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Abstract: Entropic dynamics is a framework in which the laws of dynamics are derived as an
application of entropic methods of inference. Its successes include the derivation of quantum
mechanics and quantum field theory from probabilistic principles. Here, we develop the entropic
dynamics of a system, the state of which is described by a probability distribution. Thus, the dynamics
unfolds on a statistical manifold that is automatically endowed by a metric structure provided by
information geometry. The curvature of the manifold has a significant influence. We focus our
dynamics on the statistical manifold of Gibbs distributions (also known as canonical distributions or
the exponential family). The model includes an “entropic” notion of time that is tailored to the system
under study; the system is its own clock. As one might expect that entropic time is intrinsically
directional; there is a natural arrow of time that is led by entropic considerations. As illustrative
examples, we discuss dynamics on a space of Gaussians and the discrete three-state system.

Keywords: entropic dynamics; maximum entropy; information geometry; canonical distributions;
exponential family

1. Introduction

The original method of Maximum Entropy (MaxEnt) is usually associated with the
names of Shannon [1] and Jaynes [2–5], although its roots can be traced to Gibbs [6]. The
method was designed to assign probabilities on the basis of partial information in the
form of expected value constraints and the central quantity, called entropy, which was
interpreted as a measure of uncertainty or as an amount of missing information. In a series
of developments starting with Shore and Johnson [7], with further contributions from other
authors [8–12], the range of applicability of the method was significantly extended. In its
new incarnation, the purpose of the method of Maximum Entropy, which will be referred
as ME to distinguish it from the older version, is to update the probabilities from arbitrary
priors when new information in the form of constraints is considered [13]. Highlights of
the new method include: (1) A unified treatment of Bayesian and entropic methods which
demonstrates their mutual consistency. (2) A new concept of entropy as a tool for reasoning
that requires no interpretation in terms of heat, multiplicities, disorder, uncertainty, or
amount of information. Indeed, entropy in ME needs no interpretation; it is a tool designed
to perform a certain function—to update probabilities to accommodate new information.
(3) A Bayesian concept of information defined in terms of its effects on the beliefs of rational
agents—the constraints are the information. (4) The possibility of information that is not in
the form of expected value constraints (we shall see an example below).

The old MaxEnt was sufficiently versatile for providing the foundations to equilib-
rium statistical mechanics [2] and to find application in a wide variety of fields such
as economics [14], ecology [15,16], cellular biology [17,18], network science [19,20], and
opinion dynamics [21,22]. As is the case with thermodynamics, all these applications are
essentially static. MaxEnt has also been deployed to non-equilibrium statistical mechanics
(see [23,24] and subsequent literature in maximum caliber, e.g., [25–27]) but the dynamics
is not intrinsic to the probabilities; it is induced by the underlying Hamiltonian dynamics
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of the molecules. For problems beyond physics there is a need for more general dynamical
frameworks based on information theory.

The ME version of the maximum entropy method offers the possibility of developing a
true dynamics of probabilities. It is a dynamics driven by entropy—an Entropic Dynamics
(ED)—which is automatically consistent with the principles for updating probabilities. ED
naturally leads to an “entropic” notion of time. Entropic time is a device designed to keep
track of the accumulation of changes. Its construction involves three ingredients: one must
introduce the notion of an instant, verify that these instants are suitably ordered, and finally
one must define a convenient notion of duration or interval between successive instants.
A welcome feature is that entropic time is tailored to the system under study; the system
is its own clock. Another welcome feature is that such an entropic time is intrinsically
directional—an arrow of time is generated automatically.

ED has been successful in reconstructing dynamical models in physics such as quan-
tum mechanics [28,29], quantum field theory [30], and the renormalization group [31].
Beyond physics, it has been recently applied to the rhw fields of finance [32,33] and neural
networks [34]. Here, we aim for a different class of applications of ED: to describe the
dynamics of Gibbs distributions, also known as canonical distribution (exponential family)
in statistical physics (statistics), since they are the distributions that are defined by a set of
expected values constraint, namely sufficient statistics. Unlike the other cited papers on ED,
here we will not focus on what the distributions are meant to represent. Other assumptions
that would be specific to the modeled system are beyond the scope of the present article.

The goal is to study the ED that is generated by transitions from one distribution to
another. The main assumptions are that changes happen and that they are not discontinu-
ous. We do not explain why changes happen—this is a mechanics without a mechanism.
Our goal is to venture an educated estimate of what changes one expects to happen. The
second assumption is that systems evolve along continuous trajectories in the space of
probability distributions. It also implies that the study of motion involves two tasks. The
first is to describe how a single infinitesimal step occurs. The second requires a scheme for
keeping track of how a large number of these short steps accumulate to produce a finite
motion. It is the latter task that involves the introduction of the concept of time.

The fact that the space of macrostates is a statistical manifold—each point in the space
is a probability distribution—has a profound effect on the dynamics. The reason is that
statistical manifolds are naturally endowed with a Riemannian metric structure that is given
by the Fisher–Rao information metric (FRIM) [35,36]; this structure is known as information
geometry [37–39]. The particular case of Gibbs distributions leads to additional interesting
geometrical properties (see e.g., [40,41]), which have been explored in the extensive work
relating statistical mechanics to information geometry [42–49]. Information geometry has
also been used as a fundamental concept for complexity measures [50–52].

In this paper, we tackle the more formal aspects of an ED on Gibbs manifolds and
offer a couple of illustrative examples. The formalism is applied to two important sets
of probability distributions: the space of Gaussians and the space of distributions for a
three-state system, both of which can be written in the exponential form. Because these
distributions are both well-studied and scientifically relevant, they can give us a good
insight into how the dynamics work.

