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Abstract

The Rab family of small guanosine triphosphatases (GTPases) plays a vital role in membrane trafficking. Its active GTP-bound
state is driven by guanine nucleotide-exchange factors (GEFs). Ras and Rab interactor (or Ras interaction/interference)-like
(RINL), which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF
in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that
RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found
that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM) domain-containing (Anks)
protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin.
Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and
interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as
a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin.
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Introduction

Rab guanosine triphosphatases (GTPases) play pivotal roles in

intracellular membrane trafficking. At present, more than 60

members have been identified; they are localized in distinct

intracellular compartments and regulate intracellular transport

specifically [1,2]. Rab5, which is the most thoroughly character-

ized member of this family, is a key regulator of endocytosis,

endosome fusion, and endosome trafficking [3]. Like other Rab

GTPases, the transition from an inactive state [guanosine

diphosphate (GDP)-Rab5] to an active state (GTP-Rab5) is

mediated by guanine nucleotide exchange factors (GEFs). To

date, many Rab5 GEFs have been identified and extensively

analyzed [4]. All share a highly conserved vacuolar protein

sorting 9 (VPS9) domain, which is required for bindings to, and

nucleotide exchange on, Rab5 proteins. Rabex-5 is a VPS9

domain-containing protein that shows GEF activity for Rab5 and

Rab21 GTPases; the VPS9 domain structure of Rabex-5 has

been determined by X-ray analysis, and four amino acids (i.e., D,

P, Y, and T) have been shown to be critical for its GEF activity

[5].

The Ras and Rab interactor (or Ras interaction/interference,

RIN) family proteins, composed of RIN1–3, also have a VPS9

domain and function as Rab5 GEFs [6–8]. Uniquely, RIN

proteins contain many functional domains, including Src homol-

ogy 2 (SH2), proline-rich (PR), RIN family homology (RH), and

Ras association (RA) domains [6]. Previous studies have shown

that RIN1 interacts with various receptor tyrosine kinases (RTKs),

including epidermal growth factor receptor, platelet-derived

growth factor receptor, and EphA4 receptor [9,10]. RIN2

interacts with the HGF receptor [11], and RIN proteins generally

regulate the membrane trafficking and degradation of RTKs. We

previously identified RIN3 as a Rab5-GEF, and showed that

tyrosine phosphorylation signals induce the translocation of

cytoplasmic RIN3 to Rab5-positive early endocytic vesicles

[6,12]. We also showed that the RH domain is necessary and

sufficient for the interaction between RIN3 and Rab5 proteins

[12]. In addition, recently we reported that RIN3 specifically acts

as a GEF for Rab31, one of the Rab5 subfamily proteins (i.e.,

Rab5, Rab21, Rab22, and Rab31) [13]. While the functions of

RIN1–3 have been elucidated, RIN-like (RINL) was recently

identified as a protein with high similarity to RIN proteins [14].

RINL is ubiquitously expressed with its highest expression in

lymphoid organs, and exhibits GEF activity for Rab5 and Rab22

GTPases. However, detailed analysis about the biochemical

activity of RINL or the identification of its interaction molecules

has not yet been performed. In the present study, we evaluated the

broad GEF activity of RINL for Rab5 subfamily proteins both

using recombinant proteins and in mammalian cells and showed

that RINL activated Rab5 proteins via its VPS9 domain.

Moreover, we identified odin, a member of the ankyrin-repeat

and sterile-alpha motif (SAM) domain-containing (Anks) protein
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family, as a molecule that interacts with RINL. Furthermore,

RINL bound to EphA8 via odin and reduced EphA8 levels in a

manner dependent on its GEF activity. These findings suggest that

as a GEF activator of Rab5 proteins, RINL is implicated in the

degradation of EphA8 via its interaction with odin.

Results

RINL stimulates the formation of GTP-bound Rab5 in
intact cells

RINL was identified as a protein with high similarity to RIN

family proteins, including RIN1, 2, and 3 [6–8]. Although RINL

shares SH2, RH, and VPS9 domains with other RIN family

members, it lacks PR and RA domains (Fig. 1A). Therefore, RINL

did not interact with amphiphysin II, which associates with RIN2

and RIN3 by their PR domains [6] (Fig. 1B).

