

Review Tolerability on Serious Adverse Events of First-Line Bevacizumab and Cetuximab for RAS Wild-Type Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis

Yu Na Han ^{1,†}, Yeo Jin Choi ^{2,†} and Sandy Jeong Rhie ^{1,3,*}

- ¹ Graduate School of Converging Clinical & Public Health, Ewha Womans University, Seoul 03760, Korea; yuna2234@hanmail.net
- ² Graduate School of Clinical Pharmacy, CHA University, Seongnam 13488, Korea; yjchoi@cha.ac.kr
- ³ College of Pharmacy, Graduated School of Pharmaceutical Sciences, Ewha Womans University,
 - Seoul 03760, Korea
 * Correspondence: sandy.rhie@ewha.ac.kr; Tel.: +82-2-3277-3023
 - + Co-first authors; These authors contributed equally to this work.

Abstract: Proper medication management is crucial in metastatic colorectal cancer because of its substantially low survival rate. There has been advancing evidence on the efficacy of the two most prescribed targeted agents (bevacizumab and cetuximab); however, comprehensive analyses on their safety are limited. This study aims to comprehensively assess the clinical safety of first-line bevacizumab and cetuximab-based chemotherapy in unresectable RAS wild-type metastatic colorectal cancer patients and to provide guidance on the selection of appropriate targeted therapeutic agents. Keyword searches of MEDLINE, Cochrane Library, and ClinicalKey were conducted per PRISMA guidelines. We performed pooled analysis on safety outcomes from six studies which administered FOLFOX (5-fluorouracil, leucovorin, and oxaliplatin) or FOLFIRI (5-fluorouracil, leucovorin, irinotecan) as backbone chemotherapy. Thirty different adverse events from six categories were compared. First-line bevacizumab-based chemotherapy substantially lowered the risks of adverse events related to the dermatological (RR 0.24, 95% CI: 0.11–0.53, *p* < 0.00001) and renal systems (RR 0.57, 95% CI: 0.37-0.86, p = 0.007), while significantly increasing the incidence of cardiovascular adverse events (RR 4.65, 95% CI: 1.83–11.78, p = 0.001). Thus, first-line cetuximab-based chemotherapy increases patient susceptibility to dermatological and renal adverse events, especially with rash and electrolyte disorders, whereas bevacizumab-based chemotherapy increases cardiovascular risks such as hypertension and arrhythmia.

Keywords: adverse events; bevacizumab; cetuximab; metastatic colorectal cancer; medication safety

1. Introduction

Colorectal cancer (CRC) is the third most common cause of cancer-related mortality worldwide, accounting for more than 850,000 deaths per year [1]. The average 5-year survival rate in CRC patients is 63%; however, the 5-year survival rate is substantially lower, less than 20%, in patients initially diagnosed with metastatic colorectal cancer (mCRC), which accounts for 20% of new CRC diagnoses [1]. Moreover, about 25% of patients diagnosed with localized CRC are at elevated risk for metastatic progression in the later course of the disease. In Korea, approximately 15–25% of the patients show synchronous metastases and 30–40% of them have unresectable liver metastasis [2]. Ultimately, 50–60% of patients present with mCRC, including recurrent metachronous CRC [3]. The treatment modalities for mCRC include surgical resection and medication management, involving chemotherapy, targeted therapy, and immunotherapy; however, mCRC is often unresectable, especially with high cancer stage or the involvement of major organs and remote lymph nodes [3].

Citation: Han, Y.N.; Choi, Y.J.; Rhie, S.J. Tolerability on Serious Adverse Events of First-Line Bevacizumab and Cetuximab for RAS Wild-Type Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis. *Healthcare* 2022, 10, 217. https://doi.org/10.3390/ healthcare10020217

Academic Editor: Joaquim Carreras

Received: 15 December 2021 Accepted: 21 January 2022 Published: 23 January 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

For mCRC patients without rat sarcoma viral oncogene homolog (RAS) mutation, chemotherapy with targeted therapeutic agent is usually reserved as first-line therapy for unresectable mCRC patients [3]. The current National Comprehensive Cancer Network (NCCN) guideline recommends two different classes of targeted therapeutic agents with backbone chemotherapy including FOLFOX (5-fluorouracil, leucovorin, and oxaliplatin), FOLFIRI (5-fluorouracil, leucovorin, and irinotecan), CAPEOX (capecitabine and oxaliplatin) and FOLFOXIRI (5-fluorauracil, leucovorin, oxaliplatin, and irinotecan) in mCRC patients: vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) inhibitors. Bevacizumab, a recombinant humanized VEGF antibody, inhibits tumor angiogenesis, whereas EGFR inhibitors, such as cetuximab and panitumumab, block tumor cell proliferation [3,4]. Currently, bevacizumab is the most commonly prescribed first-line targeted therapeutic agent in patients with unresectable synchronous mCRC as part of conversion therapy [3]. EGFR inhibitors, on the other hand, are only recommended in patients with RAS wild-type left-sided mCRC, as EGFR antibodies only elicit responses in patients with RAS wild-type mCRC, implying that genetic variability is significantly associated with patient outcomes [3]. Previous studies demonstrated superior efficacy of cetuximab over bevacizumab [4,5]; however, comprehensive comparative analysis on tolerability, especially on serious adverse events (SAEs) in patients receiving cetuximab or bevacizumab is still lacking despite markedly increased the risk of adverse events (AEs) with concomitant administration of chemotherapy such as 5-fluorouracil, leucovorin, irinotecan, or oxaliplatin [6]. In general, the choice of first-line treatment should be influenced by the tolerability of the medication as well as the patient's characteristic and efficacy outcomes [6]. Thus, the purpose of the study is to assess tolerability, in terms of comprehensive systemic SAE profiles, of bevacizumab and cetuximab, and to provide guidance on the selection of appropriate targeted therapeutic agents in patients with RAS wild-type tumors.

2. Materials and Methods

2.1. Data Sources and Search Strategy

This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [7]. We searched MEDLINE (PubMed), the Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalKey without year and language restrictions. The initial database search involved a combination of keywords and Medical Subject Headings (MeSH): 'colon cancer,' 'colorectal cancer,' 'bevacizumab,' 'cetuximab,' and 'metastatic cancer' in the title/abstract. The last search was conducted in March 2021. We manually searched the references of eligible review articles to identify additional studies for meta-analysis.

2.2. Study Selection and Data Extraction

Two reviewers independently screened the titles and abstracts of all studies identified in the initial database searches to verify eligibility. Disagreements on study eligibility were further discussed, and any disagreements not meeting consensus were resolved by the third researcher. We extracted the following information from eligible studies: study characteristics (name of the first author, year of publication, study periods, study design, clinical study phase, if applicable, and study region), study population (inclusion criteria for the study and number of patients assigned to each treatment arm), study interventions and comparators (medication names, dosages, types of backbone chemotherapy), and safety outcomes. The safety outcomes included any AEs classified as grades 3 (severe AEs) or 4 (life-threatening or disabling AEs) per common terminology criteria for Adverse Events (CTCAE) version 5.0 [8], and we classified each AE according to the affected physiological systems, such as hematological, dermatological, gastrointestinal (GI), neurological, cardiovascular (CV), and renal systems. Duplicated studies, commentaries, editorials, case reports, clinical trial protocols, review articles, and studies written in languages other than English were excluded. Additionally, any study for which the full text was unavailable was excluded from the analysis. The PICOS (patient, intervention, comparator, outcomes, study design) summary is described in Table 1.

Table 1. PICOS of the study.

Component	Definition
P (patients)	Patients diagnosed with RAS wild-type metastatic CRC who were administered the intervention or the comparator as first-line treatments
I (intervention)	Bevacizumab + chemotherapy
C (comparator)	Cetuximab + chemotherapy
O (outcomes)	 SAEs (GRADE 3-4): Hematological SAEs: neutropenia, febrile neutropenia, anemia, thrombocytopenia, hematological toxicity, thrombosis/thromboembolism, infection, and hemorrhage Dermatological SAEs: mucositis, rash, paronychia, and HFS GI AEs: nausea, vomiting, diarrhea, GI perforation, liver toxicity, constipation, ileus, and subileus CV SAEs: hypertension and arrhythmia Neurological SAEs: peripheral neuropathy and fatigue Renal SAEs: proteinuria, dehydration, edema, and electrolyte disorders
S (study design)	RCTs and observational studies

Abbreviations: CRC, colorectal cancer; CV, cardiovascular; GI, gastrointestinal; HFS, hand-foot syndrome; RCT, randomized controlled trials; SAE, serious adverse events.

2.3. Assessment of Bias Risk and Evidence

Two independent reviewers evaluated the methodological quality of randomized controlled trials (RCTs) utilizing the Cochrane risk-of-bias (RoB) tool [9]. The studies were graded as low, unclear, or high in the following domains: selection bias (random sequence generation and allocation concealment), performance bias (blinding of participants and personnel), detection bias (blinding of outcome assessment), attrition bias (incomplete outcome data), reporting bias (selective reporting), and other potential biases. The observational studies were assessed with the Risk Of Bias in Non-Randomized Studies (ROBINS-I) assessment tool [10], and scored as low, unclear, and high in the following domains: selection of participants, confounding variables, measurement interventions, blinding for assessment, incomplete outcome data, and selective outcome reporting. Disagreements about the risk of bias and quality of evidence were resolved by consensus, and any disagreements not meeting the consensus were resolved by a third reviewer. Funnel plots were used to detect possible publication bias; symmetric funnel plots implied a low risk of publication bias.

2.4. Statistical Methods

The risks of AEs were analyzed with relative risks (RRs), and 95% confidence intervals (CIs) were calculated to estimate the risk in mCRC patients undergoing targeted therapies. Reverse percentages were calculated for any results reported as percentages (%) in the original studies. Heterogeneity across the eligible studies was assessed by Cochran's Q test (significance was revealed for p < 0.10) and the I² index [11]. Mantel–Haenszel's random-effects model was adapted for study outcomes with I² > 50%, which is considered highly heterogeneity (I² < 50%). P values were calculated by two-sided tests, and p < 0.05 was considered statistically significant. We utilized Review Manager (RevMan) 5.4 (The Cochrane Collaboration, 2020) for all statistical analyses.