It is important to emphasize that Gibbs distributions are not restricted to the descrip-
tion of a system in thermal equilibrium. While it is true that, if one chooses the conserved
quantities in Hamiltonian motion as the sufficient statistics, the resultant Gibbs distri-
butions are the ones that are associated to equilibrium statistical mechanics, the Gibbs
distribution can be defined for arbitrary choices of sufficient statistics, and the modeling
endeavour includes identifying the ones that are relevant to the problem at hand. On
the same note, the dynamics developed here are not a form of nonequilibrium statistical
mechanics, which is driven by a underlying physical molecular dynamics, while the ED is
completely agnostic of any microstate dynamics.
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The article is organized, as follows: the next section discusses the space of Gibbs
distributions and its geometric properties; Section 3 considers the ideas of ED; Section 4
tackles the difficulties associated with formulating ED on the curved space of probability
distributions; Section 5 introduces the notion of entropic time; Section 6 describes the
evolution of the system in the form of a differential equation; in Section 7, we offer two
illustrative examples of ED on a Gaussian manifold and on a two-simplex.

2. The Statistical Manifold of Gibbs Distributions
2.1. Gibbs Distributions

The canonical or Gibbs probability distributions are the macrostates of a system. They
describe a state of uncertainty regarding the microstate x ∈ X of the macroscopic system.
A canonical distribution ρ(x) is assigned by maximizing the entropy

S[ρ|q] = −
∫

dx ρ(x) log
ρ(x)
q(x)

(1)

relative to the prior q(x) subject to n expected value constraints∫
dx ρ(x)ai(x) = Ai, with i = 1 . . . n , (2)

and the normalization of ρ(x). Typically, the prior q(x) is chosen to be a uniform distri-
bution over the space X so that it is maximally non-informative, but this is not strictly
necessary. The n constraints, on the other hand, reflect the information that happens to be
relevant to the problem. The resulting canonical distribution is

ρ(x|λ) = q(x)
Z(λ)

exp
[
−λiai(x)

]
, (3)

where λ = {λ1 . . . λn} are the Lagrange multipliers that are associated to the expected
value constraints, and we adopt the Einstein summation convention. The normalization
constant is

Z(λ) =
∫

dx q(x) exp
[
−λiai(x)

]
= e−F(λ), (4)

where F = − log Z plays a role analogous to the free energy. The Lagrange multipliers
λi(A) are implicitly defined by

∂F
∂λi

= Ai . (5)

Evaluating the entropy (1) at its maximum yields

S(A) = −
∫

dx ρ(x|λ(A)) log
ρ(x|λ(A))

q(x)
= λi(A)Ai − F(λ(A)) . (6)

which we shall call the macrostate entropy or (when there is no risk of confusion) just the
entropy. Equation (6) shows that S(A) is the Legendre transform of F(λ): a small change
dAi in the constraints shows that S(A) is indeed a function of the expected values Ai,

dS = λidAi so that λi =
∂S
∂Ai . (7)

One might think that defining dynamics on the family of canonical distributions might
be too restricted to be of interest; however, this family has widespread applicability. Here,
it has been derived using the method of maximum entropy, but historically it has also been
known as the exponential family, namely the only family of distributions that possesses
sufficient statistics. Interestingly, this was a problem that was proposed by Fisher [53] in the
primordium of statistics and later proved independently by Pitman [54], Darmois [55], and
Koopman [56]. The sufficient statistics turn out to be the functions ai(x) in (1). In Table 1,
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we give a short list of the priors q(x) and the functions ai(x) that lead to well-known
distributions [41,57].

Table 1. Identification of sufficient statistics, priors and Lagrange multipliers for some well-known probability distributions.

Distribution λ parameter Suff. Stat. Prior

Exponent Polynomial ρ(x|β) =
k
√

β

Γ(1+1/β)
e−βxk

λ = β a(x) = xk uniform

Gaussian ρ(x|µ, σ) = 1√
2πσ2 exp

[
− (x−µ)2

2σ2

]
λ =

(
− µ

σ2 , 1
2σ2

)
a(x) = (x, x2) uniform

Multinomial (k) ρ(x|θ) = n!
x1!...xk ! θ

x1
1 . . . θ

xk
k λ = − log(θ1, θ2, . . . , θk) a = (x1, . . . xk) q(x) = ∏k

i=1 xi!
Poisson ρ(x|m) = mx

x! e−m λ = − log m a(x) = x q(x) = 1/x!
Mixed power laws ρ(x|α, β) = x−αe−βx

βα−1Γ(1−α)
λ = (α, β) a = (log x, x) uniform

Naturally, the method of maximum entropy assumes that the various constraints are
compatible with each other, so that the set of multipliers λ exists. It is further assumed that
the constraints reflect physically relevant information, so that the various functions, such
as Ai(λ) = ∂

∂λi
F and λi(A) = ∂

∂Ai S, which appear in the formalism, are both invertible and
differentiable, and so that the space of Gibbs distributions is indeed a manifold. However,
the manifold may include singularities of various kinds that are of particular interest, as
they may describe phenomena, such as phase transitions [42,46].

2.2. Information Geometry

We offer a brief review of well known results concerning the information geometry of
Gibbs distributions in order to establish the notation and recall some results that will be
needed in later sections [38,40].

To each set of expected values A = {A1, A2, . . . , An}, or to the associated set of
Lagrange multipliers λ = {λ1, λ2, . . . , λn}, there corresponds a canonical distribution.
Therefore the set of distributions ρ(x|λ) or, equivalently, ρ(x|A) is a statistical manifold
in which each point can be labelled by the coordinates λ or by A. Whether we choose
λ or A as coordinates is purely a matter of convenience. The change of coordinates is
implemented using

∂Ai

∂λk
= −∂2 log Z

∂λk∂λi
= Ak Ai − 〈akai〉 , (8)

where we recognize the covariance tensor,

Cij = 〈(ai − Ai)(aj − Aj)〉 = −∂Ai

∂λj
. (9)

Its inverse is given by

Cjk = −
∂λj

∂Ak = − ∂2S
∂Aj∂Ak , (10)

that means the inverse covariant matrix Cij is the Hessian of negative entropy in (6).
This implies

CijCjk =
∂Ai

∂Ak = δi
k . (11)

Statistical manifolds are endowed with an essentially unique quantity to measure
the extent to which two neighboring distributions ρ(x|A) and ρ(x|A + dA) can be distin-
guished from each other. This measure of distinguishability provides a statistical notion of
distance, which is given by FRIM, d`2 = gijdAidAj where
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gij =
∫

dx ρ(x|A)
∂ log ρ(x|A)

∂Ai
∂ log ρ(x|A)

∂Aj . (12)

For a broader discussion on the existence, derivation, and consistency of this metric, as
well as its properties, see [38–40]. Here, it suffices to say that FRIM is the unique metric
structure that is invariant under Markov embeddings [58,59] and, therefore, is the only
way of assigning a differential geometry structure that is in accordance to the grouping
property of probability distributions.