Since RIN2 and RIN3 have been shown to function as

tetramers composed of anti-parallel linkages of two parallel dimers

[7] (data not shown), we investigated whether RINL forms homo-

multimeric complexes in mammalian cells. Cell lysate from

HEK293T cells were applied to a gel filtration column; fractions

eluted from the column were analyzed by sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot

by anti-RINL antibody. Endogenous RINL eluted from the

column as a 200-kDa protein (Fig. 1C). Since the molecular weight

of RINL is about 72,000, these results indicate that RINL does not

appear to form a tetramer but exist as a multimer or a complex

with other proteins.

Quite recently, RINL was reported to act as a GEF for both

Rab5 and Rab22 GTPases in vitro, stimulating the dissociation rate

of GDP from these GTPases [14]. We confirmed the GEF activity

of RINL for Rab5 subfamily proteins by measuring the formation

Figure 1. Structure of RINL. (A) Diagram of the structural features of RIN family members. The lower numbers represent the amino acid residues.
(B) FLAG-RIN1, RIN2, RIN3, and RINL were transiently co-transfected with myc-amphiphysin II (amph II) into HEK293T cells. Cells lysates were
immunoprecipitated with anti-FLAG antibody, followed by immunoblotting with anti-myc and anti-FLAG antibodies. Total lysates were
immunoblotted with anti-myc antibody. (C) Cell lysates from HEK293T cells were applied to a Superdex 200 Prep Grade gel filtration column. The
elution position was compared with those of the globular size markers (upper panel). The fractions (0.5 ml) eluted from the column and total lysate
(tot.) were analyzed by SDS-PAGE, and proteins were immunoblotted with anti-RINL antibody.
doi:10.1371/journal.pone.0030575.g001
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of GTP-bound forms of these proteins (Figure S1). Recombinant

RINL proteins purified from baculovirus-infected Sf9 cells

markedly accelerated [35S]GTPgammaS binding to Rab5a, 5b,

and, 5c proteins as did Rabex-5. Rabex-5 strongly, as opposed to

RINL, accelerated GTPgammaS binding to Rab21. In contrast,

RINL accelerated GTPgammaS binding to Rab22 and Rab31.

We also found that RIN3 markedly and RIN2 weakly exerted

GEF activities for Rab22 and Rab31; however, RIN1 and Rabex-

5 did not (Figure S2) [13].

We next investigated the GEF activity of RINL for Rab5

subfamily proteins in intact cells. Approximately 8% of Rab5b was

present in a GTP-bound form in mock-transfected cells, and the

expression of either RIN3 or Rabex-5 increased the formation of

GTP-Rab5b effectively (Fig. 2A). The expression of RINL also

increased GTP-Rab5b, but less effectively. We applied the same

assay to other Rab5 subfamily proteins. RINL significantly

increased GTP-Rab21, GTP-Rab22, and GTP-Rab31 formation,

but less effectively than did either Rabex-5 or RIN3 (Fig. 2B–D).

In contrast, RINL did not show any significant GEF activity for

Rab3a, Rab7a, or Rab11a (Fig. 2E). These results show that RINL

moderately stimulates the formation of GTP-Rab5 subfamily

proteins in mammalian cells.

Since the four amino acids in the VPS9 domain, which are

critical for the GEF activity of Rabex-5 [5], are conserved in

RINL, we generated two RINL mutants with reduced GEF

activity; RINL/D453A/P457A (DP_AA) and RINL/Y494A/

T497A (YT_AA). We found that RINL/WT interacted with

dominant-negative Rab5b/S34N using the yeast two-hybrid

system as reported previously [14], while either RINL/DP_AA

or YT_AA reduced this interaction (data not shown).

Furthermore, the increase in GTP-Rab5b after co-expression

of RINL was completely abolished by mutations of the VPS9

domain (Fig. 2F). These results clearly indicate that RINL

exerts GEF activity for Rab5 subfamily proteins via its VPS9

domain.