3. Results

3.1. Study Search and Selection

The primary literature search of MEDLINE (PubMed), the Cochrane Library, and ClinicalKey yielded 1943 studies (Figure 1). A total of 26 of these studies were eligible for

full-text reviews after excluding duplicates or irrelevant studies, including those with irrelevant study designs (1040), abstracts including conference abstracts (12), study protocols or clinical trial registrations (9), reviews, case reports, editorials, or commentaries (761), studies without full-text availability (8), and studies written in languages other than English (87). A total of 6 studies [12–17] were eligible for the analysis after excluding studies with different study designs and outcomes (20). Therefore, this study included 2498 patients diagnosed with mCRC; a total of 1308 patients received bevacizumab-based chemotherapy, whereas 1190 patients received cetuximab-based chemotherapy as first-line treatments

Figure 1. PRISMA Plot.

3.2. Study Characteristics

The characteristics of the included studies are described in Table 2. This analysis included three RCTs [12–14] and three observational studies [15–17]. All studies included RAS wild-type Stage IV or mCRC patients who received bevacizumab- or cetuximabbased chemotherapy as first-line treatments. The majority of study populations received either FOLFOX (mFOLFOX6; 5-fluorouracil, leucovorin, and oxaliplatin) [12,13,15–17] or FOLFIRI (5-fluorouracil, leucovorin, and irinotecan) [13–17] as backbone chemotherapy. The study regions included Austria [14], Canada [13], China [15,17], Germany [14], Japan [12], Turkey [16], and the United States [13]. The baseline characteristics of the study populations, such as age, gender, and Eastern Cooperative Oncology Group (ECOG) status, were well balanced between the arms in the original studies. The intervention AE outcomes were classified into the hematological (neutropenia, febrile neutropenia, anemia, thrombocytopenia, hematological toxicity, thrombosis/thromboembolism, infection and hemorrhage), dermatological (mucositis, rash, paronychia, hand-foot syndrome (HFS), GI (nausea, vomiting, diarrhea, GI perforation, liver toxicity, constipation, ileus, and subileus), neurological (peripheral neuropathy and fatigue), CV (hypertension and arrythmia), and renal (nephrotoxicity, proteinuria, dehydration, edema, and electrolyte disorders) systems. Quality assessments of the included studies are reported in Supplementary Tables S1 and S2. The risk of bias was generally acceptable, as implied by the symmetric funnel plots (Supplementary Figure S1).

Study Name	Study Duration	Country	Study Design	Patient Population	Intervention	Comparator	Backbone CT	Outcomes
				RCTs				
ATOM (Oki et al.) 2019 [12]	May 2013–April 2016	Japan	Multicenter, randomized phase II study	Patients aged between 20 and 80 years with liver-limited metastases from wt (K) RAS CRC	Bevacizumab (5 mg/kg) (n = 57)	Cetuximab (400 mg/m ² first dose followed by 250 mg/m ² on Day 1 through Day 2) (n = 59)	mFOLFOX6	Hematological, dermatological, GI, neurological, and CV AEs
CALGB/SWOG 80405 (Venook et al. 2017) [13]	November 2005– March 2012	United States and Canada	Multicenter, randomized phase III study	Patients aged ≥18 years with previously untreated advanced or metastatic colorectal cancer whose tumors were KRAS wt	Bevacizumab (5 mg/kg) (n = 559)	Cetuximab (400 mg/m ² followed by 250 mg/m ² weekly) ($n = 578$)	mFOLFOX6 or FOLFIRI	Hematological, GI, and neurological AEs
FIRE-3 (Heinemann et al. 2014) [14]	23 January 2007– 19 September 2012	Germany, Austria	Randomized, open-label phase 3 trial	Patients aged 18–75 years with stage IV, histologically confirmed, adenocarcinoma of the colon or rectum, ECOG performance status of 0–2, an estimated life expectancy of greater than 3 months and adequate organ function, and no surgery within the 4 weeks before the study	Bevacizumab (5 mg/kg) (n = 295)	Cetuximab (400 mg/m ² on Day 1 and 250 mg/m ² weekly) (n = 297)	FOLFIRI	Hematological, dermatological, GI, neurological, CV, and renal AEs
				Observational				
Bai et al. 2016 [15]	January 2009– December 2013	China	Observational cohort study	Patients with histologically proved stage IV CRC who have consecutively received at least 2 courses of bevacizumab-based (KRAS wt or mutated) or cetuximab-based (KRAS wt) triplet biochemotherapy as their first line	Bevacizumab (5 mg/kg biweekly or 7.5 mg/kg triweekly) (<i>n</i> = 188)	Cetuximab (400 mg/m ² first dose, 500 mg/m ² biweekly or 750 mg/m ² triweekly) (n = 101)	mFOLFOX-6, FOLFIRI	Dermatological AEs

Table 2. Characteristics of included studies.

Table 2. Cont.

Study Name	Study Duration	Country	Study Design	Patient Population	Intervention	Comparator	Backbone CT	Outcomes
Degirmenicioglu et al. 2019 [16]	Not specified	Turkey	Retrospective multicenter observational study	Patients diagnosed pathologically as CRC adenocarcinoma with KRAS wt and who received chemotherapy in combination with either bevacizumab, cetuximab or panitumumab	Bevacizumab (n = 114)	Cetuximab (n = 92)	FOLFOX, FOLFIRI	Hematological, dermatological, GI, neurological, CV, and renal AEs
Yang et al. 2014 [17]	April 2005– March 2012	China (Taiwan)	Retrospective cohort	Patients with histologically proven colorectal cancer at clinical stage IVa or IVb according to AJCC VII and who received at least 4 courses of bevacizumab-based or cetuximab-based triplet biochemotherapy as first-line treatments	Bevacizumab (5 mg/kg biweekly) (n = 95)	Cetuximab (500 mg/m ² biweekly) ($n = 63$)	FOLFIRI, FOLFOX	Hematological, dermatological, GI and CV AEs

Abbreviations: AE, adverse events; AJCC, American Joint Committee on Cancer; CR, complete response; CrCl, creatinine clearance; CRC, colorectal cancer; CV, cardiovascular; ECOG, Eastern Cooperative Oncology Group; FOLFIRI, 5-fluorouracil/leucovorin and irinotecan; FOLFOX, 5-fluorouracil/leucovorin and oxaliplatin; GI, gastrointestinal; KRAS, Kirsten Rat Sarcoma; wt, wild-type.

3.3. Safety Outcomes

The risks of hematological (RR 0.89, 95% CI 0.79–1.00, p = 0.05), GI (RR 0.93, 95% CI 0.78–1.11, p = 0.42), and neurological AEs (RR 0.96, 95% CI 0.78–1.18, p = 0.69) were similar between bevacizumab- and cetuximab-treated patients (Figure 2a–c). However, bevacizumab-based chemotherapy has lower risks of dermatological (RR 0.24, 95% CI 0.11–0.53, p = 0.0003) and renal AEs (RR 0.57, 95% CI 0.37–0.85, p = 0.007), especially rash (RR 0.11, 95% CI 0.025–0.23, p < 0.00001), HFS (RR 0.33, 95% CI 0.15–0.74, p = 0.007), and electrolyte disorders (RR 0.50, 95% CI 0.29–0.87, p = 0.007) (Figure 3a,b). However, the risk of CV SAEs, including hypertension and arrhythmia, was markedly elevated in patients treated with bevacizumab (RR 4.65, 95% CI 1.83–11.78, p = 0.001) (Figure 4).

