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Abstract: This retrospective single-center study included patients diagnosed with epithelial ovarian
cancer (EOC) using preoperative pelvic magnetic resonance imaging (MRI). The apparent diffusion
coefficient (ADC) of the axial MRI maps that included the largest solid portion of the ovarian mass
was analysed. The mean ADC values (ADCmean) were derived from the regions of interest (ROIs) of
each largest solid portion. Logistic regression and three types of machine learning (ML) applications
were used to analyse the ADCs and clinical factors. Of the 200 patients, 103 had high-grade serous
ovarian cancer (HGSOC), and 97 had non-HGSOC (endometrioid carcinoma, clear cell carcinoma,
mucinous carcinoma, and low-grade serous ovarian cancer). The median ADCmean of patients with
HGSOC was significantly lower than that of patients without HGSOCs. Low ADCmean and CA 19-9
levels were independent predictors for HGSOC over non-HGSOC. Compared to stage I disease,
stage III disease was associated with HGSOC. Gradient boosting machine and extreme gradient
boosting machine showed the highest accuracy in distinguishing between the histological findings of
HGSOC versus non-HGSOC and between the five histological types of EOC. In conclusion, ADCmean,
disease stage at diagnosis, and CA 19-9 level were significant factors for differentiating between EOC
histological types.

Keywords: ovarian epithelial cancer; magnetic resonance imaging; apparent diffusion coefficient;
machine learning

1. Introduction

Ovarian cancer is the eighth most common cancer in women, with 313,959 new
diagnoses worldwide in 2020 [1]. High-grade serous ovarian cancer (HGSOC) accounts
for up to 80% of epithelial ovarian carcinomas (EOCs) [1–3]. HGSOCs are found at more
advanced stages with multiple metastases and are characterised by P53 mutations with
frequent genomic instability due to defects in the pathways contributing to DNA repair [4,5].
On the other hand, in non-HGSOC, mucinous carcinoma cancer is frequently diagnosed at
an early stage [6]. However, mucinous carcinoma is more difficult to surgically excise in
advanced ovarian cancer than other histologic types of epithelial ovarian cancer [7,8]. Clear-
cell and mucinous carcinomas are characterised by resistance to carboplatin and paclitaxel
chemotherapy [9–11]. Therefore, the preoperative prediction of histological types could be
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useful when counselling patients regarding fertility-sparing surgery, extent of cytoreductive
surgery, decision to undergo neoadjuvant chemotherapy, and survival outcomes.

Magnetic resonance imaging (MRI), which is the preferred imaging modality for
ovarian cancer owing to its ability to provide high contrast for the visualisation of soft
tissues, has been utilised for the differential diagnosis of HGSOC [12]. HGSOC generally
presents as a smaller ovarian mass, with more nodules frequently seeding the peritoneum
and more frequent solid cystic tumours than non-HGSOC [13]. However, morphological
interpretations are not sufficiently accurate to differentiate between the different histological
types of EOC. This is attributed to the very similar morphological characteristics of the
EOC types. Diffusion-weighted imaging (DWI) is a unique MRI technique based on
the impedance of water diffusivity [14]. It has improved the accuracy of detection and
characterisation of malignant tumours in gynaecologic cancer [15]. A quantitative metric,
the apparent diffusion coefficient (ADC), was assessed using DWI. The ADC is helpful
in evaluating whether a tumour is malignant and allows prognostic assessment of the
tumour [14,16–18].

Machine learning (ML) was recently introduced to assist in providing an accurate
analysis of clinical findings and making treatment decisions [19,20]. Furthermore, the use
of ML has been expanded to include assistance in the detection of abnormal lesions or
analysis of the characteristics of various images [21]. In this study of patients with EOC,
we used ML to perform a preoperative analysis of the impedance imaging characteristics
of MR images and the clinical factors of patients to predict the histological types of EOCs.