To calculate gij for canonical distributions, we use

gij =
∂λk

∂Ai
∂λl

∂Aj

∫
dx ρ

∂ log ρ

∂λk

∂ log ρ

∂λl
(13)

and

∂ log ρ(x|A)

∂λk
= Ak − ak(x) (14)

so that, using (8)–(11), we have

gij = CikCl jCkl = Cij . (15)

Therefore, the metric tensor gij is the inverse of the covariance matrix Cij, which, by (10), is
the Hessian of the entropy.

As mentioned above, instead of Ai, we could use the Lagrange multipliers λi as
coordinates. Subsequently, the information metric is the covariance matrix,

gij =
∫

dx ρ(x|λ) ∂ log ρ(x|λ)
∂λi

∂ log ρ(x|λ)
∂λj

= Cij . (16)

Therefore, the distance d` between neighboring distributions can be written in either of
two equivalent forms,

d`2 = gijdAidAj = gijdλidλj . (17)

Incidentally, the availability of a unique measure of volume dV = (det gij)
1/2dn A

implies that there is a uniquely defined notion of the uniform distribution over the space
of macrostates. The uniform distribution Pu assigns equal probabilities to equal volumes,
so that

Pu(A)dn A ∝ g1/2dn A where g = det gij . (18)

To conclude this overview section, we note that the metric tensor gij can be used to
lower the contravariant indices of a vector to produce its dual covector. Using (10) and
(12), the covector dAi dual to the infinitesimal vector with components dAi is

dAi = gijdAj = − ∂λi

∂Aj dAj = −dλi . (19)

which shows that not only are the coordinates A and λ related through a Legendre transfor-
mation, which is a consequence of entropy maximization, but also through a vector-covector
duality, i.e.,−dλi is the covector dual to dAi, which is a consequence of information geometry.

3. Entropic Dynamics

Having established the necessary background, we can now develop an entropic
framework to describe the dynamics on the space of macrostates.
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3.1. Change Happens

Our starting assumption is that changes happen continuously, which is supported by
observation in nature. Therefore, the dynamics that we wish to formulate assumes that
the system evolves along continuous paths. This assumption of continuity represents a
significant simplification, because it implies that a finite motion can be analyzed as the
accumulation of a large number of infinitesimally short steps. Thus, our first goal will be to
find the probability P(A′|A) that the system takes a short step from the macrostate A to the
neighboring macrostate A′ = A + dA. The transition probability P(A′|A) will be assigned
by maximizing an entropy. This first requires that we identify the particular entropy that
is relevant to our problem. Next, we must decide on the prior distribution: what short
steps we might expect before we know the specifics of the motion. Finally, we stipulate
the constraints that are meant to capture the information that is relevant to the particular
problem at hand.

To settle the first item—the choice of entropy—we note that not only are we are
uncertain about the macrostate at A, but we are also uncertain about the microstates
x ∈ X . This means that the actual universe of discourse is the joint space A×X and the
appropriate statistical description of the system is in terms of the joint distribution

P(x, A) = P(x|A)P(A) = ρ(x|A)P(A) , (20)

Where ρ is of form (3), which means that we impose P(x|A) to be canonical and the
distribution P(A) represents our lack of knowledge about the macrostates. Note that what
we did in (20) is nothing more than assuming a probability distribution for the macrostates.
This description is sometimes referred to as superstatistics [60].

Our immediate task is to find the transition probability of a change P(x′, A′|x, A) by
maximizing the entropy

S[P|Q] = −
∫

dA′dx′P(x′, A′|x, A) log
P(x′, A′|x, A)

Q(x′, A′|x, A)
, (21)

relative to the prior Q(x′, A′|x, A) and subject to constraints to be discussed below (to
simplify the notation in multidimensional integrals we write dn A′ = dA′ and dnx′ = dx′).

Although S in (6) and S in (21) are both entropies, in the information theory sense,
they represent two very distinct statistical objects. The S(A) in (6) is the entropy of the
macrostate—which is what one may be used to from statistical mechanics —while the
S[P|Q] in (21) is the entropy to be maximized, so that we find the transition probability that
better matches the information at hand, which means that S is a tool to select the dynamics
of the macrostates.

3.2. The Prior

We adopt a prior that implements the idea that the system evolves by taking short
steps A → A + ∆A at the macrostate level, but is otherwise maximally uninformative.
We write

Q(x′, A′|x, A) = Q(x′|x, A, A′)Q(A′|x, A) , (22)

and analyze the two factors in turn. We shall assume that a priori, before we know the
relation between the microstates x and the macrostate A, the prior distribution for x′ is the
same uniform underlying measure q(x′) that is introduced in (1),

Q(x′|x, A, A′) = q(x′) . (23)

Next, we tackle the second factor Q(A′|x, A). As shown in Appendix A, using the method
of maximum entropy, the prior that enforces short steps, but is otherwise maximally
uninformative, is spherically symmetric as
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Q(A′|x, A) = Q(A′|A) ∝ g1/2(A′) exp
[
− 1

2τ
gij∆Ai∆Aj

]
. (24)

so the joint prior is

Q(x′, A′|x, A) ∝ q(x′)g1/2(A′) exp
[
− 1

2τ
gij∆Ai∆Aj

]
. (25)

We see that steps of length

∆` ∼ (gij∆Ai∆Aj)1/2 � τ1/2 , (26)

have negligible probability. Eventually, we will take the limit τ → 0 to enforce short steps.
The prefactor g1/2(A′) ensures that Q(A′|A) is a probability density. Later, we will show
how this choice of priors, which only comes from the assumption of continuous motion,
leads to a diffusion structure.