Identification of odin as a RINL-binding protein
To uncover the function of RINL, we further searched for

RINL-binding proteins using the yeast two-hybrid system. A

mouse brain cDNA library was screened with full-length RINL as

bait. Screening of 3.56105 transformants yielded seventeen

positive clones that strongly interacted with RINL. One was

composed of a cDNA encoding a partial sequence of odin. The

isolated odin clone corresponded to amino acids 583–1150 (Figure

S3). Because odin belongs to the Anks protein family, it is also

called Anks1a. Odin/Anks1a possesses a phosphotyrosine-inde-

pendent Dab-like phosphotyrosine-binding (PTB) domain in its C-

terminal region [15]. We investigated whether RINL associates

with odin in mammalian cells at endogenous level. By using anti-

odin and RINL antibodies, we found that endogenous odin and

RINL are co-immunoprecipitated in HeLa cells (Fig. 3A). Next we

examined the specificity of the interaction. When FLAG-RIN was

expressed in HEK293T cells, RINL strongly interacted with

endogenous odin, while RIN1 and RIN2 only weakly bound and

RIN3 did not bind (Fig. 3B). We also found that RINL/DP_AA

and YT_AA, GEF deficient mutants of RINL, also interacted with

endogenous odin, though RINL/YT_AA bound moderately

(Figure S4).

To identify the interacting regions between RINL and odin, a

number of deletion mutants of these proteins were generated

(Figure S5). Myc-tagged wild type and deletion mutants of odin

were co-transfected with FLAG-RINL into HEK293T cells, and

the lysates were immunoprecipitated with anti-myc antibody. The

mutants containing the PTB domain bound RINL, but those

lacking the PTB domain did not (Fig. 3C), clearly showing that the

PTB domain is required and sufficient for the interaction of odin

with RINL. Similar assays were applied to RINL, and identified

that the SH2 domain of RINL is required for its interaction with

odin (Fig. 3D). The SH2 domain generally recognizes and

interacts with phosphorylated tyrosine residues, and odin has

been reported to be tyrosine phosphorylated by Src family kinases

[16]. However, when odin was phosphorylated by co-expression

with constitutively active Src, odin interacted with RINL as strong

as the non-phosphorylated form did (Fig. 3E). These results

indicate that the odin interacts with RINL regardless of its tyrosine

phosphorylation state.

RINL forms a ternary complex with odin and EphA8, and
RINL affects the degradation of EphA8 receptor

It has been reported that odin interacts with a member of the

Eph-receptor family, EphA8 [17], which we confirmed (data not

shown). To investigate whether RINL forms a ternary complex

with odin and EphA8 or RINL interacts odin alone, HEK293T

cells were co-transfected with myc-RINL, HaloTag-odin, and

EphA8-FLAG or their mock plasmids. The lysates from these

transfected cells were immunoprecipitated with anti-myc antibody.

RINL interacted with EphA8 in an odin-dependent manner

(Fig. 4A), indicating that RINL forms a ternary complex with both

odin and EphA8.

RIN proteins have been implicated in endocytosis of tyrosine

kinase receptors, and RIN1 specifically regulates EphA4 signaling

by promoting its endocytosis [10]. Since odin has been shown to

protect EphA8 from degradation [18], we supposed that RINL

might be involved in this degradation process. For this purpose,

HeLa cells were co-transfected with myc-RINL and EphA8-

FLAG. We found that EphA8 levels in the cell lysates were

significantly reduced by RINL expression (Fig. 4B and C), while

endogenous transferrin receptor levels were unaltered. The

expression of RINLDSH2, a mutant lacking the SH2 domain

(Fig. 3C), did not reduce EphA8 levels significantly. This result

suggests that the interaction between RINL and odin might be

important for the degradation of EphA8. Furthermore, we found

that the Rab5 GEF activity-defective mutants RINL/DP_AA and

RINL/YT_AA did not significantly affect EphA8 levels (Fig. 4D

and E), indicating that RINL expression promotes EphA8

degradation in a GEF activity-dependent manner. To eliminate

the possibility that transient co-transfection of expression

plasmids affects EphA8 levels, similar assays were used in

Neuro2a cells stably expressing EphA8-HA. We found that

RINL expression induced the degradation of EphA8 as well

(Figure S6). To verify that RINL is involved in the degradation

pathway of EphA8, we knocked down RINL in HeLa cells

through transfection of a specific small interfering RNA (siRNA).