Study or Subgroup	Bevacizun Events		Cetuxir vents		Weight	Risk Ratio M-H, Fixed, 95% Cl	Risk Ratio M-H, Fixed, 95% Cl
.1.1 Neturopenia	LYCHIS	Total E	-ciit5	TUTAL	weight	m-11, 11ACU, 95% CI	m-n, nxeu, 93% Ci
TOM 2019	21	57	30	59	6.7%	0.72 [0.47, 1.11]	
egirmenicioglu 2019	51	114	48	92	12.0%	0.86 [0.65, 1.14]	-
ang 2014	27	95	12	63	3.3%	1.49 [0.82, 2.72]	_ .
Subtotal (95% CI)	21	266	12	214	21.9%	0.91 [0.73, 1.14]	♦
otal events	99	200	90	214	21.5%	0.01 [0.10, 1.14]	•
Heterogeneity: Chi² = 3.90, df		4): IZ – 40					
est for overall effect: Z = 0.82		4),1 - 49	70				
	2 (F = 0.41)						
.1.2 Febrile neutropenia							
TOM 2019	1	57	0	59	0.1%	3.10 [0.13, 74.64]	
)eqirmenicioqlu 2019	1	114	8	92	2.0%	0.10 [0.01, 0.79]	
Subtotal (95% CI)		171	Ŭ	151	2.1%	0.26 [0.07, 1.00]	
otal events	2		8		2.11.70	0120 [0101] 1100]	
Heterogeneity: Chi² = 3.15, df		8): I ² = 68					
est for overall effect: Z = 1.96		57,1 - 00					
.1.3 anemia							
TOM 2019	2	57	2	59	0.4%	1.04 [0.15, 7.10]	
Degirmenicioglu 2019	3	65	9	67	2.0%	0.34 [0.10, 1.21]	
Subtotal (95% CI)	5	122	5	126	2.0 % 2.4%	0.47 [0.17, 1.31]	
otal events	5	122	11	120	2.470	a.41 [0.11, 1.31]	
		5) - IZ 00					
leterogeneity: Chi² = 0.88, df 'est for overall effect: Z = 1.45		57,1 = 09	0				
3.1.4 thrombocytopenia							
TOM 2019	1	57	1	59	0.2%	1.04 [0.07, 16.16]	
Degirmenicioglu 2019	20	114	12	92	3.0%	1.35 [0.69, 2.60]	<u> </u>
Subtotal (95% CI)		171		151	3.2%	1.32 [0.70, 2.52]	◆
otal events	21		13				
leterogeneity: Chi² = 0.03, df	= 1 (P = 0.86	6); I ^z = 0%					
est for overall effect: Z = 0.86							
.1.5 Hematological Toxicity							
CALGB/SWOG 80405 2017	160	539	174	553	38.8%	0.94 [0.79, 1.13]	+
IRE-3 2014	51	295	73	297	16.4%	0.70 [0.51, 0.97]	-
Subtotal (95% CI)	0.	834		850	55.2%	0.87 [0.75, 1.02]	♦
Fotal events	211	001	247	000	001270	olor [on o, noz]	
Heterogeneity: Chi² = 2.48, df		2V: IZ = 60					
Test for overall effect: Z = 1.72		2),1 = 00	70				
3.1.6 Thrombosis/Thromboe		111	4	0.0	0.00	2 22 10 27 20 221	
Degirmenicioglu 2019	4	114	1	92	0.2%	3.23 [0.37, 28.39]	
IRE-3 2014	34	295	33	297	7.4%	1.04 [0.66, 1.63]	
rang 2014	0	95	1	63	0.4%	0.22 [0.01, 5.37]	
Subtotal (95% CI)		504		452	8.1%	1.06 [0.69, 1.64]	₹
otal events	38		35				
Heterogeneity: Chi² = 1.94, df		B); I² = 0%	6				
fest for overall effect: Z = 0.28	8 (P = 0.78)						
3.1.7 Infection							
Degirmenicioglu 2019	0	114	0	92		Not estimable	
IRE-3 2014	22	295	25	297	5.6%	0.89 [0.51, 1.54]	
	3	295 95	25				
ang 2014 Subtotal (95% CI)	3	95 504	3	63 452	0.8% 6.4%	0.66 [0.14, 3.18]	▲
Subtotal (95% CI)	25	504	20	402	0.470	0.86 [0.51, 1.44]	•
Total events Jotorogonoity: Chiž = 0.12, df	25 - 1 /P = 0 7	o\- i≅ − .c.c	28				
Heterogeneity: Chi² = 0.12, df Test for overall effect: Z = 0.58		57, 17 = 09	0				
	, í						
1.8 Hemorrhage	2	05			0.4 %	3 33 6 46 60 551	
IRE-3 2014	2	95	0	63	0.1%	3.33 [0.16, 68.29]	
	1	295	2	297	0.5%	0.50 [0.05, 5.52]	
ʻang 2014		390		360	0.6%	1.16 [0.21, 6.32]	
'ang 2014 Subtotal (95% Cl)			2				
′ang 2014 Subtotal (95% CI) Total events	3		e				
′ang 2014 Subtotal (95% CI) Total events Heterogeneity: Chi≆ = 0.94, df	= 1 (P = 0.33	3); I² = 0%	0				1
'ang 2014 s ubtotal (95% CI) Total events Heterogeneity: Chi ² = 0.94, df rest for overall effect: Z = 0.17	^r = 1 (P = 0.3) 7 (P = 0.87)		0				
(ang 2014 Subtotal (95% CI) Total events Heterogeneity: Chi¤ = 0.94, df Test for overall effect: Z = 0.17 Total (95% CI)	^r = 1 (P = 0.3) 7 (P = 0.87)	3); I ² = 0% 2962	0	2756	100.0%	0.89 [0.79, 1.00]	•
'ang 2014 s ubtotal (95% CI) Total events Heterogeneity: Chi ² = 0.94, df rest for overall effect: Z = 0.17	^r = 1 (P = 0.3) 7 (P = 0.87)		° 434	2756	100.0%	0.89 [0.79, 1.00]	•
'ang 2014 subtotal (95% CI) total events leterogeneity: Chi₹ = 0.94, df 'est for overall effect: Z = 0.17 total (95% CI) total events	f = 1 (P = 0.35 7 (P = 0.87) 404	2962	434	2756	100.0%	0.89 [0.79, 1.00]	
(ang 2014 Subtotal (95% CI) Total events Heterogeneity: Chi¤ = 0.94, df Test for overall effect: Z = 0.17 Total (95% CI)	f = 1 (P = 0.3) 7 (P = 0.87) 404 ff = 17 (P = 0	2962	434	2756	100.0%	0.89 [0.79, 1.00]	
ang 2014 ubtotal (95% CI) otal events leterogeneity: Chi¤ = 0.94, df est for overall effect: Z = 0.17 otal (95% CI) otal events leterogeneity: Chi¤ = 18.53, c	= 1 (P = 0.33 7 (P = 0.87) 404 4f = 17 (P = 0 3 (P = 0.05)	2962 1.36); I ^z =	434 8%			0.89 [0.79, 1.00]	

Figure 2. Cont.

