhibit the ability of IE1 to
downregulate type I IFN signaling [37]. The SUMOylation site of
IE1 is close to its C-terminal chromatin-tethering domain;
however, IE1 SUMOylation did not affect IE1 accumulation at
mitotic chromosomes [43]. Phosphorylation of IE1 has been
reported to decrease its SUMOylation [44].

In this study, we performed an i silico genome-wide analysis to
identify HCMV-encoded SUMO targets. We found that viral IE]1
and IE2 proteins might be the main SUMO targets. We also
investigated whether SUMOylation of IE1 and IE2 is regulated
during HCMV infection. Our results showed that high-level
expression of IE2 and its SUMO-modified forms at the late stage
of infection downregulates IE1 SUMOylation via competing
PIAST binding, potentiating IE1 repression of interferon-stimu-
lated gene (ISG) activation.

Materials and Methods

Plasmids

pSGS [45]-based expression plasmids for IE1 (pJHA303), IE2
(pJHA124), GST-IE2(346-542) (pHJK13), flag-SUMO-1
(pJHA312), and flag-SUMO-2 (pJHA342) were previously de-
scribed [21,23,42]. Plasmids for HA-IE1 (pDJK170), HA-UL53
(pPMK56), and GST-IE1 (pDJK175) were produced by moving the
cDNAs from pENTR vectors (Invitrogen) to pSG5-HA and
pGEX-3-based destination vectors, respectively, using LR Clonase
(Invitrogen). Similarly, plasmid for His-IE1 (pSHJ9) was produced
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with the pDEST'17 (with a 6His tag) destination vector (Invitrogen),
and plasmids for HA-PIAS1 (pHJK1), SRT-PIAS1 (pSAN22), myc-
PIAS1 (RYK)595), and myc-IE2(346-542) (pRYK593) were pro-
duced with the pSG5-HA, pSG5-SRT or pCS3-MT (with a 6myc
tag) [46]-based destination vectors. pCMV-Flag-PIAS] was kindly
provided by Ke Shuai (UCLA, Los Angeles, CA, USA). Plasmids for
GST-SAE2/SAE], in which GST-SAE2 and SAEl are transla-
tionally linked via a ribosome binding site, His-Ubc9, and GST-
SUMO-1¢¢ were previously described [47], and the plasmid for
His-SUMO-1¢g was produced with the pDEST17 destination
vector using LR Clonase. pT-E1E2S1, which encodes the E1 and
E2 enzymes for SUMO conjugation as well as the active form of
SUMO-1 [48], was used to introduce a synthetic SUMO-1
conjugation pathway into E. coli.

Cloning HCMV ORFs

HCMV open reading frames (ORFs) were cloned as previously
described [49]. HCMV ORFs were PCR amplified using primers
based on the GenBank sequences AY446894, GU937742, and
IJ616285. Bacterial artificial chromosomes Toledo-BAC [50] and
Towne-BAC [51] were used as templates (gifts from H. Zhu,
UMDN]J-New Jersey Medical School, Newark, New Jersey, USA).
The 5’ primers contained the attB1 recombination site, and the 3’
primers contained the attB2 recombination site (attBl, 5'-
GGGGACAAGTTTGTACAAAAAAGCAGGCTCC-3'; attB2,
5'-GGGGACCACTTTGTACAAGAAAGCTGGGTC-3") (Invi-
trogen). Some long ORFs were amplified in segments. For some
ORFs that encode spliced products, cDNAs prepared form virus-
infected cells were used for PCR amplification. PCR products of
the correct size were recombined into the gateway vector
pDONR201 (to make pENTR clones) using BP Clonase
(Invitrogen). E. coli that had been transformed with the reaction
products (pEN'TR clones) were selected, and the DNA inserts were
analyzed by digestion with BsrGI and sequencing. Yeast cells
expressing plasmids encoding GAL4-activation domain (AD)-ORF
fusions were produced by transferring the ORFs from pENTR
vectors to a pACTII [21]-based destination vector using LR
Clonase.