3.3. The Constraints

The piece of information that we wish to codify through the constraints is the simple
geometric idea that the dynamics remains confined to the statistical manifold A. This is
implemented by writing

P(x′, A′|x, A) = P(x′|x, A, A′)P(A′|x, A) (27)

and imposing that the distribution for x′ is a canonical distribution

P(x′|x, A, A′) = ρ(x′|A′) ∈ A . (28)

This means that, given A′, the distribution of x′ is independent of the initial microstate x
and macrostate A. The second factor in (27), P(A′|x, A), is the transition probability we
seek, which leads to the constraint

P(x′, A′|x, A) = ρ(x′|A′)P(A′|x, A). (29)

We note that this constraint is not, as is usual in applications of the method of maximum
entropy, in the form of an expected value. It may appear from (29) that the transition
probability P(A′|x, A) will be largely unaffected by the underlying space of microstates.
To the contrary, as we shall see below—(31) and (32)—the macrostate dynamics turns out
to be dominated by the entropy of the microstate distribution ρ(x′|A′).

Depending on the particular system under consideration, one could formulate richer
forms of dynamics by imposing additional constraints. To give just one example, one could
introduce some drift relative to the direction that is specified by a covector Fi by imposing
a constraint of the form 〈∆Ai〉Fi = κ (see [29,30]). However, in this paper, we shall limit
ourselves to what is perhaps the simplest case, the minimal ED that is described by the
single constraint (29).

3.4. Maximizing the Entropy

Substituting (25) and (29) into (21) and rearranging, we find

S[P|Q] =
∫

dA′ P(A′|x, A)

[
− log

P(A′|x, A)

Q(A′|A)
+ S(A′)

]
(30)

where S(A′) is the macrostate entropy that is given in (6). Maximizing S subject to normal-
ization gives
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P(A′|x, A) ∝ Q(A′|A)eS(A′)

∝ g1/2(A′) exp
[
− 1

2τ
gij∆Ai∆Aj + S(A′)

]
. (31)

It is noteworthy that P(A′|x, A) turned out to be independent of x, which is not surprising,
since neither the prior nor the constraints indicate any correlation between A′ and x.

We perform a linear approximation of S because the transition from A to A′ has to be
an arbitrarily small continuous change. This makes the exponential factor in (31) quadratic
in ∆A, as

P(A′|A) =
g1/2(A′)
Z exp

[
∂S
∂Ai ∆Ai − 1

2τ
gij∆Ai∆Aj

]
, (32)

where eS(A) was absorbed in the normalization factor Z . This is the transition probability
found by maximizing the entropy (21). However, some mathematical difficulties arise
from the fact that (32) is defined over a curved manifold. We are going to explore these
mathematical issues and their consequences to motion in the following section.

4. The Transition Probability

Because the statistical manifold is a curved space, we must understand how the
transition probability (32) behaves under a change of coordinates. Because (25) and (32)
describe an arbitrarily small step, we wish to express the transition probability, as well
as the quantities derived from it, which are calculated up to the order of τ. Because the
exponent in (32) is manifestly invariant, one can complete squares and obtain

P(A′|A) =
g1/2(A′)
Z ′ exp

[
− 1

2τ
gij

(
∆Ai − τgik ∂S

∂Ak

)(
∆Aj − τgik ∂S

∂Ak

)]
. (33)

If g(A) were uniform, it would imply that the first two moments
〈
∆Ai〉 and

〈
∆Ai∆Aj〉 are

of order τ. Therefore, even in the limit τ → 0, the transition will be affected by curvature
effects. This can be verified for an arbitrary metric tensor by a direct calculation of the first
moment,

〈∆Ai〉 =
∫

dA′ ∆AiP(A′|A)

=
1
Z ′

∫
dA′ g1/2(A′)∆Ai exp

[
− gkl

2τ

(
∆Ak − τVk

)(
∆Al − τV l

)]
,

(34)

where Vi = gij ∂S
∂Aj . And the second moment

〈∆Ai∆Aj〉 =
∫

dA′ ∆Ai∆AjP(A′|A)

=
1
Z ′

∫
dA′ g1/2(A′)∆Ai∆Aj exp

[
− gkl

2τ

(
∆Ak − τVk

)(
∆Al − τV l

)]
.

(35)

It is convenient to write (32) in normal coordinates at A in order to facilitate the
calculation of the integrals in (34) and (35). This means that, for a smooth manifold, one
can always make a change of coordinates Aµ(Ai)—we will label the normal coordinates
with Greek letter indexes (µ, ν)—so that the metric in this coordinate system is so that

gµν(A) = δµν and
∂gµν

∂Aµ

∣∣∣∣
A
= 0 , (36)

allowing for us to approximate g(A′) = 1 for a short step. For a general discussion
and rigorous proof of the existence of normal coordinates, see [61]. Although normal
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coordinates are a valuable tool for geometrical analysis at this point, it is not clear whether
they can be given a deeper statistical interpretation—this is unlike other applications
of differential geometry, such as general relativity, where the physical interpretation of
normal coordinates turns out be of central importance. A displacement in these coordinates
∆Aµ can be related to the original coordinates by a Taylor expansion in terms of ∆Ai as
(see [62,63])

∆Aµ =
∂Aµ

∂Ai ∆Ai +
1
2

∂2 Aµ

∂Aj∂Ak ∆Aj∆Ak + o(τ) . (37)

To proceed, it is interesting to recall the Christoffel symbols Γi
jk,

Γi
jk =

1
2

gil
(

∂gjl

∂Al +
∂gl j

∂Ak −
∂gjk

∂Al

)
, (38)

which transform as

Γi
jk =

∂Ai

∂Aµ

∂Aν

∂Aj
∂Aσ

∂Ak Γµ
νσ −

∂Ai

∂Aµ

∂2 Aµ

∂Aj∂Ak . (39)

Because, in normal coordinates, we have Γµ
νσ = 0, this allows us to isolate ∆Ai up to the

order τ obtaining

∆Ai =
∂Ai

∂Aµ ∆Aµ − 1
2

Γi
jk∆Aj∆Ak , (40)

By squaring (40), we have

∆Ai∆Aj =
∂Ai

∂Aµ

∂Aj

∂Aν
∆Aµ∆Aν + o(τ) . (41)

Because the exponent in (34) is invariant and in a coordinate transformation we have
dA P(A) = dÃ P(Ã), it separates into two terms.