Study or Subgroup 3.3.1 Nausea	Events	mab Total		nab Total	Weight	Risk Ratio M-H, Random, 95% Cl	Risk Ratio M-H, Random, 95% Cl
TOM 2019	1	57	1	59	0.4%	1.04 [0.07, 16.16]	
IRE-3 2014	14	295	10	297	4.6%	1.41 [0.64, 3.12]	
ang 2014	7	95	6	63	2.8%	0.77 [0.27, 2.20]	
			0				
ubtotal (95% CI)		447		419	7.8%	1.13 [0.61, 2.08]	\mathbf{T}
otal events	22		17				
leterogeneity: Tau ² = 0.00; C	¦hi² = 0.81, df	f= 2 (P -	= 0.67);1	²=0%			
est for overall effect: Z = 0.38	3 (P = 0.71)						
.3.2 Vomiting							
	4	67	4	60	0.40	4 0 4 70 07 46 461	
TOM 2019	1	57	1	59	0.4%	1.04 [0.07, 16.16]	
IRE-3 2014	10	295	7	297	3.3%	1.44 [0.55, 3.73]	
ubtotal (95% CI)		352		356	3.7%	1.39 [0.56, 3.41]	-
otal events	11		8				
leterogeneity: Tau ² = 0.00; C		f=1 (P	= 0.82); I	²=0%			
est for overall effect: Z = 0.71	I (F = 0.47)						
.3.3 Nausea & Vomiting							
egirmenicioglu 2019)	54	114	41	92	23.9%	1.06 [0.79, 1.43]	T
ubtotal (95% CI)		114		92	23.9%	1.06 [0.79, 1.43]	•
otal events	54		41				
leterogeneity: Not applicable	4						
est for overall effect: Z = 0.40							
.3.4 Diarrhea							
TOM 2019	1	57	2	59	0.5%	0.52 [0.05, 5.55]	
ALGB/SWOG 80405 2017	46	539	60	553	17.9%	0.79 [0.55, 1.13]	
egirmenicioglu 2019	30	114	41	92	16.6%	0.59 [0.40, 0.87]	- <u>-</u>
IRE-3 2014	40	295	34	297	13.9%	1.18 [0.77, 1.82]	7
ang 2014	3	95	4	63	1.4%	0.50 [0.12, 2.15]	
Subtotal (95% CI)		1100		1064	50.4%	0.79 [0.57, 1.07]	•
otal events	120		141				
Heterogeneity: Tau ² = 0.04; C		f = 4 (P)		² = 36%			
est for overall effect: Z = 1.51			0.10/,1	00 /	, ,		
2 E CI perforation							
.3.5 GI perforation	~	67	~			N = 4 41 1 -	
TOM 2019	0	57	0	59		Not estimable	
egirmenicioglu 2019	1	114	0	92	0.3%	2.43 [0.10, 58.86]	
ʻang 2014	2	95	0	63	0.3%	3.33 [0.16, 68.29]	
Subtotal (95% CI)		266		214	0.6%	2.87 [0.32, 25.70]	
otal events	3		0				
Heterogeneity: Tau ² = 0.00; C	;hi ² = 0 02 d'	f = 1 (P :	= 0.89)11	² = 0%			
est for overall effect: Z = 0.94			0.00/,1	0,0			
2.6 Liver Tevisity							
3.3.6 Liver Toxicity					-		
IRE-3 2014	19	295	21	297	7.8%	0.91 [0.50, 1.66]	
′ang 2014	2	95	0	63	0.3%	3.33 [0.16, 68.29]	
Subtotal (95% CI)		390		360	8.1%	0.96 [0.53, 1.72]	+
"otal events	21		21				
		f = 1 (P		≅ – ∩%			
				- 0.70			
leterogeneity: Tau² = 0.00; C	hi² = 0.69, dt	n = 1 (r -	= 0.41),1				
leterogeneity: Tau² = 0.00; C 'est for overall effect: Z = 0.15	hi² = 0.69, dt		= 0.41),1				
leterogeneity: Tau² = 0.00; C est for overall effect: Z = 0.15 3.3.7 Constipation	chi² = 0.69, dt 5 (P = 0.88)				4.000		
leterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 0.15 6 .3.7 Constipation Degirmenicioglu 2019	:hi² = 0.69, dt 5 (P = 0.88) 5	114	2	92	1.2%	2.02 [0.40, 10.16]	
leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 0.15 .3.7 Constipation begirmenicioglu 2019 IRE-3 2014	chi² = 0.69, dt 5 (P = 0.88)	114 295		297	0.3%	5.03 [0.24, 104.40]	
tearogeneity: Tau" = 0.00; C Test for overall effect: Z = 0.15 3.3.7 Constipation Degirmenicioglu 2019 IRE-3 2014 Subtotal (95% CI)	:hi² = 0.69, dt 5 (P = 0.88) 5	114	2				
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 0.15 3.3.7 Constipation Degirmenicioglu 2019 TIRE-3 2014	:hi² = 0.69, dt 5 (P = 0.88) 5	114 295	2	297	0.3%	5.03 [0.24, 104.40]	
leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 0.15 .3.7 Constipation begirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) iotal events	:hi² = 0.69, dt 5 (P = 0.88) 5 2 7	114 295 409	2 0 2	297 <mark>389</mark>	0.3%	5.03 [0.24, 104.40]	
leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 0.15 .3.7 Constipation regimmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: Tau ² = 0.00; C	chi ² = 0.69, dt 5 (P = 0.88) 5 2 7 chi ² = 0.28, dt	114 295 409	2 0 2	297 <mark>389</mark>	0.3%	5.03 [0.24, 104.40]	
leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 0.15 .3.7 Constipation regirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 1.24	chi ² = 0.69, dt 5 (P = 0.88) 5 2 7 chi ² = 0.28, dt	114 295 409	2 0 2	297 <mark>389</mark>	0.3%	5.03 [0.24, 104.40]	
leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 0.16 .3.7 Constipation legirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 1.24 .3.8 ileus	chi² = 0.69, dt 5 (P = 0.88) 5 2 7 chi² = 0.28, dt 4 (P = 0.21)	114 295 409 If=1 (P:	2 0 2 = 0.60); I	297 389 ² = 0%	0.3% 1.5%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29]	
leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 0.16 .3.7 Constipation begirmenicioglu 2019 IRE-3 2014 subtotal (95% CI) otal events leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 1.24 .3.8 ileus begirmenicioglu 2019	chi ² = 0.69, dt 5 (P = 0.88) 5 2 7 7 chi ² = 0.28, dt 4 (P = 0.21) 8	114 295 409 If = 1 (P 114	2 0 = 0.60); I 3	297 389 ² = 0% 92	0.3% 1.5% 1.8%	5.03 (0.24, 104.40) 2.47 (0.59, 10.29) 2.15 (0.59, 7.88)	
leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 0.15 .3.7 Constipation Vegirmenicioglu 2019 IRE-3 2014 uiubtotal (95% CI) total events leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 1.24 .3.8 ileus Vegirmenicioglu 2019 IRE-3 2014	chi² = 0.69, dt 5 (P = 0.88) 5 2 7 chi² = 0.28, dt 4 (P = 0.21)	114 295 409 If = 1 (P 114 295	2 0 2 = 0.60); I	297 389 ² = 0% 92 297	0.3% 1.5% 1.8% 1.2%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06]	
leterogeneity: Tau ² = 0.00; C (est for overall effect: $Z = 0.16$ 3.7 Constipation Degirmenicioglu 2019 (RE-3 2014 Jubtotal (95% CI) (iotal events leterogeneity: Tau ² = 0.00; C (est for overall effect: $Z = 1.24$ 3.8 ileus Degirmenicioglu 2019 (RE-3 2014 Jubtotal (95% CI)	chi² = 0.69, dt 5 (P = 0.88) 5 2 7 chi² = 0.28, dt 4 (P = 0.21) 8 2	114 295 409 If = 1 (P 114	2 0 = 0.60); I 3 5	297 389 ² = 0% 92	0.3% 1.5% 1.8%	5.03 (0.24, 104.40) 2.47 (0.59, 10.29) 2.15 (0.59, 7.88)	
leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 0.16$.3.7 Constipation Degirmenicioglu 2019 IRE-3 2014 Jubtotal (95% CI) iotal events leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 1.24$.3.8 ileus Degirmenicioglu 2019 IRE-3 2014 Jubtotal (95% CI)	chi ² = 0.69, dt 5 (P = 0.88) 5 2 7 7 chi ² = 0.28, dt 4 (P = 0.21) 8	114 295 409 If = 1 (P 114 295	2 0 = 0.60); I 3	297 389 ² = 0% 92 297	0.3% 1.5% 1.8% 1.2%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06]	
leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 0.16 .3.7 Constipation begirmenicioglu 2019 IRE-3 2014 subtotal (95% CI) otal events leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 1.24 .3.8 ileus begirmenicioglu 2019 IRE-3 2014 subtotal (95% CI) otal events	chi≇ = 0.69, dt 5 (P = 0.88) 5 2 7 chi≇ = 0.28, dt 4 (P = 0.21) 8 2 10	114 295 409 If = 1 (P = 114 295 409	2 0 = 0.60); I 3 5 8	297 389 ² = 0% 92 297 389	0.3% 1.5% 1.8% 1.2% 3.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06]	
leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 0.15 .3.7 Constipation legirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 1.24 .3.8 ileus legirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: Tau ² = 0.84; C	chi ² = 0.69, dt 5 (P = 0.98) 5 2 7 7 7 10 10 10 10 10 10 10 10 10 10	114 295 409 If = 1 (P = 114 295 409	2 0 = 0.60); I 3 5 8	297 389 ² = 0% 92 297 389	0.3% 1.5% 1.8% 1.2% 3.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06]	
leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 0.16 .3.7 Constipation legirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 1.24 .3.8 ileus uegirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: Tau ² = 0.84; C est for overall effect: Z = 0.01	chi ² = 0.69, dt 5 (P = 0.98) 5 2 7 7 7 10 10 10 10 10 10 10 10 10 10	114 295 409 If = 1 (P = 114 295 409	2 0 = 0.60); I 3 5 8	297 389 ² = 0% 92 297 389	0.3% 1.5% 1.8% 1.2% 3.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06]	
leterogeneity: Tau ² = 0.00; C est for overall effect: Z = 0.15 .3.7 Constipation begirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) total events est for overall effect: Z = 1.24 .3.8 ileus begirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) total events leterogeneity: Tau ² = 0.84; C est for overall effect: Z = 0.01 .3.9 subileus	chi ² = 0.69, dt 5 (P = 0.88) 5 2 7 7 (h) ² = 0.28, dt 4 (P = 0.21) 8 2 10 chi ² = 2.48, dt 1 (P = 1.00)	114 295 409 If = 1 (P = 114 295 409 If = 1 (P =	2 0 = 0.60); I 3 5 8 = 0.12); I	297 389 ² = 0% 92 297 389 ² = 60%	0.3% 1.5% 1.8% 1.2% 3.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16]	
leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 0.15$.3.7 Constipation begimmeniclogiu 2019 IRE-3 2014 ubtotal (95% CI) iotal events leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 1.24$.3.8 ileus begimmeniclogiu 2019 IRE-3 2014 ubtotal (95% CI) iotal events leterogeneity: Tau ² = 0.84; C est for overall effect: $Z = 0.01$.3.9 subileus begimmeniclogiu 2019	hi ^p = 0.89, dt 5 (P = 0.88) 5 2 7 7 7 7 10 4 (P = 0.28, dt 4 (P = 0.21) 8 2 10 thi ² = 2.48, dt 1 (P = 1.00) 1	114 295 409 If = 1 (P = 114 295 409 If = 1 (P = 114	2 0 = 0.60); I 3 5 8 = 0.12); I 5	297 389 ² = 0% 92 297 389 ² = 60% 92	0.3% 1.5% 1.8% 1.2% 3.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16] 0.16 [0.02, 1.36]	
leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 0.15$.3.7 Constipation begimmeniclogiu 2019 IRE-3 2014 ubtotal (95% CI) iotal events leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 1.24$.3.8 ileus begimmeniclogiu 2019 IRE-3 2014 ubtotal (95% CI) iotal events leterogeneity: Tau ² = 0.84; C est for overall effect: $Z = 0.01$.3.9 subileus begimmeniclogiu 2019	chi ² = 0.69, dt 5 (P = 0.88) 5 2 7 7 (h) ² = 0.28, dt 4 (P = 0.21) 8 2 10 chi ² = 2.48, dt 1 (P = 1.00)	114 295 409 If = 1 (P = 114 295 409 If = 1 (P =	2 0 = 0.60); I 3 5 8 = 0.12); I	297 389 ² = 0% 92 297 389 ² = 60%	0.3% 1.5% 1.8% 1.2% 3.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16]	
leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 0.16$ 3.7 Constipation begirmenicioglu 2019 IRE-3 2014 subtotal (95% CI) otal events leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 1.24$ 3.8 ileus begirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: Tau ² = 0.84; C est for overall effect: $Z = 0.01$ 3.9 subileus begirmenicioglu 2019 IRE-3 2014	hi ^p = 0.89, dt 5 (P = 0.88) 5 2 7 7 7 7 10 4 (P = 0.28, dt 4 (P = 0.21) 8 2 10 thi ² = 2.48, dt 1 (P = 1.00) 1	114 295 409 If = 1 (P = 114 295 409 If = 1 (P = 114	2 0 = 0.60); I 3 5 8 = 0.12); I 5	297 389 ² = 0% 92 297 389 ² = 60% 92	0.3% 1.5% 1.8% 1.2% 3.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16] 0.16 [0.02, 1.36]	