Western blot analysis revealed that endogenous RINL was

effectively reduced (Fig. 4F, middle panel). As expected, EphA8

level significantly increased by depletion of RINL (Fig. 4F and G),

consistent with the ability of RINL to stimulate the degradation

of EphA8. Moreover, the increase in EphA8 with RINL-siRNA

was significantly rescued by expression of the siRNA-resistant

RINL (Fig. 4F, third lane). To identify the EphA8 degradation

pathway induced by RINL, we incubated RINL-expressing cells

with the specific lysosomal inhibitor leupeptin, bafilomycin, and

the proteasomal inhibitor MG132. Bafilomycin significantly, and

leupeptin partially blocked the degradation of EphA8 by RINL

(Fig. 4H and I), but MG132 did not. These results suggest that

EphA8 is degraded in the lysosomal pathway by the expression of

RINL.
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Discussion

To date, the VPS9 domain, which is a hallmark of Rab5

subfamily protein GEFs, has been found in many proteins,

including RIN family members (RIN1–3), Vps9p, Rabex-5,

ALS2/Alsin, Varp, and Gapex-5/RAP6/RME-6 [6–8,19–23].

In the present study, we found that RINL activates Rab5

subfamily proteins in GEF assays in vitro. Moreover, we identified

odin as an interacting molecule with RINL and showed that RINL

is involved in EphA8 degradation of EphA8 via its interaction with

odin.

While RINL significantly increased GTP-Rab21 in HEK293T

cells (Fig. 2B), purified RINL protein weakly accelerated

GTPgammaS binding to Rab21 in vitro (Figure S1). Similarly,

Rabex-5 has been reported to exhibit 100-fold lower GEF activity

for Rab22 than for Rab5 and Rab21 in vitro [5], increasing GTP-

Rab22 levels in mammalian cells (Fig. 2C). These results indicate

that RINL and Rabex-5 may require some cofactors to activate

Rab21 and Rab22, respectively.

RINL exhibited moderate GEF activity for Rab5, Rab21,

Rab22, and Rab31 in mammalian cells (Fig. 2). The lack of an RA

domain in RINL might cause a lower GEF activity, since

interactions of RIN1 and RIN2 with GTP-bound Ha-Ras via

their RA domains have been reported to potentiate their GEF

activities for Rab5 proteins [8,11]. The GEF activity of RINL is

low under basal conditions but might be upregulated dramatically

by certain stimulators, and its SH2 domain might be responsible

for this regulation. This hypothesis is supported by reports that

EGF stimulation induces a rapid and transient activation of Rab5a

[24], and RIN1 forms complexes with a number of RTKs via its

N-terminal SH2 domain [9,10]. Deletion of the SH2 domain in

RIN3 significantly reduced its GEF activity for Rab5 and Rab31

[13]. Identification of upstream inducers will uncover the

molecular mechanism by which the GEF activity of RINL is

regulated.

Recent reports have suggested that Rab22 plays a role in the

heterotypic fusion of transported vesicles with other organelles.

CHO cells expressing Rab22 associate with early and late

endosomes [25]. The Rab22/Q64L mutant, which lacks GTPase

activity, causes a prominent morphological enlargement of both

early and late endosomes. Meanwhile, Rab22 regulates the

recycling of major histocompatibility complex class I (MHCI)

from early endosomes to the plasma membrane [26]. Because

Rab5 and Rab22 interact and colocalize with EEA1, an

established marker of early endosomes [27,28], the cooperative

activation of Rab5 and Rab22 by RINL might facilitate

intracellular traffic from the plasma membrane to late endosomes

or recycling endosomes via early endosomes.

We identified that the SH2 domain of RINL and the PTB

domain of odin are required for their interaction, and this

interaction is independent of the phosphorylation status of odin.

This independence is supported by the fact that the SH2 domain

of RINL is missing the critical arginine residue (in the FLVR

motif) that directly interacts with pTyr ligands. Furthermore, the

PTB domain of odin belongs to the Dab-like subgroup, which can

bind to peptides that are not tyrosine phosphorylated [15]. A

substitution of this arginine residue in the SH2 domain is also

found in human RIN2. RINL and RIN2 interact more strongly

with odin than other RIN family members, and odin interacts with

the EphA8 receptor. These results suggest that RIN2 and RINL

might require adaptor molecules to interact with RTKs. To

identify further interacting molecules, crystal structures of their

SH2 domains should be performed.

We also found that RINL overexpression promotes the

degradation of EphA8 in an odin-dependent manner (Fig. 4B

and C). Another report showed that overexpressed odin interacts

with EphA8 and protects it from ubiquitination by Cbl, following

degradation stimulated by ephrin-A5 [18]. This report also

showed that odin binds to ubiquitinated EphA8 more strongly

than non-ubiquitinated EphA8 through its SAM domains [18].