2. Methods
2.1. Study Participants and Clinical Findings

This retrospective, single-centre study included patients who underwent preoperative
pelvic MRI between January 2009 and December 2020 and received a final histopathological
diagnosis of EOC from the excised specimen. Patients who were diagnosed with concomi-
tant primary cancers, whose MRIs were not applicable for DWI and ADC mapping, or
who did not have a measurable ovarian mass suitable for a confirmatory diagnosis were
excluded (Figure 1). The following data were retrospectively obtained for analysis: clinical
factors such as patient age, levels of tumour markers (CA 125, CA 19-9); MRI findings that
included the mean ADC value of the solid portion, International Federation of Gynecology
and Obstetrics (FIGO) stage at diagnosis, and histological features of the excised specimen.

Figure 1. Flowchart for including patients in the study. EOC, epithelial ovarian cancer; DWI,
diffusion-weighted imaging; HGSOC, high-grade serous ovarian cancer; MC, mucinous carcinoma;
EC, endometrioid cancer; CCC, clear-cell carcinoma; LGSOC, low-grade serous ovarian cancer.

2.2. MRI Protocol and Interpretation

MR images were obtained using 3.0 T MRI systems (Verio, Siemens Healthcare, Er-
langen, Germany; Vida, Siemens Healthcare, Erlangen, Germany). Conventional pelvic
MRI included T2-weighted half-Fourier single-shot turbo spin echo, T2-weighted turbo
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spin echo, T1-weighted turbo spin echo, and contrast-enhanced T1-weighted turbo spin
echo images. DWIs with b-values of 0 and 800 s/mm2 were obtained, and ADC maps were
constructed from these DWIs.

A gynaecologist with six years of experience in gynaecology and a radiologist with
seven years of experience in gynaecological MRI reviewed the pelvic MRIs. All reviewers
were blinded to the histological findings. After reviewing the entire sequence of each
patient’s MRI scan, the largest axial ADC map of the solid portion of the ovarian cancer was
selected to delineate the region of interest (ROI). The ROI in the selected solid portion was
manually drawn using the picture archiving and communication system (PACS) (Figure 2).
The ADCmean value of each solid portion was derived from the ROI in the PACS. An ROI
encompassing the entire ovarian lesion was drawn on the same axial image. First, the
ROIs of the solid portion and the entire ovarian mass were independently drawn by a
gynaecologist and radiologist. The final ROIs were then selected after a consensus meeting
by the two reviewers. The two reviewers together then measured the longest diameters of
the entire ovarian mass and the solid portion, identified the location of the ovarian lesion,
and assessed the presence of radiologic peritoneal seeding.

Figure 2. Method for drawing ROI in the solid portion and total ovarian lesion on the MRI of a
65-year-old woman with HGSOC (stage: IIIC), (a) the ovarian mass with solid portion on axial
T2WI (b) the ovarian mass with solid portion on axial contrast-enhance T1WI, (c) focal increased
signal intensity in the solid component of the mass on DWI (b = 1000 s/mm2), (d) hypointense
solid component on axial ADC map (the mean ADC value is 0.878 × 10−3 s/m2 blue line: total
ovarian lesion, pink line: solid portion). ROI: region of interest, MRI: magnetic resonance imaging,
HGSOC: high-grade serous ovarian cancer, T2WI: T2-weighted image, T1WI: T1-weighted image,
ADC: apparent diffusion coefficient.
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2.3. Statistical Analysis

The clinical and radiological features of patients with HGSOC and patients with non-
HGSOC were compared using the Mann–Whitney U test for nonparametric continuous
variables and the chi-squared test for categorical variables. Statistical significance was set
at p < 0.05.

The Kruskal–Wallis test was then performed to assess the differences between the
parameters of patients with HGSOC, clear-cell carcinoma (CCC), mucinous carcinoma
(MC), endometrioid carcinoma (EC), and low-grade serous ovarian carcinoma (LGSOC).
The Mann–Whitney U test and Bonferroni’s method were used for post-hoc analysis of the
groups of patients stratified by specific tumours to identify significant differences. A logistic
regression model was used to compare patients with HGSOC to those with non-HGSOC
to evaluate the predictability of the patients’ MRI findings and their clinical features for
histological types of EOC. Differences between factors that were found to be statistically
significant by the Mann–Whitney U test were evaluated using logistic regression analysis.