leterogeneity: Tau ² = 0.00; C 'est for overall effect: $Z = 0.16$ 1.3.7 Constipation Degimmenicioglu 2019 IRE-3 2014 Subtotal (95% CI) 'otal events leterogeneity: Tau ² = 0.00; C 'est for overall effect: $Z = 1.24$ Subtotal (95% CI) 'otal events leterogeneity: Tau ² = 0.84; C 'est for overall effect: $Z = 0.01$ 1.3.9 subleus Degimmenicioglu 2019 IRE-3 2014 Subtotal (95% CI)	hi ^p = 0.89, dt 5 (P = 0.88) 5 2 7 7 7 7 10 4 (P = 0.28, dt 4 (P = 0.21) 8 2 10 thi ² = 2.48, dt 1 (P = 1.00) 1	114 295 409 ff = 1 (P = 114 295 409 ff = 1 (P = 114 295	2 0 = 0.60); I 3 5 8 = 0.12); I 5	297 389 *= 0% 92 297 389 *= 60% 92 297	0.3% 1.5% 1.8% 1.2% 3.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16] 0.16 [0.02, 1.36] 5.03 [0.24, 104.40]	
leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 0.16$.3.7 Constipation legirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 1.24$.3.8 ileus ubtotal (95% CI) otal events leterogeneity: Tau ² = 0.84; C est for overall effect: $Z = 0.01$.3.9 subileus legirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events legirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: Tau ² = 4.16; C	hi ^p = 0.69, dt 5 (P = 0.88) 5 2 7 7 hi ^p = 0.28, dt 4 (P = 0.21) 8 2 10 hi ^p = 2.48, dt 1 (P = 1.00) 1 2 2 2 2 10 1 (P = 1.00)	114 295 409 ff = 1 (P = 114 295 409 ff = 1 (P = 114 295 409	2 0 = 0.60); 3 5 = 0.12); 5 0 5	297 389 ² = 0% 92 297 389 ² = 60% 92 297 389	0.3% 1.5% 1.8% 1.2% 3.0% 5 0.7% 0.3% 1.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16] 0.16 [0.02, 1.36] 5.03 [0.24, 104.40]	
leterogeneity: Tau ² = 0.00; C 'est for overall effect: Z = 0.15 3.7 Constipation Degirmenicioglu 2019 IRE-3 2014 Subtotal (95% CI) 'otal events leterogeneity: Tau ² = 0.00; C 'est for overall effect: Z = 1.24 3.8 ileus Degirmenicioglu 2019 IRE-3 2014 Subtotal (95% CI) 'otal events leterogeneity: Tau ² = 0.84; C 'est for overall effect: Z = 0.01 3.9 subileus Degirmenicioglu 2019 IRE-3 2014 Subtotal (95% CI) 'otal events leterogeneity: Tau ² = 4.16; C	hi ^p = 0.69, dt 5 (P = 0.88) 5 2 7 7 hi ^p = 0.28, dt 4 (P = 0.21) 8 2 10 hi ^p = 2.48, dt 1 (P = 1.00) 1 2 2 2 2 10 1 (P = 1.00)	114 295 409 ff = 1 (P = 114 295 409 ff = 1 (P = 114 295 409	2 0 = 0.60); 3 5 = 0.12); 5 0 5	297 389 ² = 0% 92 297 389 ² = 60% 92 297 389	0.3% 1.5% 1.8% 1.2% 3.0% 5 0.7% 0.3% 1.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16] 0.16 [0.02, 1.36] 5.03 [0.24, 104.40]	
leterogeneity: $Tau^2 = 0.00$; C lest for overall effect: $Z = 0.16$ segimeniciogiu 2019 IRE-3 2014 subtotal (95% CI) total events leterogeneity: $Tau^2 = 0.00$; C lest for overall effect: $Z = 1.24$ 4.3.8 ileus begimeniciogiu 2019 IRE-3 2014 subtotal (95% CI) total events leterogeneity: $Tau^2 = 0.84$; C lest for overall effect: $Z = 0.01$ 3.9 subileus begimeniciogiu 2019 IRE-3 2014 subtotal (95% CI) total events leterogeneity: $Tau^2 = 4.16$; C lest for overall effect: $Z = 0.16$	$\label{eq:hi} \begin{split} hi^{\mu} &= 0.69, dt \\ 5 (P = 0.88) \\ & 5 \\ 2 \\ hi^{\mu} &= 0.28, dt \\ 4 (P = 0.21) \\ & 8 \\ 2 \\ hi^{\mu} &= 2.48, dt \\ 1 (P = 1.00) \\ & 1 \\ 2 \\ hi^{\mu} &= 3.33, dt \\ 6 (P = 0.87) \end{split}$	114 295 409 ff = 1 (P = 114 295 409 ff = 1 (P = 114 295 409	2 0 = 0.60); 3 5 = 0.12); 5 0 5	297 389 * = 0% 92 297 389 * = 60% 92 297 389 * = 70%	0.3% 1.5% 1.8% 1.2% 3.0% 5 0.7% 0.3% 1.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16] 0.16 [0.02, 1.36] 5.03 [0.24, 104.40] 0.76 [0.03, 21.82]	
leterogeneity: $Tau^2 = 0.00$; C 'est for overall effect: $Z = 0.16$ 3.3.7 Constipation Degirmenicioglu 2019 IRE-3 2014 Subtotal (95% CI) 'otal events deterogeneity: $Tau^2 = 0.00$; C 'est for overall effect: $Z = 1.24$ 3.3.8 ileus Degirmenicioglu 2019 IRE-3 2014 Subtotal (95% CI) 'otal events deterogeneity: $Tau^2 = 0.84$; C 'est for overall effect: $Z = 0.01$ 3.3.9 subileus Degirmenicioglu 2019 IRE-3 2014 Subtotal (95% CI) 'otal events Heterogeneity: $Tau^2 = 4.16$; C 'est for overall effect: $Z = 0.16$ Total (95% CI)	$\label{eq:hi} \begin{split} hi^{p} &= 0.69, dt \\ 5 (P = 0.88) \\ & 5 \\ 2 \\ rh^{p} &= 0.28, dt \\ 4 (P = 0.21) \\ & 8 \\ 2 \\ 10 \\ hi^{p} &= 2.48, dt \\ 1 (P = 1.00) \\ & 1 \\ 2 \\ hi^{p} &= 3.33, dt \\ 6 (P = 0.87) \end{split}$	114 295 409 f = 1 (P : 114 295 409 f = 1 (P : 114 295 409 f = 1 (P :	$2 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	297 389 * = 0% 92 297 389 * = 60% 92 297 389 * = 70%	0.3% 1.5% 1.8% 1.2% 3.0% 5 0.7% 0.3% 1.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16] 0.16 [0.02, 1.36] 5.03 [0.24, 104.40]	
leterogeneity: $Tau^2 = 0.00$; C est for overall effect: $Z = 0.16$.3.7 Constipation Degimmenicioglu 2019 IRE-3 2014 Jubtotal (95% CI) otal events leterogeneity: $Tau^2 = 0.00$; C est for overall effect: $Z = 1.24$.3.8 ileus Degimmenicioglu 2019 IRE-3 2014 Jubtotal (95% CI) otal events leterogeneity: $Tau^2 = 0.84$; C est for overall effect: $Z = 0.01$.3.9 subileus Degimmenicioglu 2019 IRE-3 2014 Jubtotal (95% CI) otal events leterogeneity: $Tau^2 = 4.16$; C est for overall effect: $Z = 0.16$ otal (95% CI) otal events	hi ^p = 0.69, dt 5 (P = 0.88) 5 2 7 7 5 2 7 7 7 8 2 4 (P = 0.28, dt 4 (P = 0.21) 8 2 10 1 (P = 1.00) 1 2 5 hi ^p = 3.33, dt 6 (P = 0.87) 2 251	114 295 409 (f = 1 (P) 114 295 409 (f = 1 (P) 295 409 (f = 1 (P) 3896	$\begin{array}{c} 2 \\ 0 \\ 2 \\ = 0.60); 1 \\ 3 \\ 5 \\ 0 \\ 5 \\ 0 \\ 0 \\ 1 \\ 2 \\ 4 \\ 3 \\ 5 \\ 0 \\ 1 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	297 389 2297 389 *= 60% 92 297 389 *= 60% 92 297 389 *= 70% 3672	0.3% 1.5% 1.8% 1.2% 3.0% 5 0.7% 0.3% 1.0% 5	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16] 0.16 [0.02, 1.36] 5.03 [0.24, 104.40] 0.76 [0.03, 21.82]	
leterogeneity: $Tau^2 = 0.00$; C est for overall effect: $Z = 0.16$.3.7 Constipation legimeniciogiu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: $Tau^2 = 0.00$; C est for overall effect: $Z = 1.24$.3.8 ileus legimeniciogiu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: $Tau^2 = 0.84$; C est for overall effect: $Z = 0.01$.3.9 subileus legimeniciogiu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: $Tau^2 = 4.16$; C est for overall effect: $Z = 0.16$ otal (95% CI) otal events leterogeneity: $Tau^2 = 0.016$	$\label{eq:hilling} \begin{split} hilling = 0.69, dt \\ 5 (P = 0.88) \\ 5 \\ 2 \\ 7 \\ 7 \\ hilling = 0.28, dt \\ 4 (P = 0.21) \\ 8 \\ 2 \\ hilling = 2.48, dt \\ 1 (P = 1.00) \\ 1 \\ 2 \\ hilling = 3.33, dt \\ 6 (P = 0.87) \\ 2 \\ chilling = 21.37, dt \\ hilling = 2.137, dt \\ hi$	114 295 409 (f = 1 (P) 114 295 409 (f = 1 (P) 295 409 (f = 1 (P) 3896	$\begin{array}{c} 2 \\ 0 \\ 2 \\ = 0.60); 1 \\ 3 \\ 5 \\ 0 \\ 5 \\ 0 \\ 0 \\ 1 \\ 2 \\ 4 \\ 3 \\ 5 \\ 0 \\ 1 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	297 389 2297 389 *= 60% 92 297 389 *= 60% 92 297 389 *= 70% 3672	0.3% 1.5% 1.8% 1.2% 3.0% 5 0.7% 0.3% 1.0% 5	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16] 0.16 [0.02, 1.36] 5.03 [0.24, 104.40] 0.76 [0.03, 21.82]	
leterogeneity: $Tau^2 = 0.00$; C est for overall effect: $Z = 0.16$.3.7 Constipation legirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: $Tau^2 = 0.00$; C est for overall effect: $Z = 1.24$.3.8 ileus legirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: $Tau^2 = 0.84$; C est for overall effect: $Z = 0.01$.3.9 subileus leterogeneity: $Tau^2 = 0.84$; C est for overall effect: $Z = 0.16$ cotal (95% CI) otal events leterogeneity: $Tau^2 = 4.16$; C est for overall effect: $Z = 0.16$ cotal (95% CI) otal events leterogeneity: $Tau^2 = 0.01$; C est for overall effect: $Z = 0.01$; C est for overall effect: $Z = 0.07$; C	$\label{eq:hi} \begin{split} hi^{\mu} &= 0.69, dt \\ 5 (P = 0.88) \\ & 5 \\ 2 \\ r \\ r$	114 295 409 (f = 1 (P : 295 409 (f = 1 (P : 114 295 409 (f = 1 (P : 3896 df = 20	$\begin{array}{c} 2 \\ 0 \\ 2 \\ = 0.60); 1 \\ 3 \\ 5 \\ = 0.12); 1 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	297 389 ⁹ = 0% ⁹ 227 389 ² = 60% ⁹ 227 389 ² = 60% ⁹ 2 297 389 ² = 70% 3672 3672	0.3% 1.5% 1.8% 1.2% 3.0% 0.7% 0.3% 1.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16] 0.16 [0.02, 1.36] 5.03 [0.24, 104.40] 0.76 [0.03, 21.82]	
leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 0.16$ 3.7 Constipation egirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 1.24$ 3.8 ileus legirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: Tau ² = 0.84; C est for overall effect: $Z = 0.01$ 3.9 subileus legirmenicioglu 2019 IRE-3 2014 ubtotal (95% CI) otal events leterogeneity: Tau ² = 4.16; C est for overall effect: $Z = 0.16$ otal (95% CI) otal events leterogeneity: Tau ² = 4.16; C est for overall effect: $Z = 0.16$ otal (95% CI) otal events leterogeneity: Tau ² = 0.01; C est for overall effect: $Z = 0.75$	$\label{eq:hi} \begin{split} hi^{\mu} &= 0.69, dt \\ 5 (P = 0.88) \\ & 5 \\ 2 \\ r \\ r$	114 295 409 (f = 1 (P : 295 409 (f = 1 (P : 114 295 409 (f = 1 (P : 3896 df = 20	$\begin{array}{c} 2 \\ 0 \\ 2 \\ = 0.60); 1 \\ 3 \\ 5 \\ = 0.12); 1 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	297 389 ⁹ = 0% ⁹ 227 389 ² = 60% ⁹ 227 389 ² = 60% ⁹ 2 297 389 ² = 70% 3672 3672	0.3% 1.5% 1.8% 1.2% 3.0% 0.7% 0.3% 1.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16] 0.16 [0.02, 1.36] 5.03 [0.24, 104.40] 0.76 [0.03, 21.82]	0.001 0.1 1 10 1 Favours (Bevacizumab+CT) Favours (Cetuximab+CT)
leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 0.16$ 3.7 Constipation begimmenicioglu 2019 IRE-3 2014 subtotal (95% CI) otal events leterogeneity: Tau ² = 0.00; C est for overall effect: $Z = 1.24$ 3.8 ileus begimmenicioglu 2019 IRE-3 2014 subtotal (95% CI) otal events leterogeneity: Tau ² = 0.84; C est for overall effect: $Z = 0.01$ 3.9 subileus leterogeneity: Tau ² = 0.84; C est for overall effect: $Z = 0.01$ 3.9 subileus leterogeneity: Tau ² = 0.84; C iotal events leterogeneity: Tau ² = 0.16 (otal events) leterogeneity: Tau ² = 4.16; C est for overall effect: $Z = 0.16$ (otal (95% CI)	$\label{eq:hi} \begin{split} hi^{\mu} &= 0.69, dt \\ 5 (P = 0.88) \\ & 5 \\ 2 \\ r \\ r$	114 295 409 (f = 1 (P : 295 409 (f = 1 (P : 114 295 409 (f = 1 (P : 3896 df = 20	$\begin{array}{c} 2 \\ 0 \\ 2 \\ = 0.60); 1 \\ 3 \\ 5 \\ = 0.12); 1 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	297 389 ⁹ = 0% ⁹ 227 389 ² = 60% ⁹ 227 389 ² = 60% ⁹ 2 297 389 ² = 70% 3672 3672	0.3% 1.5% 1.8% 1.2% 3.0% 0.7% 0.3% 1.0%	5.03 [0.24, 104.40] 2.47 [0.59, 10.29] 2.15 [0.59, 7.88] 0.40 [0.08, 2.06] 1.00 [0.20, 5.16] 0.16 [0.02, 1.36] 5.03 [0.24, 104.40] 0.76 [0.03, 21.82]	