Transfection

293T cells were transfected via the N,N-bis-(2-hydroxyethyl)-2-
aminoethanesulfonic acid-buffered saline (BBS) version of the
calcium phosphate method, as described previously [23].

Immunoblot analysis

Samples were prepared by boiling in loading buffer, separated by
SDS-PAGE, and transferred to a nitrocellulose membrane
(Schleicher & Schuell, Dassel, Germany). The membrane was
blocked for 1 h in PBS-T [PBS plus 0.1% Tween-20 (Sigma)]
containing 5% skim milk and then washed with PBS-T. After
incubation with the appropriate antibody, the proteins were
visualized by the standard procedure using an enhanced chemilu-
minescence system (Roche). For SUMOylation assays in transfected
cells, cells were washed with PBS containing 5 mM NEM, and the
samples were prepared by boiling in SDS loading buffer.

Coimmunoprecipitation (ColP) assays

293T (8x10° in 100-mm dish) cells were harvested and
sonicated in 1 ml ColP buffer (50 mM Tris-Cl [pH 7.4],
50 mM NaF, 5 mM sodium phosphate, 0.1% Triton X-100,
containing protease inhibitors [Sigma]) using a microtip probe
(Vibra cell; Sonics and Materials, Inc., USA) for 10 sec (pulse on: 1
sec, pulse off: 3 sec). Clarified cell lysates were incubated for 16 h
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with appropriate antibodies at 4°C. Thirty microliters of a 50%
slurry of protein A- and G-Sepharose (Amersham) was then added.
After a 2 h incubation at 4°C, the mixture was pelleted and
washed several times with ColP buffer. The beads were
resuspended and boiled for 5 min in loading buffer. Each sample
was analyzed by SDS-PAGE, and immunoblotting was performed.

In vitro binding assays with GST fusion proteins

The GST and GST-IEI fusion proteins were prepared in E. coli
by standard procedures. The [*’S]Met-labeled PIASI was
produced from a pSG5-derived template using the TNT Quick
Coupled Transcription/Translation System (Promega) as specified
by the manufacturer. The standard procedure for the GST pull-
down assays was described previously [21].

In vitro SUMOylation assays

Recombinant GST fusion proteins were expressed in E. col, and
purified on glutathione-agarose 4B (Peptron) according to the
manufacturer’s instructions. His-tagged proteins were also pro-
duced in E. coli and purified on Ni-NTA beads (Invitrogen)
according to the manufacturer’s guidelines. Typical SUMOylation
reactions were conducted in a 30 pl volume containing 70 nM
GST-SAE2/SAE1, 1 uM His-Ubc9, and 9 uM His-SUMO-1gg or
GST-SUMO-1¢¢ in buffer (50 mM Tris-HCI [pH 7.5], 10 mM
MgCl,, 1 mM DTT, and 5 mM ATP). To prepare flag-PIAS1
protein, 2931 cells in a 150-mm dish were transfected with 30 pg of
flag-PIAS1-expressing plasmid, followed by immunoprecipitation of
total cell lysates with 50 pl of anti-flag M2 antibody. SUMOylation
reaction mixes were incubated for 1 h at 37°C. After terminating
the reaction with SDS sample buffer containing -mercaptoethanol,
the reaction products were fractionated by SDS-PAGE.

Antibodies

Anti-His (H-3) mouse monoclonal antibody (MAb) conjugated
with horseradish peroxidase (HRP) and anti-GST MAb (B-14)
were purchased from Santa Cruz. Anti-HA rat MAb (3F10) and
anti-myc mouse MAb (9E10) conjugated with HRP were
purchased from Roche. Anti-flag mouse MAb M2 was obtained
from Sigma. Anti-IE1 polyclonal antibody (PAb) was raised in
rabbits using the purified IEI protein. Mouse MAb 8131, which
detects epitopes present in both IE1 and IE2 (exons-2 and -3), was
purchased from Chemicon (Temecula, CA, USA). Mouse MAbs
specific for IE1 (6E1) and IE2 (12E2) were purchased from
Vancouver Biotech and mouse MADb against B-actin  was
purchased from Sigma. Mouse MAb against SRT epitope was
previously described [23].