〈∆Ai〉 = ∂Ai

∂Aµ
1
Z ′
∫

dA′∆Aµ exp
[
− δνσ

2τ (∆Aν − τVν)(∆Aσ − τVσ)
]

− 1
2 Γi

jk
∂Aj

∂Aµ
∂Ak

∂Aν
1
Z ′
∫

dA′∆Aµ∆Aν exp
[
− δυσ

2τ (∆Aν − τVν)(∆Aσ − τVσ)
]

.
(42)

The integrals can be evaluated from the known properties of a Gaussian. The inte-
gral in the first term gives 〈∆Aµ〉 = τδµν ∂S

∂Aν and the integral in the second term gives
〈∆Aµ∆Aν〉 = τδµν, so that

〈∆Ai〉 = ∂Ai

∂Aµ τδµν ∂S
∂Aµ −

1
2

Γi
jk

∂Aj

∂Aµ

∂Ak

∂Aν
τδµν . (43)

Therefore, in natural coordinates, the first two moments up to order of τ are

〈∆Ai〉 = τgij ∂S
∂Aj −

τ

2
Γi , and 〈∆Ai∆Aj〉 = τgij , (44)

where Γi = Γi
jkgjk. Here, we see the dependence on curvature for 〈∆Ai〉 in the Christoffel

symbol term. Note that it is a consequence of the dependance between ∆Ai and the
quadratic term ∆Ai∆Aj in (40), which per (44) does not vanish, even for small steps. Hence,
fluctuations in Ai cannot be ignored in the ED motion, and this is the reason why the
motion probes curvature. It also follows from (44) that, even in the limit τ → 0, the average
change ∆Ai does not transform covariantly.

Note that we used several words, such as “transitions”, “short step”, “continuous”,
and “dynamics” without any established notion of time. In the following section, we
will discuss time not as an external parameter, but as an emergent parameter from the
maximum entropy transition (32) and its moments (44).
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5. Entropic Time

Having described a short step transition, the next challenge is to study how these
short steps accumulate.

5.1. Introducing Time

In order to introduce time, we note that A′ and A are elements of the same manifold;
therefore, P(A′) and P(A) are two probability distributions over the same space. Our
established solution for describing the accumulation of changes (see [28]) is to introduce a
“book-keeping” parameter t that distinguishes the said distributions as labelled by different
parameters, i.e., P(A′) = Pt′(A) and P(A) = Pt(A).

In this formalism, we will refer to these different labels as a description of the system
at particular instants t and t′. This allows us to call P(A′|A) a transition probability.

Pt′(A) = P(A′) =
∫

dA P∆t(A′|A)Pt(A) (45)

where ∆t = t′ − t.
As the system changes from A to A′ and then to A′′. The probability P(A′′) will be

constructed from P(A′), not explicitly dependent on P(A). This means that (45) represents
a Markovian process: conditioned on the present Pt′(A), the “future” Pt′′(A) is independent
of the “past” Pt(A), where t′′ > t′ > t. It is important to notice that, under this formalism,
(45) is not used to show that the process is Markovian in an existing time, but rather the
concept of time that was developed here makes the dynamics Markovian by design.

It is also important to notice that the parameter t that is presented here is not neces-
sarily the “physical” time (as it appears in Newton’s laws of motion or the Schrödinger
equation). Our parameter t, which we call entropic time, is an epistemic well-ordered
parameter in which the dynamics are defined.

5.2. The Entropic Arrow of Time

It is important to note that the marginalization process from (20) to (45) could also
lead to

P(A) =
∫

dA′ P(A|A′)P(A′) , (46)

where the conditional probabilities are related by Bayes’ Theorem,

P(A|A′) = P(A)

P(A′)
P(A′|A) , (47)

showing that a change “forward” will not happen the same way as a change “backwards”
unless the system is in some form of stationary state, P(A) = P(A′). Another way to
present this is that probability theory alone gives no intrinsic distinction of the change
“forward” and “backward”. The fact that we assigned the change “forward” by ME implies
that, in general, the change “backward” is not an entropy maximum. Therefore, the
preferential direction of the flow of time arises from the entropic dynamics naturally.

5.3. Calibrating the Clock

One needs to define the duration ∆t with respect to the motion in order to connect the
entropic time to the transition probability. Time in entropic dynamics is defined so as to
simplify the description of the motion. This notion of time is tailored to the system under
discussion. The time interval will be chosen, so that the parameter τ that first appeared in
the prior (25) takes the role of a time interval,

τ = η∆t , (48)

where η is a constant, so that t has the units of time. For the remainder of this article, we
will adopt η = 1. In principle, any monotonic function t(τ) serves as an parameter for
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ordering. Our choice is a matter of convenience, as required by simplicity. Here this is
implemented so that for a short transition we have the dimensionless time interval

∆t = gij〈∆Ai∆Aj〉 . (49)

This means that the system’s fluctuations measure the entropic time. Rather than having
the changes in the system represented in terms of given time intervals (as measured by an
external clock), here the system is its own clock.