We found that Rab5-GEF activity of RINL is not altered by

ephrin-A5 stimulation in HEK293T cells transfected with EphA8-

FLAG (data not shown). Therefore, it is likely that ephrin

stimulation induces the ubiquitinated EphA8-odin complex to

become internalized after its interaction with RINL at the plasma

membrane. Understanding how RINL interacts with odin and

EphA8 after ephrin-A5 stimulation would reveal the precise

molecular mechanism by which EphA8 is degraded.

Materials and Methods

Antibodies and reagents
Monoclonal anti-FLAG (M2), anti-c-myc (9E10), and anti-V5

antibodies were purchased from Sigma. Monoclonal anti-phos-

photyrosine (pY) and anti-actin antibodies were from Millipore.

Monoclonal anti-transferrin receptor and polyclonal anti-HaloTag

antibodies were purchased from Invitrogen and Promega,

respectively. All other reagents were from commercial sources

and of analytical grade. Anti-odin rat monoclonal antibody was

raised against a synthetic peptide corresponding to 14 amino acids

from the C-terminal region of human odin. Anti-RINL rabbit

polyclonal antibody was raised against a recombinant protein

corresponding to 266 amino acids from the N-terminal region of

human RINL.

Construction of expression vectors
pCMV-FLAG-RIN3, Rabex-5, and pCMV-myc-Rab5a, 5b,

5c, 21, 22, and 31 were constructed as described previously [6,7].

RINL mutants lacking GEF activity, pCMV-FLAG-RINL-

D453A/P457A and -Y494A/T497A, were generated by PCR-

mediated mutagenesis. Rab3a, Rab7a, Rab11a, Rab22, and

EphA8 were amplified from a human leukocyte cDNA library.

Various deletion mutants of RINL and odin were amplified using

Figure 2. GEF activity of RINL for Rab5 subfamily proteins. (A–D) HEK293T cells expressing myc-Rab5b (A), Rab21 (B), Rab22 (C), or Rab31 (D)
and FLAG-mock, RINL, RIN3, or Rabex-5 were metabolically radiolabeled with 32Pi for 4 hours. Myc-Rab5 subfamily proteins were immunoprecipitated
with an anti-myc monoclonal antibody, and nucleotides associating with each Rab protein were separated by thin-layer chromatography. The
radioactivity of GTP and GDP was quantified, and the percentages (%) of each GTP-bound Rab are shown. Total lysates (bottom) and
immunoprecipitated samples (middle) from the radiolabeled cells were separated by SDS-PAGE and immunoblotted with anti-FLAG and anti-myc
antibodies, respectively. *p,0.05 vs. mock-transfected cells. (E) Myc-Rab3a, 7a, or 11a was co-transfected with FLAG-mock or RINL into HEK293T cells.
The percentages of each GTP-bound Rab member in the metabolically radiolabeled cells are shown as described in (A). (F) Myc-Rab5b was co-
transfected with wild type (WT), or the DP_AA or YT_AA mutant of FLAG-RINL into HEK293T cells. The percentages of GTP-Rab5b in the metabolically
radiolabeled cells are shown as described in (A). Total lysates (bottom) and immunoprecipitated samples (middle) from the radiolabeled cells were
separated by SDS-PAGE and immunoblotted with anti-FLAG and anti-myc antibodies, respectively. All data were obtained from more than three
independent experiments and are shown as the mean 6 S.E. (error bars). **p,0.01 vs. mock-transfected cells.
doi:10.1371/journal.pone.0030575.g002
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PCR. HaloTag-odin was purchased from the Kazusa DNA

Research Institute.

RNA Interference
RNA interference-mediated RINL knockdown was performed

by transfecting Stealth RNAi siRNA with Lipofectamine RNAi-

MAX (Invitrogen). The targeted sequence of human RINL was

59-GCUGCACAGAAAGGAUCAUCCCAGA- 39. After trans-

fection, cells were cultured for 72 hours. The siRNA-resistant

RINL construct was generated by PCR-mediated mutagenesis

using primers 59-ACCCAAGGGCCCAGGCCAACCT-39 and

59-GGTCTTTCCTATGAAGCGTCCGCCTG-39.