Luciferase reporter assay

Cells were collected and lysed by three freeze-thaw steps in 200 pl
of 0.25 M Tris-HCl (pH 7.9) plus 1 mM dithiothreitol. Cells
extracts were clarified in a microcentrifuge and 30 pl of extracts
were incubated with 350 pl of reaction buffer A (25 mM glycyl-
glycine [pH 7.8], 15 mM ATP, and 4 mM EGTA) and then mixed
with 100 ul of 0.25 mM luciferin (Sigma-Aldrich) in reaction buffer
A. A TD-20/20 luminometer (Turner Designs) was used for a 10-s
assay of the photons produced (measured in relative light units).

Results

In silico analysis of SUMOylation sites in HCMV-encoded
proteins and evaluation of SUMOylation

To identify SUMO targets in the entire HCMV genome, we
used the SUMOplot Analysis Program (http://www.abgent.com/
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sumoplot) and SUMOsp program (http://sumosp.biocuckoo.org/
online.php) [52] to predict and score SUMO modification sites in
proteins. We tested 165 HCMV ORFs from the HCMV Towne
and Toledo strains. From this in silico analysis, 24 ORFs,
including UL122 (IE2) and UL123 (IE1), which were previously
identified as SUMO targets, were predicted with high probability
to contain SUMO modification sites by both programs (Table 1).

We next investigated whether the predicted 24 proteins are
covalently modified by SUMO. The HCMV OREF library was
produced in the pENTR vector (Invitrogen) and pGEX-3-derived
plasmids expressing GST-ORF fusion proteins were produced
(Table 1) (see Material and Methods). E. coli BL21 cells were
transformed with pGST-ORF or cotransformed with pGST-ORF
and pT-E1E2S1, which encodes a SAE2/SAE] fusion (E1), Ubc9
(E2), and SUMO-1g, an active form of SUMO-1. After the cells
were grown, expression of GST-fusion proteins was induced with
IPTG, and total cell lysates were prepared and immunoblotted
with anti-GST antibody. The results showed that UL123 (IE2) and
ULI122 (IE1) were substantially modified by SUMO, and US34A
was weakly modified by SUMO in this E. coli SUMOylation
system (Fig. 1). We could not detect SUMOylated bands for 19
proteins (UL84, UL35, RL10, UL27, UL46, UL89 exon 2,
ULI11A, UL83, UL57, UL27, UL98, UL72, UL105, UL48,
UL54, UL43, UL49, UL44, and UL148) in these assays (Fig. 1).
We could not evaluate SUMOylation of UL150 and US27 in E.
coli, since GST-UL150 became undetectable in E. coli cells that
received both pGST-UL150 and pT-E1E2S1 probably due to
change of protein stability, and GST-US27 was not expressed or
expressed as several week bands, making detection of SUMOy-
lated forms difficult (Fig. 1).

We further tested SUMOylation of US34A, UL150, and US27
using cotransfection assays. 293T cells were cotransfected with
plasmids expressing a viral protein and SUMO-1, and immuno-
blotting was performed. We detected a small amount of
SUMOylated US34A, but did not detect SUMOylated UL150
(Fig. 2A). US27 SUMOylation could not be evaluated because
US27 migrated as a smear in cotransfected cells (data not shown),
as previously described [53,54]. US34A SUMOylation was further
investigated n vitro using purified bacterial GST-SAE2/SAEL
(E1), His-Ubc9 (E2), and His- or GST-tagged SUMO-1¢¢, an
active form of SUMO-1. The results showed that US34A was
modified by SUMO-1 as efficiently as UL123 (IE1) in witro,
suggesting that US34A may be another SUMO target encoded by
HCMV (Fig. 2B). However, unlike UL122 (IE2) and UL123 (IE1),
the region of US34A containing the predicted SUMOylation site,
K38, did not have a tendency to be highly disordered (Fig. 2C).
Overall, our in silico genome-wide analysis of HCMV-encoded
SUMO targets and subsequent cotransfection and in vitro assays
demonstrated that IE1 and IE2 might be main SUMO targets in
HCMV. These experiments also suggested that UL34A may be a
potential SUMO target.