A receiver operating characteristic (ROC) curve was generated for patients with
HGSOC versus those without HGSOC. The optimal cut-off value, sensitivity, specificity,
positive predictive value, and negative predictive value were determined at the point at
which the Youden index (sensitivity + specificity −1) was maximal. The area under the
curve (AUC) was calculated as follows: the reliability of the ADCmean values between gy-
naecologists and radiologists was evaluated using the intraclass correlation coefficient (ICC).
SPSS software (version 24; SPSS Inc., Chicago, IL, USA) was used for statistical analysis.

Random forest, gradient boosting machines (GBMs), and extreme gradient boosting
(XGBoost) are machine learning (ML) tools used in this study. The algorithms were chosen
after initial experiments using the AutoML method, through which a wide range of models
were automatically selected, trained, and tuned. The hyperparameters were tuned using
the grid search method over tuneable hyperparameters for each algorithm. To calculate
representative performance metrics for each model, five trainings, each using 5-fold cross-
validation, were performed. Variable importance was extracted, and heatmaps were
constructed to compare the effects of each variable on the outcomes of the different types of
models. All machine learning procedures were performed in Python and using the H2O.ai
API. The mean value of the 5-fold cross validation of the gradient boosting machine tool
was used to generate ROC curves. The accuracy was derived from the ratio of the number
of correct predictions to the total number of input samples.

3. Results
3.1. Clinical Factors of the Study Population

Of the 200 enrolled study patients, 103 had high-grade serous ovarian cancer (HGSOC,
n = 103) and 97 had non-HGSOC, consisting of CCC (n = 35), MC (n = 33), EC (n = 21),
and LGSOC (n = 8). Borderline ovarian tumours (BOTs) were excluded from the original
analysis since five of 12 (41.7%) patients with borderline tumours had no measurable solid
portion on preoperative MRI. The median age of the patients in the HGSOC group was
significantly higher than that of the patients in the non-HGSOC group (median age: 55 years
vs. 50 years, respectively; p < 0.001). Most patients with HGSOC had stage III disease at the
time of diagnosis (n = 58, 56.3%) and most patients with non-HGSOC had stage I disease
at the time of diagnosis (n = 65, 67.0%, p < 0.001). The level of CA 125 and prevalence
of peritoneal seeding were significantly higher in patients with HGSOC than in those
without HGSOC (median CA 125: 671.8 IU/mL vs. 58.8 IU/mL, respectively; p < 0.001).
The CA 19-9 and the diameter of the entire ovarian lesion were lower in patients with
HGSOC than in those without HGSOC. The median value of the ADCmean was lower in the
patients with HGSOC than in the patients with non-HGSOC (median value of ADCmean:
1.05 × 10−3 s/m2 vs. 1.53 ×10−3 s/m2, respectively; p < 0.001) (Table 1).
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Table 1. Characteristics of the study population (n = 200).

HGSOC Non-HGSOC
(n = 103) (n = 97) p Value

Age at diagnosis (years) 55 (47,61) 1 50 (41,60) 1 <0.001

Overall survival (months) 47 (13.5,83) 1 39 (17,76) 1 0.552

Stage 3 (2,3) 1 1 (1,2) 1 <0.001
I 10 (9.7%) 65 (67.0%)
II 16 (15.5%) 16 (16.5%)
III 58 (56.3%) 15 (15.5%)
IV 19 (18.5) 0 (0%)

CA 125 (IU/mL) 671.8 (154,2140) 1 58.8 (11.9,199) 1 <0.001

≤ 35 8 (7.8%) 38 (39.2%)

>35 93 (90.3%) 47 (48.5%)

CA 19-9 (IU/mL) 8.4 (5.0,17.2) 1 32 (11.5,94.2) 1 <0.001

≤ 37 74 (71.8%) 37 (38.0%)

>37 7 (6.8%) 30 (30.9%)

ADCmean (×10−3 s/m2) 1.05 (0.93,1.15) 1 1.53 (1.27,1.76) 1 <0.001

Total diameter (cm) 7.8 (5.8,9.5) 1 11 (8.1,13.2) 1 <0.001

Ratio (solid/total cyst, area) 0.46 (0.21,0.67) 1 0.31 (0.095,0.525) 1 0.001

Location of ovarian lesion <0.001
Both 42 (41%) 12 (12%)
Right 32 (31%) 49 (51%)
Left 29 (28%) 36 (37%)

Peritoneal seeding <0.001
Present 66 (64%) 24 (25%)
Absent 37 (34%) 73 (75%)

1 Median (25th percentile, 75th percentile), HGSOC: high-grade serous ovarian cancer, ADCmean: mean value of
the apparent diffusion coefficient.