The moments in (44) can be written, up to order ∆t, as

〈∆Ai〉
∆t

= gij ∂S
∂Aj −

1
2

Γi , and
〈∆Ai∆Aj〉

∆t
= gij . (50)

With this, we have established a concept of time and it is convenient to write the trajectory
of the expected values in terms of a differential equation.

6. Diffusion and the Fokker–Planck Equation

Our goal of designing the dynamics from entropic methods is accomplished. The en-
tropic dynamics equation of evolution is written in integral form as a Chapman–Kolmogorov
equation (45) with a transition probability given by (32). In this section, we will conve-
niently rewrite it in the differential form. The computed drift 〈∆Ai〉 and the fluctuation
〈∆Ai∆Aj〉 in (50) describe the dynamical process as a smooth diffusion—meaning, as
defined by [63], a stochastic process in which the first two moments are calculated to
the order of ∆t, 〈∆Ai〉 = bi∆t, 〈∆Ai∆Aj〉 = ηgij∆t, and 〈∆Ai∆Aj∆Ak〉 = 0. Therefore,
for a short transition, it is possible to write the evolution of Pt(A), as a Fokker–Planck
(diffusion) equation,

∂

∂t
P = − ∂

∂Ai

(
Pvi
)

, (51)

where

vi = gij ∂S
∂Aj −

1
2

gij ∂

∂Aj

(
log

P
g1/2

)
. (52)

The derivation of (51) and (52) takes into account the fact that the space in which the
diffusion happens is curved and it is given in Appendix B. In equation (52), we see that the
current velocity vi consists of two components. The first term is the drift velocity that is
guided by the entropy gradient and the second term is an osmotic velocity, which is a term
that is driven by differences in probability density. The examples that are presented in the
following section will show how these terms interact and the dynamical properties that are
derived from each.

Derivatives and Divergence

Because the entropy S is a scalar, the velocity that is defined in (52) is a contravariant
vector. However, (51) is not a manifestly invariant equation. To check its consistency, it is
convenient to write it in terms of the invariant object p, being defined as

p(A) =
P(A)

g1/2(A)
, (53)

meaning that p is the probability of A divided by the volume element, in terms of which
(51) becomes

∂

∂t
p = − 1

g1/2
∂

∂Ai

(
g1/2 pvi

)
. (54)
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We can recognize, on the right-hand side, the covariant divergence of the contravariant
vector pvi, which can be written in the manifestly covariant form

∂

∂t
p = −Di(pvi) , (55)

where Di is the covariant derivative. The fact that the covariant derivative arises from the
dynamical process is the direct indication that even when evolving the invariant object
p the curvature of the space is taken into account. We can identify (55) as a continuity
equation—generalized to the parallel transport in a curved space, as evidenced by the
covariant divergence—where the flux, ji = pvi, can be written from (52) and (53) as

ji = pgij ∂S
∂Aj −

1
2

gij ∂p
∂Aj . (56)

The second term, which is related to the osmotic velocity, is a Fick’s law with diffusion
tensor Dij = gij/2. Note that this is identified from purely probabilistic arguments, rather
than assuming a repulsive interaction from the microstate dynamics.

Having the dynamics fully described, we can now study its consequences, as will be
done in the following section.

7. Examples

We established the entropic dynamics by finding the transition probability (32), pre-
senting it as a differential equation in (51), (52), and presenting it as the invariant equation
(55). We want to show some examples of how it would be applied and what are the results
achieved. Our present goal is not to search for realistic models, but to search for models
that are both mathematically simple and general enough so it can give insight on how to
use the formalism.

We will be particularly interested in two properties: the drift velocity,

vi
D = gij ∂S

∂Aj , (57)

which is the first term in (52), and the static states, vi = 0, which are a particular subset of
the dynamical system’s equilibrium ∂tP = 0. These are obtained from (52) as

vi = 0⇒ ∂S
∂Ai −

1
2

∂

∂Ai log
(

P
g1/2

)
= 0 (58)

allowing for one to write the static probability

P(A) ∝ g1/2(A) exp[2S(A)] , (59)

where the factor of 2 in the exponent comes from the diffusion tensor Dij = gij/2 that is
explained in Section 6. This result shows that the invariant stationary probability density
(53) is

p(A) ∝ exp[2S(A)]. (60)

7.1. A Gaussian Manifold

The statistical manifold defined by the mean values and correlations of a random
variable, the microstate x, is the space of Gaussian distribution, which is an example of a
canonical distribution. Here, we consider the dynamics of a two-dimensional spherically
symmetric Gaussian with a non-uniform variance, σ(A) = σ(A1, A2), as defined by〈

x1
〉
= A1,

〈
x2
〉
= A2, and

〈
(xi − Ai)(xj − Aj)

〉
= σ2(A)δij. (61)

These Gaussians are of the form,
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ρ(x | A) =
1

2πσ2(A)
exp

(
− 1

2σ2(A)

2

∑
i=1

(xi − Ai)2

)
(62)

The entropy of (62) relative to a uniform background measure is given by

S(A) = log
(

2πσ(A)2
)

(63)

The space of Gaussians with a uniform variance, σ(A) = constant, is flat and the
dynamics turn out to be a rather trivial spherically symmetric diffusion. Choosing the
variance to be non-uniform yields richer and more interesting dynamics. Because this
example is pursued for purely illustrative purposes, we restrict to two dimensions and
spherically symmetric Gaussians. The generalization is immediate.