Figure 2. Cont.

8 of 15

	Bevacizi	ımah	Cetuxir	mah		Risk Ratio	Risk Ratio
Study or Subgroup	Events				Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
3.4.1 Peripheral Neuropathy	Litento	Total	Litento	Total	Telgin	m-n, nandom, son er	
ATOM 2019	4	57	6	59	3.0%	0.69 [0.21, 2.32]	
CALGB/SWOG 80405 2017	75	539	73	553	48.6%	1.05 [0.78, 1.42]	- + -
Degirmenicioalu 2019	25	114	21	92	16.7%	0.96 [0.58, 1.60]	
Subtotal (95% CI)		710		704	68.3%	1.01 [0.79, 1.30]	◆
Total events	104		100			. , .	
Heterogeneity: Tau ² = 0.00; C	hi² = 0.49.	df = 2 (F	P = 0.78);	I ² = 0%			
Test for overall effect: Z = 0.09							
3.4.2 Fatigue							
ATOM 2019	1	57	4	59	0.9%	0.26 [0.03, 2.25]	
CALGB/SW/OG 80405 2017	43	539	52	553	29.3%	0.85 [0.58, 1.25]	
FIRE-3 2014	4	295	2	297	1.5%	2.01 [0.37, 10.91]	
Subtotal (95% CI)		891		909	31.7%	0.86 [0.51, 1.43]	•
Total events	48		58				
Heterogeneity: Tau ² = 0.04; C	hi²= 2.17,	df = 2 (F	e = 0.34);	l² = 8%			
Test for overall effect: Z = 0.59	(P = 0.56)						
Total (95% CI)		1601		1613	100.0%	0.96 [0.78, 1.18]	•
Total events	152	1001	158	1015	100.070	0.30 [0.70, 1.10]	1
Heterogeneity: Tau ² = 0.00; Cl		df = 5 /F		IZ - 00/			
Test for overall effect: Z = 0.40			- 0.07),	1 - 0 %			0.01 0.1 i 10 100
Test for subgroup differences			1 (P - 0 6	7) 17 - 1	n 94		Favours [Bevacizumab+CT] Favours [Cetuximab+CT]
reactor suburbub unierences	. oni = 0.3	72. ul –	ru = 0.5	0.1 -	0.00	()	
						(c)	

Figure 2. Forest plots of SAEs associated with bevacizumab- and cetuximab-based chemotherapy: (a) hematological SAEs, (b) GI SAEs, and (c) neurological SAEs.

Figure 3. Cont.

	Bevacizu	mah	Cetuxi	mah		Odds Ratio	Odds Ratio
Study or Subgroup	Events		Events		Woight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
3.6.1 Nephrotoxicity	Litenta	Total	Lycinta	Total	Veigin	M-H, HACU, 33// CI	
Degirmenicioglu 2019 (1)	0	114	4	92	8.3%	0.09 [0.00, 1.62]	
FIRE-3 2014 (2)	3	295	4	297	6.6%	0.75 [0.17, 3.39]	
	3	295 409	4	389	0.0% 14.9%		
Subtotal (95% CI)		409		209	14.9%	0.38 [0.11, 1.31]	
Total events	3		8				
Heterogeneity: Chi ² = 1.77, c			= 44%				
Test for overall effect: Z = 1.5	53 (P = 0.13	3)					
3.6.2 Proteinuria							
Degirmenicioglu 2019	1	114	1	92	1.8%	0.81 [0.05, 13.05]	
FIRE-3 2014	1	295	, o	297	0.8%	3.03 [0.12, 74.69]	
Yang 2014	3	255	1	63	1.9%	2.02 [0.21, 19.88]	
Subtotal (95% CI)	3	504		452	4.6%	1.72 [0.38, 7.75]	
Total events	5	304	2	452	4.0%	1.72 [0.30, 7.75]	
	-	043-18.	-				
Heterogeneity: Chi ² = 0.42, c Test for overall effect: Z = 0.7			= 070				
restion overall effect. 2 = 0.1	1 (1 = 0.40	"					
3.6.3 Dehydration							
Degirmenicioglu 2019	2	114	5	92	9.1%	0.31 [0.06, 1.64]	
FIRE-3 2014	4	295	2	297	3.3%	2.03 [0.37, 11.15]	
Subtotal (95% CI)		409	-	389	12.4%	0.77 [0.26, 2.28]	-
Total events	6		7				
Heterogeneity: Chi ² = 2.38, c	-	112) [,] P					
Test for overall effect: Z = 0.4							
		,					
3.6.4 Edema							
FIRE-3 2014	1	295	3	297	5.0%	0.33 [0.03, 3.22]	
Subtotal (95% CI)		295		297	5.0%	0.33 [0.03, 3.22]	
Total events	1		3				
Heterogeneity: Not applicabl	le						
Test for overall effect: Z = 0.9	95 (P = 0.34	4)					
3.6.5 Electrolyte Disorders							
FIRE-3 2014 (3)	22	295	41	297	63.2%	0.50 [0.29, 0.87]	
Subtotal (95% CI)		295		297	63.2%	0.50 [0.29, 0.87]	•
Total events	22		41				
Heterogeneity: Not applicabl							
Test for overall effect: Z = 2.4	17 (P = 0.01	1)					
Total (95% CI)		1912		1824	100.0%	0.57 [0.37, 0.86]	◆
Total events	37	1012	61	1024	100.070	0.57 [0.57, 0.00]	•
Heterogeneity: Chi ² = 7.07, c		1.621/18-					
Test for overall effect: Z = 2.6			- 0.0				0.002 0.1 1 10 500
Test for subgroup difference			4 /P = 0	62) 18-	- 0%		Favours [Bevacizumab+CT] Favours [Cetuximab+CT]
	is. oni – 5	. i 7, ui -	• 4 (F = 0	.00),1 -	- 0 %		
Footnotes	-,						
(1) Acute Renal Failure (ARF)						
(2) Nephrotoxicity							and the state of the selector of the state o
(3) Include following cases:	nypocalcei	mia, nyp	oomagne	semia,	nyperma	gnesemia, hypernat	remia, hypokalemia, hyperkalemia,and electrolyte imbalances
						(1-)	
						(b)	

Figure 3. Forest plots of dermatological and renal SAEs associated with bevacizumab- and cetuximabbased chemotherapy: (**a**) dermatological SAEs, and (**b**) renal SAEs.

Figure 4. Forest plot of CV SAEs associated with bevacizumab- and cetuximab-based chemotherapy.

4. Discussion

Combination chemotherapy with cetuximab or bevacizumab in conjunction with the classic CRC treatment regimen has ultimately led to a decreased rate of tumor progression and a significant increase in favorable prognostics of mCRC [3]. Nonetheless, the risk of AEs is markedly attenuated with targeted therapy administered concomitantly with backbone chemotherapy (FOLFOX, FOLFIRI, CAPEOX, or FOLFOXIRI) for CRC [18,19]. According

to a retrospective study, the risk of AEs is substantially elevated with drug combinations and intravenous chemotherapy administration, being the major route of administration of both chemotherapy and targeted therapy agents in mCRC patients [6]. However, up to now, a choice of effective first-line biologic chemo-treatment with either cetuximab or bevacizumab in patients with RAS wild-type for mCRC is a still controversial. A recent meta-analysis was performed to determine the efficacy of first-line cetuximab- versus bevacizumab-based chemotherapy for RAS wild-type mCRC [5]. According to these results, it seems reasonable to initiate treatment of RAS wild-type mCRC patients with an anti-EGFR strategy [5]. However, an equally important aspect for achieving complete clinical success is the prevention of avoidable AEs. They only compared the toxicity burden of both hematologic adverse events and nonhematologic adverse events, which were comparable between the two groups [5]. However, considering that chemotherapy induces numerous AEs into the whole body system, classifying AEs in to two categories, hematologic and nonhematologic AEs, is not sufficient to predict patient outcomes. Furthermore, the SAE risks from bevacizumab- or cetuximab-mased chemotherapy should be evaluated to improve patient outcomes by preventing avoidable SAEs.

In our study, we comprehensively investigated 30 different systemic SAE (Grade 3 and 4 per CTCAE) profiles of bevacizumab- and cetuximab-based chemotherapy to assess the tolerability of targeted therapy in treatment-naïve patients diagnosed with RAS wild-type mCRC. Our pooled analysis revealed no differences in the risks of hematological, GI, and neurological SAEs between bevacizumab- and cetuximab-based chemotherapies; however, bevacizumab-based chemotherapy has lower risks of dermatological (RR 0.24, 95% CI 0.11–0.53, p = 0.0003) and renal SAEs (RR 0.57, 95% CI 0.37–0.86, p = 0.007) than cetuximab-based chemotherapy.