3.2. ADCmean Values and Proportions of the Solid Portion in Each Histological Type of EOC

The median value of the ADCmean was significantly lower for the patients with HGSOC,
at 1.05 × 10−3 s/m2, compared with the values for the other histological types (CCC, MC,
and EC) (respective median values of the ADCmean of CCC, MC, and EC = 1.62 × 10−3 s/m2,
1.60 × 10−3 s/m2, and 1.27 × 10−3 s/m2; all p < 0.001). However, the median value
of the ADCmean of patients with HGSOC was lower than that of patients with LGSOC
(1.36 × 10−3 s/m2), but the difference was not significant. Additionally, among patients
with non-HGSOC, the ADCmean value of patients with EC was the lowest and increased in
the order of LGSOC, MC, and CCC. The only significant difference was noted between EC
and MC (p < 0.001) (Figure 3).

Regarding the ratios of the area of the solid portion to the total area of ovarian lesions
as assessed from the ROIs, the ratio of the area of the solid portion to the total area of
ovarian lesions was significantly higher in patients with HGSOC than in those with non-
HGSOC (0.49 vs. 0.31, respectively; p = 0.001). Among the five histological types of EOC,
the ratio of the solid portion to the total ovarian lesion was significantly higher in patients
with HGSOC than in those with MC (0.49 vs. 0.17, respectively; p < 0.001). In addition, EC
had the highest ratio of the area of the solid portion to the total area of ovarian lesions, and
the ratios of CCC, LGSOC, and MC decreased in non-HGSOC; however, the difference was
not significant (Figure 3).
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Figure 3. ADCmean and the ratios of the area of the solid portion to the total area of ovarian lesions
by histological types of EOC. (a) ADCmean between HGSOC and non-HGSOC, (b) ADCmean among
5 histological types of EOC, (c) the ratio of area of solid portion to total ovarian lesion between HGSOC
and non-HGSOC, (d) the ratio of area of solid portion to total ovarian lesion among 5 histological
types of EOC. * p < 0.001; ** p = 0.001; EOC: epithelial ovarian cancer, HGSOC: high-grade serous
ovarian cancer, EC: endometrioid cancer, CCC: clear-cell carcinoma, LGSOC: low-grade serous
ovarian cancer, MC: mucinous carcinoma.

3.3. Subanalysis for Stage I EOC Including BOT

ADCmean, CA 19-9, and age at diagnosis were noted to be significantly different
between HGSOC and non-HGSOC by univariate analysis (p = 0.19, 0.21, and 0.36, respec-
tively). Among the five histological types of EOC, ADCmean, CA 19-9, and the ratio of the
area of the solid portion to the total area of the ovarian lesions were statistically significant
factors. However, ADCmean was a significant factor only between EC and MC (p = 0.009),
and the ratio of the area of the solid portion to the total area of the ovarian lesions was
statistically significant between CCC and LGSOC (p < 0.001) in post-hoc analysis. In the
confined early stage, a difference among non-HGSOC patients was not clearly observed.
However, the ADCmean and ratio of the area of the solid portion to the total area of ovarian
lesions had significant roles in distinguishing each histological type of stage I EOC, similar
to the ADCmean of all stages of EOC (Table S1, Figure S1).

3.4. Logistic Regression Analysis

Logistic regression analysis was conducted between HGSOC and non-HGSOC. The
only factors that were statistically significant in the univariate analysis were included in the
logistic regression. After completing the analysis, the age at diagnosis, ADCmean, CA 19-9,
and stage were selected as meaningful variables in the calculated odds ratio and p-value.
Lower ADCmean values and CA 19-9 levels were independent predictors significantly
related to HGSOC (odds ratios: 0.996 and 0.973, p = 0.001, 0.021, respectively). Compared
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to stage I disease, stage III disease was significantly associated with HGSOC (odds ratio:
5.98, p = 0.007) (Table 2). The AUCs of the mean ADC value and the CA 19-9 level were 0.87
and 0.77, respectively. The ADCmean value showed the highest AUC by logistic regression
analysis, and detailed findings showed that the cut-off value was 1.26 × 10−3 s/m2, with
sensitivity and specificity as 0.85 and 0.77, respectively, and a positive predictive value and
negative predictive value of 0.79 and 0.83, respectively (Figure 4).