The FRIM for a Gaussian distribution is found using (12) (see also [13]), to be

dl2 =
4
σ2 (dσ)2 +

δij

σ2 dAidAj , (64)

so that, using

dσ =
∂σ

∂Ai dAi , (65)

the induced metric dl2 = gijdAidAj leads to

gij =
1
σ2

(
4

∂σ

∂Ai
∂σ

∂Aj + δij

)
. (66)

Gaussian Submanifold around an Entropy Maximum

We present an example of our dynamical model that illustrates the motion around
an entropy maximum. A simple way to manifest it is to recognize that, in (52), −S plays
a role analogous to a potential. A rotationally symmetric quadratic potential can then be
sustituted in (63), leading to

σ(A) = exp
(
− (A1)2 + (A2)2

4

)
, (67)

which, substituted in (66), yields the metric

gij =

(A1)2
+ σ−2 A1 A2

A1 A2 (
A2)2

+ σ−2

 , (68)

so that

g1/2 =

√[
(A1)

2
+ (A2)

2
]
σ−2 + σ−4 . (69)

The scalar curvature for the Gaussian submanifold can be calculated from (68) as

R =
φ2 − 2φ

(φ2 + σ−2)2 σ2, where φ = (A1)2 + (A2)2 . (70)

From (57), the drift velocity (Figure 1) is

v1
D = −A1σ−2

g
and v2

D = −A2σ−2

g
. (71)

and, from (59), the static probability (Figure 2) is

P(A) ∝ 4π2g1/2σ4 . (72)
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The static distribution results from the dynamical equilibrium between two opposite
tendencies. One is the drift velocity field that drives the distribution along the entropy
gradient towards the entropy maximum at the origin. The other is the osmotic diffusive
force that we identified earlier as the ED analogue of Fick’s law. This osmotic force drives
the distribution against the direction of the probability gradient and prevents it from
becoming infinitely concentrated at the origin. At equilibrium, the cancellation between
these two opposing forces results in the Gaussian distribution, Equation (72).

Figure 1. The drift velocity field (71) drives the flux along the entropy gradient.

Figure 2. Equilibrium stationary probability (72).

7.2. 2-Simplex Manifold

Here, we discuss an example of discrete microstates. The macrostate coordinates,
being expected values, are continuous variables. Our subject matter will be a three-state
system, x ∈ {1, 2, 3}, such as, for example, a 3-sided die. The statistical manifold is the
2-dimensional simplex and the natural coordinates are the probabilities themselves,

S2 =

{
ρ(x) | ρ(x) ≥ 0 ,

3

∑
x=1

ρ(x) = 1

}
. (73)
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The distributions on the two-simplex are Gibbs distributions defined by the sufficient
statistics of functions

ai(x) = δi
x so that Ai = 〈ai〉 = ρ(i) . (74)

The entropy relative to the uniform discrete measure is

S = −
3

∑
i=1

ρ(i) log(ρ(i)) = −
3

∑
i=1

Ai log
(

Ai
)

, (75)

and the information metric is given by

gij =
3

∑
k=1

ρk
∂ log

(
ρk
)

∂Ai

∂ log
(

ρk
)

∂Aj . (76)

The two-simplex arises naturally from probability theory due to normalization when
one identifies the macrostate of interest to be the probabilities themselves. The choice of
sufficient statistics (74) implies that the manifold is a two-dimensional surface, since, due
to the normalization, one can write A3 = 1− A1 − A2. We will use the the tuple (A1, A2)
as our coordinates and A3 as a function of them. In this scenario, one finds a metric tensor

gij =


1

A3 +
1

A1
1

A3

1
A3

1
A3 +

1
A2

 , (77)

which induces the volume element

g1/2 =

√
1

A1 A2 A3 . (78)

As is well known, the simplex is characterized by a constant curvature R = 1/2; the
two-simplex is the positive octant of a sphere. From (57), the drift velocity (Figure 3) is

v1
D = A1

[
A2 log

(
A2

A3

)
+ (A1 − 1) log

(
A1

A3

)]
v2

D = A2
[

A1 log
(

A1

A3

)
+ (A2 − 1) log

(
A2

A3

)]
,

(79)

Additionally, the static probability is

P(A) ∝ g1/2
3

∏
i=1

(
Ai
)−2Ai

. (80)
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Figure 3. Drift velocity field for the two-simplex in (79). The ternary plots ware created using
python-ternary library [64].

From the determinant of the metric, we note that the static probability (80) diverges at
the boundary of the two-simplex. This reflects the fact that a two-state system (say, i = 1, 2)
is easily distinguishable from a three-state system (i = 1, 2, 3). Indeed, a single datum i = 3
will tell us that we are dealing with a three-state system.

On the other hand, we can see (Figure 4) that this divergence is not present in the
invariant stationary probability (53).

Figure 4. Static invariant stationary probability for the three-state system.

As in the Gaussian case discussed in the previous section, the static equilibrium results
from the cancellation of two opposing forces: the entropic force along the drift velocity
field towards the center of the simplex is cancelled by the osmotic diffusive force away
from the center.

8. Conclusions

We conclude with a summary of the main results. In this paper, the entropic dynamics
framework has been extended to describe dynamics on a statistical manifold. ME played
an instrumental role in that it allowed us to impose constraints that are not in the standard
form of expected values.

The resulting dynamics, which follow from purely entropic considerations, take
the form of a diffusive process on a curved space. The effects of curvature turn out
to be significant. We found that the probability flux is the result of two components.
One describes a flux along the entropy gradient and the other is a diffusive or osmotic
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component that turns out to be the curved-space analogue of Fick’s law with a diffusion
tensor Dij = gij/2 that is given by information geometry.

A highlight of the model is that it includes an “entropic” notion of time that is
tailored to the system under study; the system is its own clock. This opens the door to the
introduction of a notion of time that transcends physics and it might be useful for social
and ecological systems. The emerging notion of entropic time is intrinsically directional.
There is a natural arrow of time that manifests itself in a simple description of the approach
to equilibrium.

The model developed here is rather minimal in the sense that the dynamics could be
extended by taking additional relevant information into account. For example, it is rather
straightforward to enrich the dynamics by imposing additional constraints

〈∆Ai〉Fi(A) = κ′ , (81)

involving system-specific functions Fi(A) that carry information regarding correlations.
This is the kind of further developments that we envisage in future work.