SUMOylation patterns of IE1 and IE2 during HCMV
infection

We next investigated the change in SUMOylation patterns of
IE1 and IE2 during HCMYV infection. Total cell lysates prepared
at different time points after HCMV infection were immuno-
blotted with antibodies specific for IE1, IE2, or both. We found
that IE1 SUMOylation peaked 24 h after infection and then
declined at 48 h when the level of IE2 and its SUMOylation was
drastically increasing (Fig. 3A). This result suggested that IE1
SUMOylation is temporally regulated during virus infection and
that this change depends on the IE2 level. The effect of IE2
expression on IEl SUMOylation was further examined in
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Figure 1. SUMOylation analysis of HCMV proteins in bacteria. E. coli (BL21) cells were transformed with plasmids expressing GST-HCMV ORF
(ampicillin-resistant) or cotransformed with plasmids expressing GST-HCMV ORF and pT-E1E2S1 (chloramphenicol-resistant). One milliliter of bacterial
cell culture was induced with 0.4 mM IPTG for 5 h at 30°C. Total cell lysates were prepared by boiling the cell pellet in 200 ul of 1x protein loading
dye. Clarified cell lysates were separated by SDS-PAGE, and immunoblot analysis was performed with anti-GST antibody. HCMV ORFs fused to GST
and the ORF sizes (number of amino acids in parenthesis) are indicated. The SUMO-modified forms of UL123 (IE1), UL122 (IE2), and US34A are

indicated as open arrowheads.
doi:10.1371/journal.pone.0103308.g001

cotransfection assays. Immunoblots showed that the level of
SUMOylated IE1 was reduced when IE2 was overexpressed,
suggesting an inhibitory effect of IE2 on IE1 SUMOylation
(Fig. 3B).

PIAS1 interacts with IE1 and acts as a SUMO E3 ligase
We hypothesized that increased IE2 expression might compete
with IE1 for the cellular SUMOylation machinery. To address this
question, we first tested whether IE1 SUMOylation requires
PIASI, a SUMO E3 ligase that acts as an E3 for IE2
SUMOylation [23]. In cotransfection assays, PIAS] was coimmu-

PLOS ONE | www.plosone.org

noprecipitated with IE]1 but not with UL53 (a negative control),
suggesting that PIASI specifically interacts with IE1 (Fig. 4A).
Furthermore, in GST pull-down assays, bacterial GST-IElprotein
effectively interacted with PIAS1 produced by in vitro transcrip-
tion/translation (Fig. 4B). These results indicated that IE1 indeed
interacts with PIASI.

We next tested whether PIAS] enhances IE1 SUMOylation. In
cotransfection assays, PIAS1 increased SUMOylation of IEI in a
dose-dependent manner (Fig. 5A). A catalytically inactive PIASI
mutant (C35185), in which the active site cysteine at amino acid
351 was replaced with serine [23], did not increase IEl
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Figure 2. Evaluation of SUMOylation in cotransfection and in vitro assays. (A) 293T cells in six-well plates were cotransfected with 0.5 ug of
plasmid expressing myc-US34A, myc-UL150, flag-SUMO-1, or flag-SUMO-2 as indicated. At 48 h, total cell lysates were prepared and immunoblotted
with an anti-myc antibody. The bands corresponding to unmodified and SUMO-modified forms of myc-US34A and unmodified myc-UL150 are
indicated. NS, non-specific bands. (B) In vitro SUMOylation reactions. Myc-UL123(IE1) and myc-US34A produced by in vitro transcription/translation
were incubated with GST-SAE2/1, His-Ubc9, and His-SUMO-1gg or GST-SUMO-14¢ as indicated. The reaction products were analyzed by SDS-PAGE
(8%) and immunoblot assays with a myc-IE1 antibody. Unmodified and SUMO-modified forms of IE1 and US34A are indicated. (C) The disorder in
UL122 (IE2), UL123 (IET), and US34A was predicted with the IUPred program (http://iupred.enzim.hu). The lysine residues modified by SUMO (for IE1

and IE2) or predicted to be SUMOylation sites (for US34A) are indicated.