Table 2. Multivariate logistic regression of HGSOC.

Odd Ratio p Value 95% Confidential
Interval [CI]

Age at diagnosis 1.048 0.063 [0.998, 1.102]

ADCmean
(×10−3 s/m2) 0.996 0.001 [0.994, 0.998]

CA 19-9 (IU/mL) 0.973 0.021 [0.951, 0.996]

Stage
I (reference)

II 4.16 0.058 [0.954, 18.155]
III 5.98 0.007 [1.626, 21.965]
IV 1.63 × 109 0.98 [0.000]

Reference group: non-high-grade serous ovarian cancer, Nagelkerke R2 n = 0.732, p < 0.001; HGSOC: high-grade
serous ovarian cancer, ADCmean: mean value of apparent diffusion coefficient.

Figure 4. Comparison ROC curve between GBM and logistic regression for ADCmean. GBM: Gra-
dient boosting model, ROC: receiver operating characteristic, ADCmean: mean value of apparent
diffusion coefficient.

The AUCs of the ADCmean value and the GBM were 0.87 and 0.93, respectively. The
mean value of the five-fold cross-validation of the GBM tool was used to generate the ROC
curves. ROC, receiver operating characteristic; GBM, gradient boosting machine; ADCmean,
mean value of the apparent diffusion coefficient.

3.5. Machine Learning Analysis

GBM was the most accurate among the three types of ML tools that evaluated the MRI
parameters and clinical features of patients with HGSOC and non-HGSOC (accuracy: 0.91,
AUC: 0.93, area under the precision recall curve: 0.91) (Figure 4). For the five histological
types of EOC, XGBoost showed the highest accuracy among the three ML tools (accuracy,
0.68; AUC, 0.83; AUCPR, 0.64) (Table 3). Among patients with HGSOC versus non-HGSOC,
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the ADCmean and FIGO stages at diagnosis were 34.9% and 25.5%, respectively. Among
the five histological types of EOC, the ADCmean value and CA 19-9 level were 24.5% and
12.2%, respectively (Figure 5).

Table 3. Performance metrics of the highest-accuracy machine learning models.

Model Accuracy AUC AUCPR

RF + (HGSOC), (EC), (CC), (LGSOC), (MC) 0.65 0.82 0.63
RF + (HGSOC), (non-HGSOC) 0.89 0.91 0.9
XGBoost + (HGSOC), (EC), (CC), (LGSOC), (MC) 0.68 0.83 0.64
XGBoost + (HGSOC), (non-HGSOC) 0.9 0.92 0.91
GBM + (HGSOC), (EC), (CC), (LGSOC), (MC) 0.67 0.8 0.61
GBM + (HGSOC), (non-HGSOC) 0.91 0.93 0.91

RF: random forest, GBM: gradient boosting machine, XGBoost: extreme gradient boosting machine, AUC:
area under the curve, AUCPR: area under the precision recall curve, HGSOC: high-grade serous ovarian
cancer, EC: endometrioid cancer, CCC: clear-cell carcinoma, LGSOC: low-grade serous ovarian cancer, MC:
mucinous carcinoma.

Figure 5. Variable importance by percentage in predicting the outcome. (A) Between HGSOC and
non-HGSOC, (B) among 5 histological types of EOC (HGSOC, EC, CCC, LGSOC, MC). ADCmean:
mean value of apparent diffusion coefficient, EOC: epithelial ovarian cancer, HGSOC: high-grade
serous ovarian cancer, EC: endometrioid cancer, CCC: clear-cell carcinoma, LGSOC: low-grade serous
ovarian cancer, MC: mucinous carcinoma.