Cell culture and transfection
HEK293T, HeLa, and Neuro2a cells were purchased from the

ATCC and maintained as described previously [6]. Cells were

Figure 3. Identification of odin/Anks1a as an interacting molecule with RINL. (A) HeLa cell lysates were immunoprecipitated with normal
rat IgG or anti-odin antibody, followed by immunoblotting with antibodies as indicated. (B) FLAG-RIN family or FLAG-mock were transfected into
HEK293T cells. Cells lysates were immunoprecipitated with anti-FLAG antibody, followed by immunoblotting with antibodies as indicated. (C) FLAG-
RINL and the indicated deletion mutants of myc-odin were transiently transfected into HEK293T cells. Cells lysates were immunoprecipitated with
anti-myc antibody, followed by immunoblotting with antibodies as shown. (D) The indicated deletion mutants of FLAG-RINL were transiently
transfected into HEK293T cells. Cells lysates were immunoprecipitated with anti-FLAG antibody, followed by immunoblotting with antibodies as
indicated. (E) Myc-odin and V5-RINL were co-transfected with FLAG-tagged constitutively active (CA, lanes 2 and 4) or mock (lanes 1 and 3) into
HEK293T cells. Cell lysates were immunoprecipitated with anti-myc antibody, followed by immunoblotting with antibodies as indicated. Aliquots of
total lysates were also immunoblotted with antibodies as indicated.
doi:10.1371/journal.pone.0030575.g003
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transfected with plasmid constructs using either LipofectAMINE

2000 (Invitrogen) or HEKFectin (Bio-Rad) according to the

manufacturer’s protocols.

Immunoprecipitation and gel filtration analyses
Immunoprecipitation and immunoblot analysis were performed

as described previously [6]. Gel filtration analysis was performed

as described previously [7].

Production of recombinant proteins
Sf9 cells were purchased from the ATCC. FLAG-RINL, RIN3,

and Rabex-5 were purified from baculovirus-infected Sf9 cells with

anti-FLAG M2 agarose beads as described previously [29]. GST-

fused Rab5 (5a, 5b, and 5c), Rab21, Rab22, and Rab31

recombinant proteins were expressed in and purified from the

cytoplasmic fraction of pGEX6P-1-transformed E. coli BL21-

CodonPlus (DE3)-RIL (Stratagene) by glutathione Sepharose 4B

resin (GE Healthcare).

In vitro guanine nucleotide-binding assay
The GTPgammaS-binding assay was performed using the filter

method as described previously [6]. Briefly, GST-Rab5, Rab21,

Rab22, and Rab31 (2.0–3.5 pmol GTPgammaS-binding activity)

were incubated with 1 mM [35S]GTPgammaS (20,000 cpm/pmol)

at 30uC for the indicated times in the presence or absence of

FLAG-RINL, RIN3, or Rabex-5 purified from baculovirus-

infected Sf9 cells.

Radiolabeling of nucleotides associated with the Rab
family in intact cells and identification of nucleotide-
bound forms

HEK293T were transfected with myc-Rab5 subfamily proteins

and FLAG-Rab5-GEF proteins. Guanine nucleotides associated with

myc-Rab5 subfamily were analyzed as described previously [12,24].

Yeast two-hybrid screening
A yeast two-hybrid assay was performed as described previously

[6]. The yeast reporter-strain Hf7c was transformed with pGBT9-

RINL using a lithium acetate-based method and grown in

synthetic medium lacking tryptophan at 30uC for 3 days. The

cells were transformed with the mouse brain MATCHMAKER

cDNA library (Clontech) and plated on synthetic medium lacking

leucine, tryptophan, and histidine at 30uC for 5 days. For

interaction analyses, transformed yeasts were lifted onto filter

papers, lysed in liquid nitrogen, and incubated with 5-bromo-4-

chloro-3-indolyl beta-D-galactopyranoside.

Supporting Information

Figure S1 In vitro GEF activity of the RINL for the Rab5

subfamily. (A–F) The purified GST-Rab5a (A, 3.5 pmol of alive

GTPgammaS-binding activity), Rab5b (B, 2.5 pmol), Rab5c (C,

3 pmol), Rab21 (D, 2 pmol), Rab22 (E, 3 pmol), or Rab31 (F,

2 pmol) was incubated at 30uC with 1 mM [35S]GTPgammaS for

the indicated times in the presence of 8 pmol of FLAG-RINL

(filled squares), Rabex-5 (filled triangles) or FLAG peptide alone

(open circles). The amounts of [35S]GTPgammaS bound to the

Rab5 subfamily are illustrated as the functions of the incubation

times.