doi:10.1371/journal.pone.0103308.9g002

SUMOylation. This result suggests that PIAS] may act as an E3
ligase for IE1 SUMOylation (Fig. 5B). To confirm the role of
PIAST in IE1 SUMOylation, we performed in vitro SUMOylation
assays. We used PIASI protein that was immunoprecipitated from
transfected cells, because PIASI is not easy to produce in a soluble
fraction in E. coli. Consistent with the results of cotransfection
assays, we found that immunoprecipitated PIAS1 increased IE1
SUMOylation in a dose-dependent manner i vitro. These data
indicate that PIAS] acts as a SUMO E3 ligase for IEl
SUMOylation (Fig. 5C).

IE2 inhibits PIAS1-mediated SUMOylation of IE1

To address whether IE2 competes with IEl for PIASI in
SUMOylation reactions, we examined the effect of the IE2(346—
542) fragment on IE1 SUMOylation in vitro. 1E2(346-542)
contains the PIAS] binding region [23], but not sites for covalent
or non-covalent SUMO attachment [26]. The i vitro SUMOyla-
tion assays showed that the level of IE1 SUMOylation produced in
reactions containing SAE2/SAEL (E1) and Ubc9 was increased in
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the presence of PIASI, but this PIAS1-mediated IE1 SUMOyla-
tion was inhibited by IE2(346-542) (Fig. 6). In a control
experiment, IE1 SUMOylation without PIAS1 was not affected
by 1E2(346-542) (Fig. 6). These results demonstrate that IEI
SUMOylation was negatively regulated by the PIASI-binding
activity of IE2. The moderate inhibitory effect of IE2(346-542) on
IE2 SUMOylation was also observed in cotransfection assays (data
not shown).

We further investigated whether IE2 inhibiting IE1 SUMOyla-
tion affects the ability of IE1 to downregulate the promoter
containing the IFN stimulated response element (ISRE). In
luciferase reporter assays using the ISG54 ISRE-luciferase
reporter gene, coexpressing SUMO-1 and PIASI inhibited the
ability of IE1 to suppress ISRE promoter induction by IFN.
However, adding IE2(346-542) reversed this effect (Fig. 7A).
1E2(346-542) does not contain the transactivation domains
(codons 25-85 and 544-579) [55]. Consistently, in a control
experiment, IE2(346-542) did not affect the induction of ISRE
promoter by IFNB (Fig. 7B). This result suggests that IE2
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Figure 3. SUMOylation patterns of IE1 and IE2 during HCMV
infection. (A) HF cells were mock-infected or infected with HCMV at an
MOI of 5. Total cell lysates were prepared at indicated time points and
immunoblotting was performed with antibodies that recognize IE1
(6E1), IE2 (12E2), or both IE1 and IE2 (8131). The B-actin levels are shown
as a loading control. The bands indicated as open circles appear to be
non-specific or represent other modified forms of IE1 and IE2. (B) 293T
cells in six-well plates were cotransfected with plasmids expressing IE1
(1 ug), flag-SUMO-1 (1 pg), and increasing amounts of IE2 (0.3, 1, and
3 ug), as indicated. At 48 h, total cell lysates were prepared and
immunoblot assays were performed with anti-IE1/IE2 antibody.
doi:10.1371/journal.pone.0103308.g003

expression and its PIASI-binding activity can interfere with
PIAST-mediated IE1 SUMOylation, resulting in unmodified IE1
more efficiently suppressing type I IFN-mediated ISG expression
(Fig. 7C).