4. Discussion

This study demonstrated that the ADCmean values of the solid components were
significantly correlated with the histological types of EOC, not only for HGSOCs and non-
HGSOCs, but also for the five histological types of EOC (HGSOC, EC, CCC, MC, LGSOC).
In previous studies, the morphological characteristics of MR images, tumour markers,
signal intensity of DWI, and ADC values were studied to determine correlations with the
histological types of EOC [22,23]. Pi et al. conducted a meta-analysis on ADC values in the
solid portion of tumours and reported excellent diagnostic performance for the ADC value
in distinguishing between benign ovarian tumours and malignant ovarian tumours (AUC
0.96, sensitivity 0.91, specificity 0.91) [22]. Tanaka et al. found that bilateral disease, small
tumours, and increased signal intensity on DWI were representative of serous carcinomas,
while multilocular cysts and increased CA 19-9 levels were representative of mucinous
tumours [23]. Zhang et al. found that an increased mean ADC value was more likely to
suggest type I EOC (odds ratio (OR) = 16.80, p < 0.01); however, the study was limited by
selection bias, as patients with borderline epithelial tumours comprised 51% of the study
patients with type I ovarian cancer [24]. Therefore, to the best of our knowledge, ours is
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the first study to evaluate the correlations between five histological types of EOC, and
we believe that the ADC findings correlated with the histology of EOCs are an important
contribution to the findings of previous studies.

Among the five histological types of EOCs present in our study, HGSOCs exhibited
the lowest mean ADC values. This finding can be attributed to the high cellularity of the
HGSOCs. A typical characteristic of HGSOC is its compact structure, which consists of
a solid mass of cells with marked nuclear atypia [25]. Since ECs have a similar structure,
showing a solid mass of cells, immunohistochemical analysis is crucial for differentiating
between the two types of EOC. Our results showed that HGSOC exhibited denser cellu-
larity than EC did [22,24,26,27]. In contrast, the lower cellularity of MC was found to be
accompanied by an abundant mucinous component, which resulted in a higher mean ADC
value than HGSOC [28].

The relationship between the mean ADC value and cellularity in ECs or CCCs is
controversial. Tanaka et al. reported that CCC had a higher proportion of solid components
than EC. On the contrary, we found that CCC had a lower proportion of solid components
than EC, similar to the results of Ono et al. [23,29]. According to the World Health Orga-
nization, CCC is histologically defined as a neoplasm composed of clear cells growing in
a solid, tubular, or papillary pattern, with hobnail cells lining the tubules and cysts [30].
However, correct histopathological diagnosis can be challenging due to the rarity of CCCs,
which have a wide range of histological features [31]. This histological diversity can be
used to derive the difference in the mean ADC values for CCC.

The ratio of the area of the solid portion to the total area of ovarian lesions also differed
between the histological types of EOC. The ratio was noted to be significantly different
between HGSOC and non-HGSOC, HGSOC, and MC. This result was the same as the
result of a previous study that showed that HGSOC had a higher proportion of solid
lesions than MC [23]. However, this factor was not useful for distinguishing between each
histological type of EOC using logistic regression analysis. ML tools also did not find
that the proportion of solid HGSOC was of significant importance (Figure 5). Only a few
studies on the ratio of the area of the solid portion to the total area of ovarian lesions have
been performed to distinguish between borderline epithelial tumours and EOC, primary
fallopian cancer and EOC, or different types of metastatic ovarian cancer [32–34]. Therefore,
further studies are needed to determine the ratios of the areas of the solid portion to the
total area of ovarian lesions.

Compared with patients with HGSOC, those without HGSOC were diagnosed at an
early stage. Approximately 60% of CCC or EC cases and 80% of MCs are discovered and
histologically diagnosed at stage I [35–37]. The therapeutic strategy for non-HGSOC in the
early stage was more diverse than that for HGSOC. MC or LGSOC were eligible for fertility-
sparing surgery [36], even though early-stage patients diagnosed with CCC may not be
indicated for fertility-sparing treatment [10,37]. In addition, systematic lymphadenectomy
was controversial in early EOC since systematic lymphadenectomy was increased to detect
metastatic lesions but was not associated with improved progression-free survival or
OS [35]. Therefore, preoperative histology of EOC is helpful in deciding the treatment
option. ADCmean, the ratio of the area of the solid portion to the total area of ovarian lesions,
and CA 19-9 were related to different non-HGSOC histological types. Considering this, the
result of this study is a cornerstone for preoperative histological evaluation. A multicentre
study in only stage I EOC will be necessary to obtain a more precise result.