(TIF)

Figure S2 RIN2 and RIN3 exhibit GEF activities for Rab22 in

vitro. GST-Rab22 (2 pmol of alive GTPgammaS-binding activity)

was incubated at 30uC with 1 mM [35S]GTPgammaS for the

indicated times in the absence (Rab alone) and presence of 8 pmol

of RIN1 (filled squares), RIN2 (filled diamonds), RIN3 (filled

circles) or FLAG-Rabex-5 (filled triangles). No [35S]GTPgammaS-

binding activity was detected in the fractions of the RIN family or

Rabex-5 (data not shown).

(TIF)

Figure S3 Diagram of the structural features of the odin/

Anks1a. The numbers represent the amino acid residues. cDNA

coding 583–1150 amino acids of odin was identified to interact

with RINL in beta-galactosidase assay by yeast two-hybrid

system.

(TIF)

Figure S4 RINL interacts with odin independent of its GEF

activity. Wild type and point mutants that lost GEF activities

for Rab5 were transiently co-transfected with myc-odin into

HEK293T cells. Cells lysates were immunoprecipitated with anti-

FLAG antibody, followed by immunoblotting with anti-myc and

anti-FLAG antibodies. Aliquots of total lysates were also

immunoblotting with anti-myc antibody.

(TIF)

Figure S5 Diagrams of deletion mutants of RINL and odin. The

numbers represent the amino acid residues.

(TIF)

Figure S6 EphA8 stably expressing in Neuro2A cells is degraded

by the expression of RINL. Neuro2A cells stably expressing

EphA8-HA are transfected with myc-mock, RINL/WT, or

RINL/YT_AA for 24 hours, and total lysates from these cells

were immunoblotted with antibodies as indicated.

(TIF)

Figure 4. RINL forms a ternary complex with odin and EphA8, and RINL affects the degradation of the EphA8 receptor. (A) HEK293T
cells were co-transfected with EphA8-FLAG, HaloTag-odin, and myc-RINL (+) or mock (2) plasmids as indicated, and cell lysates were
immunoprecipitated with anti-myc antibody. Immunoprecipitated fractions and total lysates were immunoblotted with antibodies as indicated. (B
and C) HeLa cells were transfected with EphA8-FLAG and myc-RINL or mock plasmids, and total lysates were immunoblotted with antibodies as
indicated. DSH2; SH2 domain-deleted mutant. The data obtained from three independent experiments are shown (C) as the mean 6 S.E. (error bars).
*, p,0.05 vs. mock-transfected cells. N.S., not significant. (D and E) HEK293T cells were transfected with EphA8-FLAG and myc-RINL or mock plasmids,
and total lysates were immunoblotted with antibodies as indicated. WT; wild type. The data obtained from three independent experiments are
shown (E) as the mean 6 S.E. (error bars). *, p,0.05 vs. mock-transfected cells. (F and G) HeLa cells were transfected with 30 pmol scrambled negative
control (NC) or RINL-specific siRNA. 24 hours after the transfection, these cells were transfected with EphA8-FLAG and siRNA-resistant FLAG-RINL, and
incubated for 48 hours. Total proteins from the cell lysates were subjected to SDS-PAGE and immunoblotted (IB) with antibodies as indicated. The
data obtained from three independent experiments are shown (G) as the mean 6 S.E. (error bars). **, p,0.01 vs. NC-transfected cells. *, p,0.05 vs.
siRNA-transfected cells with FLAG-mock plasmid transfection. (H and I) HeLa cells were transfected with EphA8-FLAG and FLAG-RINL (+, lanes 2–5) or
mock plasmids (2, lane 1), and total lysates were immunoblotted with antibodies as indicated. These cells were non-treated (NT, lanes 1 and 2), or
treated with MG132 (20 mM, lane 3), leupeptin (100 mg/ml, lane 4), or bafilomycin (200 nM, lane 5) for 3 hours. Total lysates were immunoblotted
with antibodies as indicated. The data obtained from three independent experiments are shown (I) as the mean 6 S.E. (error bars). **, p,0.01 vs.
mock-transfected cells. *, p,0.05 vs. non-treatment cells transfected with RINL.
doi:10.1371/journal.pone.0030575.g004
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