A review article evaluating cetuximab AEs from 15 trials with cetuximab monotherapy and combination cetuximab therapy suggested that more than 80% of patients receiving cetuximab reported dermatological AEs including papulopustular or acneiform skin rash and nail disorders [18]. On the other hand, the PRODIGE18 (Partenariat de Recherche en Oncologie DIGEstive) randomized clinical trial compared the AEs between cetuximabbased and bevacizumab-based chemotherapies in 132 patients with mCRC. They showed comparable dermatologic AEs with any and grade 3/4 (skin disorders, stomatitis, and paronychia) with no significant differences [20]. Similarly, our systematic meta-analysis also revealed insignificant elevation in the risk of mucositis and paronychia in patients treated with cetuximab when compared with bevacizumab, but the risk of rash and HFS was markedly lower in patients receiving bevacizumab-based chemotherapy with RRs of 0.11 (95% CI 0.05–0.23, *p* < 0.00001) and 0.33 (95% CI 0.15–0.74, *p* = 0.007) for rash and HFS, respectively. According to a meta-analysis of the cetuximab-induced rash, the risk of cetuximab-induced high grade acneiform rash was substantially elevated when administered with concomitant chemotherapy, indicating that mCRC patients are vulnerable to papulopustular or acneiform skin rash [21], and a cohort demonstrated a greater risk of cetuximab-induced rash in male and young patients [22]. Nonetheless, cetuximab administration should not be interrupted as cetuximab-induced grade 2–4 dermatological toxicity is dose-dependent and has a strong correlation with progression-free survival (PFS), and overall survival (OS) prolongation in mCRC patients though pharmacological management is currently limited to moisturizing skin products for dermatological disorders [23].

Electrolyte disorders, such as hypomagnesemia, hypokalemia, and hypocalcemia, are commonly reported SAEs related to renal system in patients undergoing cetuximab-based chemotherapy. Previous studies have identified old age, high baseline magnesium levels, and longer treatment duration (usually more than 3 months) as risk factors for cetuximab-induced grade 3 or 4 hypomagnesemia with an incidence of 6–47%, which is mostly reversible after treatment discontinuation; however, delayed management may increase mortality associated with fatal events, including cardiac arrhythmia [23,24]. Despite its substantial impact on patient prognosis, the pharmacological management is limited to electrolyte supplementation for electrolyte disruptions [23]. Hence, more studies on risk

stratification as well as SAE management modalities are warranted to improve patient outcomes from cetuximab-based chemotherapy.

On the other hand, bevacizumab has shown substantially elevated SAE risks related to the CV system, including hypertension and arrythmia (RR 4.65, 95% CI 1.83–11.78, p = 0.001). Hypertension is one of the most common bevacizumab-induced AEs affecting 4–35% of patients [25]. The mechanism of bevacizumab-induced hypertension is still being debated, but reduced production of nitric oxide in the endothelium from VEGF inhibition seems to play a crucial role in increasing blood pressure. The incidence of bevacizumab-induced hypertension is dose-dependent, and paradoxically, some studies suggest hypertension incidence may be a marker for predicting improved survival of CRC patients; nonetheless, uncontrolled bevacizumab-induced hypertension may attenuate the risk of other CV disorders, including arrhythmias, ischemic heart disease, and congestive heart failure [25]. Although current guidelines do not offer specific recommendation for bevacizumab-induced hypertension in patients with underlying CV disorders, stratification of CV risks is required in patients who are planning bevacizumab-based chemotherapy. It can be easily aggregable since bevacizumab is the most commonly prescribed targeted therapeutic agent and patients with underlying CV disorders or the risk factors are at elevated risk of CV-related hospitalization due to bevacizumab treatment [26]. Furthermore, a recent meta-analysis on fatal adverse events (FAE) of targeted therapeutic agents in CRC patients revealed the highest FAE cases associated with CV events despite similar incidence of fatal AEs between bevacizumab and cetuximab [27]. Hence, the development of standard CV monitoring parameters associated with bevacizumab administration should be endorsed.

To the best of our knowledge, this is the first meta-analysis comprehensively analyzing 30 individual SAE profiles of bevacizumab and cetuximab prescribed as first-line therapeutic agents for RAS wild-type mCRC. In the PRODIGE18 trial, an incidence ratio of 15 AEs was assessed among small number of patients of 65 and 67 patients in bevacizumab and cetuximab groups, respectively, and no statistical comparison was performed [20]. Thus, the evaluation of potential risk of AE occurrence between two major targeted therapy-based chemotherapy of RAS wild-type mCRC is beneficial for proper management of the entire clinical profile of the patients. We also assessed hepatic and renal toxicity in overall and the related components between the bevacizumab- and cetuximab-based chemotherapy among patients with RAS wild-type mCRC. Furthermore, the risk of infection, the major complication of chemotherapy secondary to neutropenia [28], was not substantially different between cetuximab (n = 452)- and bevacizumab (n = 405)-based chemotherapy for RAS wild-type mCRC. Nonetheless, caution is required when interpreting the study results because AEs are induced by numerous factors including older age, multiple comorbidities, drug combination, drug interactions, route of administration, and treatment duration [6]. Although this analysis included two backbone chemotherapy regimens, FOLFOX and FOLFIRI, variable chemotherapy regimens options including CAPEOX and FOLFOXIRI are available for mCRC patients, and a different combination may induce divergent AEs [3]. Moreover, administration of drug combination regimen may predispose patients at escalated risk of AEs secondary to drug-drug interactions [29], and studies suggest that approximately 27-58% of cancer patients experience at least one drug-drug interaction during cancer management [30,31]. However, due to the large burden of medications and the substantial toxicity of chemotherapeutic agents, the causes of AEs during cancer management may obscure, and severely attenuated patients' health status from metastatic cancers may disguise the AEs [3]. Thus, assumptions that all cancer patients possess increased AE risks associated with chemotherapy regimen, drug-drug interactions and patient status should be taken into consideration during patient care.

Based on the previous studies [4,5], cetuximab-based chemotherapy has higher efficacy as implied by the superior response rate, which consequently increases patient survival; however, further assessment of tolerability of cetuximab-based chemotherapy should not be neglected because of substantially elevated AE risks of electrolyte and dermatological disorders, which may decrease patients' quality of life (QOL). In fact, a prospective cohort study showed better patient-related outcomes and health-related QOL measured by European Organization for the Research and treatment of Cancer Quality of Life Questionnaire (QLQ)-C30 and QLQ-CR 29 questionnaires in mCRC patients treated with bevacizumab compared with patients receiving cetuximab-based chemotherapy [32]. The clinical outcomes from medication management in metastatic cancer patients are unpredictable in most cases because numerous factors, including patient-specific factors (age, comorbidities, genetics, and health status inferred by ECOG score), cancer characteristics, chemotherapy regimens, and drug–drug interactions can affect patients' responses to medication, and patients diagnosed with metastatic cancers already possess underlying factors associated with increased AE risk [3,25]. Thus, risk stratification related to SAEs in addition to medication efficacy should be taken into consideration when choosing medication regimens for RAS wild-type mCRC patients.

The interest in precision medicine in cancer has been steadily increased and has advanced the clinical diagnosis and management of cancer [33,34]. The clinical efficacy of chemotherapeutic agents as well as patient prognosis are easily predicted by the precision medicine, and administration of EGFR inhibitors in RAS wild-type mCRC patients is an example of precision medicine, in terms of variable drug responses secondary to genetic traits [33]. Recently, computational methods involving virtual molecular tumor boards, digital twins, and dynamic precision medicine have be adapted for precision oncology trials on cancer biomarkers, thereby improving patient outcomes by selecting optimal therapeutic agents [35]. However, the application of precision medicine on the prediction of chemotherapy-related AEs is relatively neglected despite the significant AE risks in cancer patients, as implied by the limited number of studies. As previously stated, the causes of AEs are variable, subsequently making AE predictions ambiguous. Therefore, further studies on mechanism of AEs of each chemotherapeutic and targeted agents as well as AE traits associated with genetic variability are warranted to establish a foundation on precision medicine-based AE prediction modeling to improve patient outcomes.

This study possesses some limitations that should be acknowledged. First, the included studies had different study designs and outcome measurements. All patients received either FOLFOX or FOLFIRI; thus, the backbone chemotherapy regimens are not the same among the studies. Moreover, only two RCTs investigated our outcomes in mCRC patients administering the same backbone chemotherapeutic regimens; others were observational studies retrospectively recruited patients who received either bevacizumabor cetuximab-based chemotherapy, which increased the heterogeneity across the study outcomes. Nonetheless, monotherapy is rare in cancer management, and patients receive at least two concomitant chemotherapeutic agents to improve clinical outcomes, which subsequently makes patients more susceptible to unpredictable AEs. However, since metastatic cancer patients are vulnerable population who rarely participate in clinical trials and for whom various regimens are available, this study has strong external validity because we comprehensively evaluated the overall AE profiles of targeted therapy administered by diverse chemotherapy regimens. However, further research on factors associated with risk stratifications of AEs is recommended to improve the clinical outcomes of mCRC patients

5. Conclusions

First-line cetuximab-based chemotherapy may predispose treatment-naïve mCRC patients at elevated risk for dermatological and renal SAEs, mostly rash, HFS, and electrolyte disorders. On the other hands, mCRC patients undergoing first-line bevacizumab-based chemotherapy may have higher CV risks such as hypertension and arrhythmia. However, the risks of hematological, GI, and neurological SAEs are comparable between cetuximaband bevacizumab-based chemotherapy patients. **Supplementary Materials:** The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/healthcare10020217/s1, Figure S1: Funnel plot of hematological adverse events, Table S1: Quality assessment of included RCTs, Table S2: Quality assessment of included observational studies.