The importance of the ADCmean values, which were obtained through manually drawn
ROIs, other MRI characteristics, and clinical findings, was analysed in this study using ML
algorithms. A preliminary evaluation used auto ML to select three types of ML. Compared
to the conventional logistic regression analysis performed for HGSOC and non-HGSOC,
ML provided more accurate results for the accuracy, AUC, and AUCPR values. AUCPR, a
useful method for evaluating groups with imbalanced outcomes, was also calculated in
this study [38].
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Among the patients with HGSOC and non-HGSOC, GBM showed the highest accuracy
(0.91), with an AUC of 0.93 and an AUCPR of 0.91. These results were better than those of
the conventional logistic regression model of mean ADC value (Figure 4) and similar to
those of Qian et al., derived from mixed radiomics models for type I/II EOCs (AUC = 0.96,
95% CI = 0.92–1) [39]. For the five histological types of EOC, the XGBoost ML tool provided
the highest accuracy (0.68), with an AUC of 0.83 and AUCPR of 0.64. The XGBoost tool
provided a scalable ML system for tree boosting, which is able to solve real-world scaling
problems while using a minimal amount of resources [40]. The XGBoost model confirmed
the possibility of classifying EOC into five histological types, a result that could not be
obtained in previous studies.

Deep learning, a subset of ML, has recently been introduced to extract features from
MR images without manually drawing the ROI on an image of the tumour. Although the
process is time-consuming, this method provides excellent accuracy [41]. Regarding the
accuracy (0.68) for distinguishing between the five histological types of EOC in our study,
radiomics combined with the use of deep learning might lead to an improvement in the
accuracy of distinguishing between the five histological types of EOC.

Through ML analysis, the ADCmean value was found to be the strongest factor distin-
guishing between the five histological types of EOC. The percentage importance allowed
the identification of the most essential predictor of outcome (importance of ADCmean value:
34.9%; Figure 5). Along with the disease stage at diagnosis, the CA 19-9 level was also
meaningful in distinguishing between the five histological types of EOC. Several reports
concluded that the CA 19-9 level was predictive only for MC [42,43]. Compared with
previous studies, our study expanded on the role of CA 19-9.

Our study was limited in that it was a retrospective, single-centre study. Therefore,
there is a possibility of missing clinical data, which may have resulted in bias. Second, only
a five-fold validation was performed, instead of external validation. Third, we analysed
the impact of the ADCmean value in consensus and not the independent ADCmean value of
each reviewer. However, it was found that the ICC between the two reviewers (0.966) was
excellent. Fourth, we believe that a larger population will be necessary to incorporate MRI
ADC uniformly to advanced stage. Lastly, borderline tumours were not included in this
study due to the high percentage (5 of 12, 41.7%) in the non-measurable solid portion on
preoperative MRI.

This study has several strengths. First, it was relatively large compared to previous
studies. More histological types of EOC were included, which allowed the differentiation
of the five histological types of EOC. Second, ML, which is more accurate than conventional
analysis, was applied to compensate for several limitations and evaluate the data in this
study. Third, the importance of each factor in distinguishing between histological types
of EOC was calculated. The ADCmean value, disease stage at diagnosis, and CA 19-9 level
were meaningful factors for distinguishing between the histological types of EOC. These
results formed the basis for creating a predictive computer program to distinguish between
the histological types of EOC.

5. Conclusions

This study showed that the ADCmean value, disease stage at diagnosis, and CA 19-9
level were meaningful factors for distinguishing between the histological types of EOC.
Moreover, we also found that ML identified the ADCmean value as predictive of histological
types and that ML was superior to conventional logistic regression analysis. Preoperative
MRI is mandatory for patients with ovarian cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11010229/s1, Figure S1: ADCmean and the ratios of the area
of the solid portion to the total area of ovarian. Lesions according to histological types of stage IEOC
including BOT (n = 82); Table S1: Characteristics of study population for stage IEOC including BOT
(n = 82).
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