As illustrative examples, the dynamics were applied to two general spaces of prob-
ability distributions. A submanifold of the space of two-dimensional Gaussians and the
space of probability distributions for a three-state system (two-simplex). In each of these,
we were able to provide insight on the dynamics by presenting the drift velocity (57) and
the equilibrium stationary states (59). Additionally, as future work, we intend to apply the
dynamics developed here in the distributions found in network sciences [65].
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Appendix A. Obtaining the Prior

In this appendix we derive the prior transition probability from A to A′ seen in (25).
This is achieved by maximizing the entropy

S[Q] = −
∫

dA′ Q(A′|x, A) log
(

Q(A′|x, A)

R(A′|x, A)

)
, (A1)

where R(A′|x, A), the prior for (A1), encodes information about an unbiased transition of
the systems. The posterior of (A1), Q(A′|x, A), becomes the prior in (21).

At this stage A could evolve into any A′ and the only assumption is that the assigned
prior for (A1) leads to equal probabilities for equal volumes; thus, ignoring biases. That
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is achieved by a prior proportional to the volume element R(A′|x, A) ∝ g1/2(A′), where
g(A) = det gij(A). There is no need to address the normalization of R since it will have no
effect on the posterior.

The chosen constraint represents an isotropic and continuous motion on the manifold.
This will be imposed by ∫

dA′ Q(A′|x, A) gij∆Ai∆Aj = K . (A2)

where K is a small quantity, since gij∆Ai∆Aj is invariant only in the limit for short steps
∆Ai → 0. Therefore, eventually, K → 0.

The result of maximizing (A1) under (A2) and normalization is

Q(A′|x, A) ∝ g1/2(A′) exp
(
−α gij∆Ai∆Aj

)
, (A3)

where α is the Lagrange multiplier associated to (A2). As the result requires K → 0 to make
it geometrically invariant, the conjugated Lagrange multiplier should be allowed to be
taken to infinity. This allows us to define τ = 1/α, such that the short step limit will lead to
τ → 0.

Note that, since no motion in x and no correlation between x and A′ is induced by
the constraints, the result does not depend on the previous microstate x, Q(A′|x, A) =
Q(A′|A).

Appendix B. Derivation of the Fokker-Planck Equation

The goal of this appendix is to show that for a dynamics that is a smooth diffusion
in a curved space, can be written as a Fokker-Planck equation and to obtain its velocity
(52) from the moments for the motion (50). In order to do so, it is convenient to define a
drift velocity

bi = lim
∆t→0

〈∆Ai〉
∆t

= gij ∂S
∂Aj −

1
2

Γi . (A4)

First, let us analyze the change of a smooth integrable function f (A) as the system
transitions from A to A′. A smooth change in the function f (A) will be

∆ f (A) =
∂ f

∂Ai ∆Ai +
1
2

∂2 f
∂Ai∂Aj ∆Ai∆Aj + o(∆t) , (A5)

since a cubic term, ∆Ai∆Aj∆Ak would be o(∆t). In a smooth diffusion we can take the
expected value of (A5) with respect to P(A′|A) as

〈∆ f (A)〉 =
∫

dA′ P(A′|A)( f (A′)− f (A)) =

(
bi ∂

∂Ai +
1
2

gij ∂2

∂Ai∂Aj

)
f (A)∆t . (A6)

which can be further averaged in P(A). The left-hand side will be∫
dA P(A)

∫
dA′ P(A′|A)( f (A′)− f (A)) =

∫
dAdA′P(A′, A)( f (A′)− f (A)) (A7)

=
∫

dA′ P(A′) f (A′)−
∫

dA P(A) f (A) (A8)

while the right hand is∫
dA P(A)

(
bi ∂

∂Ai +
1
2

gij ∂2

∂Ai∂Aj

)
f (A)∆t . (A9)



Entropy 2021, 23, 494 19 of 21

such that they equate to

∫
dA′ P(A′) f (A′)−

∫
dA P(A) f (A) =

∫
dA P(A)

(
bi ∂

∂Ai +
1
2

gij ∂2

∂Ai∂Aj

)
f (A)∆t . (A10)

As established in Section 5, P(A) and P(A′) are distributions at the instants t and t′

respectively.

∫
dA
(

Pt′(A)− Pt(A)

∆t

)
f (A) =

∫
dA P(A)

(
bi ∂

∂Ai +
1
2

gij ∂2

∂Ai∂Aj

)
f (A)∆t , (A11)

which can be partially integrated in the limit of small steps

∫
dA
(

∂P(A)

∂t

)
f (A) =

∫
dA
(
− ∂

∂Ai (b
iP(A)) +

1
2

∂2

∂Ai∂Aj (gijP(A))

)
f (A) . (A12)

Due to the generality of f as test function, we identify the integrants,

∂

∂t
P(A) = − ∂

∂Ai

(
biP(A)− 1

2
∂

∂Aj (gijP(A))

)
, (A13)

and substitute bi (A4) for general coordinates,

∂

∂t
P(A) = − ∂

∂Ai

(
gij ∂S

∂Aj P(A)− 1
2

ΓiP(A)− 1
2

(
∂gij

∂Aj

)
P(A)− 1

2
gij ∂P(A)

∂Aj

)
, (A14)

and the contracted Christoffel symbols can be substituted in the identity

Γi = − 1
g1/2

∂

∂Aj (g1/2gij) = − ∂gij

∂Aj − gij ∂ log g1/2

∂Aj . (A15)

Here we see that the effect of curvature—encoded by the Christoffel symbols—
substitute in the differential Equation (A13) obtaining

∂

∂t
P(A) = − ∂

∂Ai

(
gij ∂S

∂Aj −
1
2

gij ∂

∂Aj

(
log

P(A)

g1/2

))
P(A) , (A16)

where the second term inside the parenthesis above is the result of taking the curva-
ture into account. The result is a Fokker-Planck equation that is usefully written in the
continuity form

∂

∂t
P = − ∂

∂Ai

(
Pvi
)

, (A17)

where

vi = gij ∂S
∂Aj −

1
2

gij ∂

∂Aj

(
log

P
g1/2

)
, (A18)

completing the derivation.
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