Author Contributions: For Conceptualization, Y.N.H. and S.J.R.; methodology, Y.N.H., Y.J.C. and S.J.R.; software, Y.J.C. and Y.N.H.; validation, Y.J.C. and S.J.R.; formal analysis, Y.N.H. and Y.J.C.; investigation, Y.N.H. and S.J.R.; resources, Y.N.H. and Y.J.C.; data curation, Y.J.C.; writing—original draft preparation, Y.J.C.; writing—review and editing, Y.J.C., Y.N.H. and S.J.R. visualization, Y.J.C.; supervision, S.J.R.; project administration, Y.J.C. and S.J.R.; funding acquisition, S.J.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea Government Ministry of Science and ICT [2020R1A2C1009224]. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education [NRF-2017R1D1A1B03033389].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in article or supplementary material cited in the reference.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Biller, L.H.; Schrag, D. Diagnosis and treatment of metastatic colorectal cancer: A Review. JAMA 2021, 325, 669–685. [CrossRef] [PubMed]
- Jeon, Y.; Park, E.J.; Lim, J.H.; Baik, S.H. Clinical outcomes of complete cytoreduction with concurrent liver resection followed by hyperthermic intraperitoneal chemotherapy for synchronous peritoneal and liver metastatic colorectal cancer. *World J. Surg. Oncol.* 2019, *17*, 214. [CrossRef] [PubMed]
- 3. National Comprehensive Cancer Network. NCCN Guidelines Version 2. 2021. Colon Cancer. Available online: www.nccn.org (accessed on 30 March 2021).
- 4. Jiang, W.; Yu, Q.; Ning, R.; Zhao, W.; Wei, C. Efficacy of bevacizumab versus epidermal growth factor receptor inhibitors for wild-type RAS metastatic colorectal cancer: A meta-analysis. *Onco Targets Ther.* **2018**, *11*, 4271–4281. [CrossRef] [PubMed]
- 5. Zheng, B.; Wang, X.; Wei, M.; Wang, Q.; Li, J.; Bi, L.; Deng, X.; Wang, Z. First-line cetuximab versus bevacizumab for RAS and BRAF wild-type metastatic colorectal cancer: A systematic review and meta-analysis. *BMC Cancer* **2019**, *19*, 280. [CrossRef]
- 6. Du, R.; Wang, X.; Ma, L.; Larcher, L.M.; Tang, H.; Zhou, H.; Chen, C.; Wang, T. Adverse reactions of targeted therapy in cancer patients: A retrospective study of hospital medical data in China. *BMC Cancer* **2021**, *21*, 206. [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *BMJ* 2009, 339, b2535. [CrossRef]
- U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7 .pdf (accessed on 2 March 2021).
- 9. Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* **2011**, *343*, d5928. [CrossRef]
- Sterne Bennouna, J.A.C.; Higgins, J.P.T.; Elbers, R.G.; Reeves, B.C.; the Development Group for ROBINSI. Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I): Detailed Guidance, Updated 12 October 2016. Available online: http: //www.riskofbias.info (accessed on 30 March 2021).
- 11. Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. *BMJ* **2003**, 327, 557–560. [CrossRef]
- 12. Oki, E.; Emi, Y.; Yamanaka, T.; Uetake, H.; Muro, K.; Takahashi, T.; Nagasaka, T.; Hatano, E.; Ojima, H.; Manaka, D.; et al. Randomised phase II trial of mFOLFOX6 plus bevacizumab versus mFOLFOX6 plus cetuximab as first-line treatment for colorectal liver metastasis (ATOM trial). *Br. J. Cancer* **2019**, *121*, 222. [CrossRef]
- Venook, A.P.; Niedzwiecki, D.; Lenz, H.J.; Innocenti, F.; Fruth, B.; Meyerhardt, J.A.; Schrag, D.; Greene, C.; O'Neil, B.H.; Atkins, J.N.; et al. Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: A randomized clinical trial. *JAMA* 2017, 317, 2392–2401. [CrossRef]
- 14. Heinemann, V.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Vehling-Kaiser, U.; Al-Batran, S.E.; Heintges, T.; Lerchenmuller, C.; Kahl, C.; Seipelt, G.; et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial. *Lancet Oncol.* **2014**, *15*, 1065–1075. [CrossRef]

- Bai, L.; Wang, F.; Li, Z.Z.; Ren, C.; Zhang, D.S.; Zhao, Q.; Lu, Y.X.; Wang, D.S.; Ju, H.Q.; Qiu, M.Z.; et al. Chemotherapy plus bevacizumab versus chemotherapy plus cetuximab as first-line treatment for patients with metastatic colorectal cancer: Results of a registry-based cohort analysis. *Medicine* 2016, 95, e4531. [CrossRef] [PubMed]
- Degirmencioglu, S.; Tanriverdi, O.; Menekse, S.; Dogan, M.; Hacioglu, B.; Oktay, E.; Erdem, D.; Arpaci, E.; Uluc, B.O.; Turhal, S.; et al. A retrospective analysis on first-line bevacizumab, cetuximab, and panitimumab-containing regimens in patients with RAS-wild metastatic colorectal cancer: A Collaborative Study by Turkish Oncology Group (TOG). *J. BUON* 2019, 24, 136–142. [PubMed]
- Yang, Y.H.; Lin, J.K.; Chen, W.S.; Lin, T.C.; Yang, S.H.; Jiang, J.K.; Lan, Y.T.; Lin, C.C.; Yen, C.C.; Tzeng, C.H.; et al. Comparison of cetuximab to bevacizumab as the first-line bio-chemotherapy for patients with metastatic colorectal cancer: Superior progressionfree survival is restricted to patients with measurable tumors and objective tumor response–a retrospective study. *J. Cancer Res. Clin. Oncol.* 2014, 140, 1927–1936.
- 18. Fakih, M.; Vincent, M. Adverse events associated with anti-EGFR therapies for the treatment of metastatic colorectal cancer. *Curr. Oncol.* **2010**, *17* (Suppl. 1), S18–S30. [CrossRef]
- 19. Totzeck, M.; Mincu, R.I.; Rassaf, T. Cardiovascular adverse events in patients with cancer treated with bevacizumab: A metaanalysis of more than 20 000 patients. *J. Am. Heart Assoc.* 2017, *10*, 6. [CrossRef]
- Bennouna, J.; Hiret, S.; Bertaut, A.; Bouche, O.; Deplanque, G.; Borel, C.; Francois, E.; Conroy, T.; Ghiringhelli, F.; des Guetz, G.; et al. Continuation of bevacizumab vs cetuximab plus chemotherapy after first progression in KRAS wildtype metastatic colorectal cancer: The UNICANCER PRODIGE18 randomized clinical trial. *JAMA Oncol.* 2019, *5*, 83–90. [CrossRef]
- 21. Balagula, Y.; Wu, S.; Su, X.; Lacouture, M.E. The effect of cytotoxic chemotherapy on the risk of high-grade aceniform rash to cetuximab in cancer patients: A meta-analysis. *Ann. Oncol.* **2011**, *22*, 2366–2374. [CrossRef]
- Jatoi, A.; Green, E.M.; Rowland, K.M.; Sargent, D.J.; Alberts, S.R. Clinical predictors of severe cetuximab-induced rash: Observations from 933 patients enrolled in north central cancer treatment group study N0147. *Oncology* 2009, 77, 120–123. [CrossRef]
- 23. Fakih, M.G.; Wilding, G.; Lombardo, J. Cetuximab-induced hypomagnesemia in patients with colorectal cancer. *Clin. Colorectal. Cancer* **2006**, *6*, 152. [CrossRef]
- Wang, Q.; Qi, Y.; Zhang, D.; Gong, C.; Yao, A.; Xiao, Y.; Yang, J.; Zhou, F.; Zhou, Y. Electrolyte disorders assessment in solid tumor patients treated with anti-EGFR monoclonal antibodies: A pooled analysis of 25 randomized clinical trials. *Tumour Biol.* 2015, 36, 3471–3482. [CrossRef] [PubMed]
- 25. Economopoulou, P.; Kotsakis, A.; Kapiris, I.; Kentepozidis, N. Cancer therapy and cardiovascular risk: Focus on bevacizumab. *Cancer Manag. Res.* **2015**, *7*, 133–143. [CrossRef] [PubMed]
- 26. Nickel, A.C.; Patel, A.; Saba, N.F.; Leon, A.R.; El-Chami, M.F.; Merchant, F.M. Incidence of cancer treatment-induced arrhythmia associated with novel targeted chemotherapeutic agents. *J. Am. Heart Assoc.* **2018**, *7*, e010101. [CrossRef] [PubMed]
- Chen, J.; Wang, J.; Ni, T.; He, H.; Zheng, Q. Meta-analysis on the risk of fatal adverse events by bevacizumab, cetuximab, and panitumumab in 31 randomized trials including 25,000 patients with colorectal carcinoma. *Medicine* 2020, 99, e19908. [CrossRef]
- 28. Zheng, Y.; Chen, Y.; Yu, K.; Yang, Y.; Wang, X.; Yang, X.; Qian, J.; Liu, Z.X.; Wu, B. Fatal infections among cancer patients: A population-based study in the United States. *Infect. Dis. Ther.* **2021**, *10*, 871–895. [CrossRef]
- 29. Alvim, M.M.; Silva, L.A.; Leite, I.C.; Silvério, M.S. Adverse events caused by potential drug-drug interactions in an intensive care unit of a teaching hospital. *Rev. Bras. Ter. Intensiva* **2015**, *27*, 353–359. [CrossRef]
- 30. Riechelmann, R.; Girardi, D. Drug interactions in cancer patients: A hidden risk? J. Res. Pharm. Pract. 2016, 5, 77–78. [CrossRef]
- 31. van Leeuwen, R.W.F.; Jansman, F.G.A.; van den Bemt, P.M.L.A.; de Man, F.; Piran, F.; Vincenten, I.; Jager, A.; Rijneveld, A.W.; Brugma, J.D.; Mathijssen, R.H.J.; et al. Drug–drug interactions in patients treated for cancer: A prospective study on clinical interventions. *Ann. Oncol.* **2015**, *26*, 992–997. [CrossRef]
- Marques, R.P.; Heudtlass, P.; Pais, H.L.; Quintela, A.; Martins, A.P. Patient-reported outcomes and health-related quality of life for cetuximab versus bevacizumab in metastatic colorectal cancer: A prospective cohort study. J. Cancer Res. Clin. Oncol. 2019, 145, 1719–1728. [CrossRef]
- 33. Lahiri, C.; Pawar, S.; Mishra, R. Precision medicine and future of cancer treatment. Precis. Cancer Med. 2019, 2, 33. [CrossRef]
- Singla, P.; Musyuni, P.; Aggarwal, G.; Singh, H. Precision Medicine: An emerging paradigm for improved diagnosis and safe therapy in pediatric oncology. *Cureus* 2021, 13, e16489. [CrossRef] [PubMed]
- Madhavan, S.; Beckman, R.A.; McCoy, M.D.; Pishvaian, M.J.; Brody, J.R.; Macklin, P. Envisioning the future of precision oncology trials. *Nat. Cancer* 2021, 2, 9–11. [CrossRef]