Discussion

In this study, we performed in silico analysis to predict possible
SUMO modification sites in all HCMV ORFs. Among 24 ORFs
that were predicted to have a consensus sequence with relatively
high scores, only UL123 (IE2), UL123 (IEI), and US34A, which
received the highest scores using the SUMOsp program, were
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SUMOylated in E. coli SUMOylation assays. The SUMOylation
levels of US34A in E. coli and in cotransfected cells were much
lower those of IE1 and IE2, although US34A was SUMOylated as
efficiently as IE1 i witro. Unlike IE1 and IE2, the predicted
SUMOylation site in US34A was not in the disordered region.
Therefore, whether US34A SUMOylation occurs during virus
infection needs to be addressed. Given that SUMOylation of IE1
and IE2 was easily detectable in virus-infected cells
[20,39,40,44](this study), the data from our in silico genome-wide
analysis suggest that these two IE proteins may be the main
HCMV-encoded targets for SUMO. Nevertheless, we cannot
exclude the possibility that SUMOylation of other HCMV
proteins predicted in this study occurs in virus-infected cells. An
example is UL44. Although we could not detect SUMOylation of
UL44 in E. coli assays, SUMOylated UL44 was detected in
cotransfected cells, in vitro SUMOylation reactions, and virus-
infected cells [56]. We also observed SUMOylation of UL44 in in
vitro assays (data not shown).

We and others have found SUMO in wviral replication
compartments (RCs) in HCMV-infected cells [25,57], suggesting
that viral or cellular SUMO substrates may accumulate at viral
RCs. Although IE2 is recruited to viral RCs [58], SUMO is also
found in viral RCs in cells infected with a virus encoding a mutant
IE2 protein that lacks both the SUMOylation sites and the SIM
[57]. Thus, other viral proteins implicated in viral DNA
replication have been suggested to be SUMO targets or recruit
SUMO via the SIM-mediated intercation. SUMOylation of UL44
(polymerase percessicity factor) might explain the presence of
SUMO species in viral RCs. In addition, UL54 (DNA polymer-
ase), UL57 (single-stranded DNA-binding protein), and UL105
(DNA helicase) have been suggested to have SUMO modification
sites [57]. Our in silico analysis also predicted these viral
replication proteins to have possible SUMOylation sites; however,
none were SUMOylated in our E. coli SUMOylation assays.

In this study, we demonstrated that SUMOylation of IEI and
IE2 is temporally regulated during HCMV infection. SUMOy-
lated IE1 levels were increased at the early phase of infection and
decreased at the late phase when the expression of IE2 and its
SUMO-modified forms drastically increased. The increase of IE2
SUMOylation at the late stage of infection is consistent with a
general role of IE2 SUMOylation in increasing viral gene
expression [20-24,26]. The biphasic regulation of IE1 SUMOyla-
tion 1s intriguing. The role of IE1 SUMOylation in viral infection
is not clear. A mutant virus encoding SUMOylation-defective IE1
grew less efficiently than normal virus, suggesting a positive role of
IE1 SUMOylation in virus infection [41]. However, a similar
mutant virus did not have a significant growth defect [42], and the
lack of IE1 SUMOylation did not affect the ability of IE1 to
complement the growth defect of the IEl-deleted mutant virus
[40]. Further studies are necessary to address whether IE]
SUMOylation plays a role at early steps of the viral replication
cycle or whether IE1 SUMOylation is just a consequence of IE1
targeting to PML nuclear bodies, where the components of
SUMOylation machinery are enriched. Recently, we found that
IE1 SUMOylation inhibited the interaction between IE1 and
STAT2 and that the SUMO-modified form of IE1 failed to inhibit
IFNB-mediated activation of the ISRE-containing promoter [37].
These findings suggested that IE1 SUMOylation may be
detrimental for viruses trying to evade cellular innate immune
responses, although the overall effect of IE1 SUMOylation on viral
replication could be different. In this regard, IE2, by inhibiting IE1
SUMOylation, may assist in immune escape by the virus. The
interplay between SUMOylation of two viral proteins has been
shown in Epstein-Barr virus. The SIM-containing BGLF4 protein
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Figure 4. Interaction of IE1 with PIAS1. (A) 293T cells in a 100-mm dish were cotransfected with 5 pg of plasmids expressing myc-PIAS1 and HA-
IE1 or HA-UL53, as indicated. At 48 h, total cell lysates were prepared and immunoprecipitated with an anti-myc antibody, followed by
immunoblotting with an anti-HA antibody. The levels of HA-IE1, HA-UL53, and myc-PIAST in whole cell lysates (WCL) were also shown by
immunoblotting. (B) The GST and GST-IE1 proteins purified from bacteria were used in GST pull-down assays. Five micrograms of GST and GST-IE1
proteins were immobilized on glutathione-Sepharose beads and were incubated with in vitro-translated and [>*S]-methionine-labeled PIAS1. Input
PIAS1 (5%) and the GST pull-down samples were separated by SDS-PAGE and visualized by autoradiography (upper panels). The purified GST and
GST-IE1 used in pull-down assays are shown by SDS-PAGE and Coomassie Brilliant Blue staining (lower panel).
doi:10.1371/journal.pone.0103308.g004
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Figure 5. Enhancement of IE1 SUMOylation by PIAS1. (A) 293T cells in six-well plates were cotransfected with plasmids expressing IE1 (1 ug),
flag-SUMO-1 (1 pg), and increasing amounts of SRT-PIAS1 (0.3, 1, and 3 pg), as indicated. At 48 h, total cell lysates were prepared and immunoblotted
with an anti-IE1 antibody. (B) 293T cells were cotransfected with plasmids expressing IE1 (1 ug), flag-SUMO-1 (1 ug), and wild-type or C351S mutant
SRT-PIAS1 (0.5 ng), as indicated. At 48 h, total cell lysates were prepared and immunoblotted with anti-IET or anti-SRT antibodies. (C) In vitro
SUMOylation reactions were conducted with bacterially purified His-IE1, GST-SAE2/1, His-Ubc9, and GST-SUMO-15¢ proteins, and immunoprecip-
itated flag-PIAS1 proteins (see Materials and Methods). The reaction products were analyzed by SDS-PAGE (8%) and immunoblot assays with anti-IE1
antibody. The amounts of flag-PIAS1 protein used were also shown by immunoblotting with anti-flag antibody.
doi:10.1371/journal.pone.0103308.g005
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antibody. (B) The GST and GST-IE2(346-542) proteins added to in vitro SUMOylation reactions were detected by immunoblotting with an anti-GST
antibody.
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Figure 7. IE2 reverses the SUMOylation-dependent inhibition of IE1 activity to downregulate ISRE activation. (A and B) The reporter
assays using the 1SG54 ISRE-luciferase construct. 293T cells in 12-well plates were cotransfected with 0.5 pug of the 1SG54 ISRE-luciferase reporter
construct and plasmids expressing HA-IE1, flag-SUMO-1, HA-PIAS1, and myc-IE2(346-542) as indicated. The total amount of plasmid was adjusted
with empty vectors. At 24 h, cells were untreated or treated with IFNB (1,000 units/ml) for 8 h, and luciferase reporter assays were performed. The
results shown are the mean values and standard errors of three independent experiments. Statistical significance between samples was determined
using Student’s t-test (values of *P<<0.0005). The expression levels of IE1, IE2, and B-actin proteins in cell lysates were determined by immunoblotting
with specific antibodies. (C) A hypothetical model showing that expression of |IE2 and its SUMOylation regulates the PIAS1-mediated IE1
SUMOylation, enhancing IE1 activity to downregulate type | IFN-stimulated gene (ISG) expression. ISRE, interferon stimulated response element.
doi:10.1371/journal.pone.0103308.g007
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inhibits BZLF1 SUMOylation through its SUMO-binding activity
and also reduces overall SUMOylation, which enhances EBV lytic
infection [59,60].

Several viral proteins have been shown to reduce cellular
SUMOylation by directly targeting SUMOylation machinery.
The Gaml protein of avian adenovirus CELO (chicken embryo
lethal orphan) reduces cellular SUMOylation by interacting with
and destabilizing the SAEI-SAE2 complex [61,62]. Human
papillomavirus E6 induces degradation of Ubc9 [63]. Our finding
that IE2 expression inhibits IE1 SUMOylation by binding to
PIAST raises a question whether IE2 has a general role in
regulating the cellular SUMO pathway. We observed that IE2
overexpression slightly reduces the level of cellular SUMO
conjugates (data not shown). This intriguing hypothesis remains
to be addressed.
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