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Abstract

Small-area studies offer a powerful epidemiological approach to study disease patterns

at the population level and assess health risks posed by environmental pollutants.

They involve a public health investigation on a geographical scale (e.g. neighbourhood)

with overlay of health, environmental, demographic and potential confounder data.

Recent methodological advances, including Bayesian approaches, combined with fast-

growing computational capabilities, permit more informative analyses than previously

possible, including the incorporation of data at different scales, from satellites to

individual-level survey information. Better data availability has widened the scope and

utility of small-area studies, but has also led to greater complexity, including choice of

optimal study area size and extent, duration of study periods, range of covariates and

confounders to be considered and dealing with uncertainty. The availability of data from

large, well-phenotyped cohorts such as UK Biobank enables the use of mixed-level study

designs and the triangulation of evidence on environmental risks from small-area and

individual-level studies, therefore improving causal inference, including use of linked

biomarker and -omics data. As a result, there are now improved opportunities to investi-

gate the impacts of environmental risk factors on human health, particularly for the

surveillance and prevention of non-communicable diseases.

Introduction

A range of environmental exposures may impact human

health, but our level of understanding and awareness of these

links is highly variable. Although there has been a focus on

the health effects of outdoor air pollution,1–3 climate

change4–6 and ionizing radiation (e.g. nuclear power plant

accident or waste),7,8 possible health risks associated with

other widespread exposures, such as noise pollution,9,10
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non-ionizing radiation from mobile phones and other

electro-magnetic sources,11,12 and microplastics13 are emerg-

ing. The rapidly increasing volume of available routine

health and environmental data offers new opportunities to

better understand and assess risks for human health and to

guide public health policies. The smoking bans enforced

throughout Europe in the 2000s and the recent sugar tax

implemented in Mexico and the UK highlight the potential

for rapid impact of such public health policies.14,15

Nevertheless, the inability to date to reduce air pollution to

legal or recommended levels in London and other large cities

reflects some of the challenges involved in translating scien-

tific evidence into policies and their implementation.16

Studies assessing health risks from environmental factors

ideally need to: (i) involve large populations to gain suffi-

cient statistical power to investigate relatively rare health

events, and to detect the effects of low to very low levels of

pollutant exposure; and (ii) be comprehensive in terms of

geographical and population coverage, as risks vary in space

and time, as well as by age, sex, sociodemographic status,

and other possible confounders. Fulfilling these criteria for

individual-level epidemiological studies across entire popu-

lations or an ad hoc subset of the population (e.g. within an

exposed area) often remains challenging. Although the size

of cohort studies collecting in-depth individual-level data

has considerably increased in recent years (e.g. 500 000 par-

ticipants in UK Biobank),17 it is still beyond scope to collect

such data across entire populations. Small-area studies offer

an alternative study design based on spatial epidemiological

analyses of individual or aggregate data at the neighbour-

hood scale (e.g. a few blocks/streets, lowest census geogra-

phy).18 Populations within small areas tend to be more

homogeneous than in larger areas, providing a differential

between the socioeconomic and environmental characteris-

tics of areas studied that may aid detecting relationships be-

tween these variables and health data.19

In small-area studies, individual exposure is often assigned

based on one location—residence, workplace or school. Such

assignment then makes it possible to map disease risks and

pollutant concentrations, and to investigate health risks asso-

ciated with local exposures at the population level. The

small-area study design is particularly useful to: (i) approxi-

mate individual-level risks when individual-level data are ei-

ther limited or unavailable20; (ii) investigate risks to health

from sources of environmental pollution21; (iii) detect high-

risk areas and plan appropriate interventions22; and (iv) con-

duct initial investigations of reported disease clusters.23

Small-area studies often rely heavily on the availability of

health, environmental, demographic and confounder data

across entire populations or large subsets.24 Examples from

over 30 years of experience in conducting small-area environ-

ment-health analyses by the UK Small Area Health Statistics

Unit, SAHSU [www.sahsu.org],25 include studies of waste

disposal,26,27 temperature extremes,4,28 air and noise pollu-

tion,9,29–33 chlorination by-products in the water supply34,35

and electromagnetic fields from overhead power lines and

mobile phone masts.11,36

Better data availability can widen the scope and utility of

small-area studies.37 It can also lead to greater complexity,

including the choice of the optimal study area size and extent,

the duration of study periods and the range of covariates and

confounders to be considered. Here, we discuss these key

methodological choices in light of recent methodological

advances, including Bayesian approaches,38–40 which help to

link and process large volumes of available data. Together

with a discussion of future challenges going forward, we aim

to summarize the basis for rigorous analyses of environment

and health risks using the small-area approach.

Methodological choices

When conducting a small-area study, a series of methodo-

logical choices need to be made which may influence the

identification and interpretation of an environmental

health risk. These include identification of the available

data sources, choice of geographical scale and study dura-

tion, and application of appropriate statistical methods for

the analysis.

Key Messages

• Small-area methods have been extensively used in public health practice in the UK and other high-income countries,

and could be used in similar ways in low- and middle-income countries as relevant data become available.

• Rapid data linkage is essential to make the most of environmental, health, demographic and confounder data avail-

able from a wide set of geographies for surveillance, investigations of environmental health risks and the prevention

of non-communicable disease.

• New methodological advances in statistical methods, including Bayesian approaches and use of mixed-level designs,

together with advances in computational capacity, allow the simultaneous investigation of multiple health outcomes

and multiple environmental exposures while quantifying uncertainty throughout studies.
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Data sources

Small-area studies typically involve a range of health, popu-

lation and environmental data across standard geographies

(Figure 1). For example, to study reproductive effects associ-

ated with a risk factor or local pollutant (e.g. incinerator

proximity), individual data on birthweight, stillbirth and/or

congenital anomalies, population data on births, and infor-

mation on potential confounding by socioeconomic varia-

bles and ethnicity based on census data are required,

alongside measured or modelled exposure data.41

Health data

The volume and accessibility of health records have dramat-

ically increased in the past 2-3 decades. In England, on aver-

age over 100 million individual records from outpatient,

maternity, adult critical care, and accident and emergency

services across all NHS hospitals are added every year to the

Health Episode Statistics, HES [http://content.digital.nhs.

uk/hes] database. SAHSU, which holds and maintains data-

bases of health and geographical data, social confounding

factors and environmental exposures required to conduct

small-area health studies, holds more than 600 million indi-

vidual health records in a secure system (Figure 1).

The coverage of routinely collected health data varies

substantially between countries. NHS data in England

offer near universal coverage of births, cancer, hospital

admissions and mortality which allows investigation of

spatio-temporal health patterns in neighbourhoods and lo-

cal areas for any part of the country. Detailed records are

entered for over 1 million patient events every 36 h within

the NHS. Nevertheless, there are very limited routine

health data being collected, particularly in digital format,

in many rural areas across low- and middle-income coun-

tries. These disparities appear, for example, in the quality

of population-based cancer registries (Figure 2).

Even when good coverage is available, the completeness

and quality of datasets need to be assessed (Supplementary

Material 1, available as Supplementary data at IJE online).

Most health databases typically miss a subset of the popu-

lation. Although the impact of random gaps may be lim-

ited, the mis-representation of specific sub-groups (e.g.

homeless, migrants, refugees and asylum seekers)43 needs

to be carefully considered. Patients going to private practi-

ces in England—about 11% of the UK population have a

private health insurance in addition to free access to the

NHS44—are not recorded in NHS databases, which may

lead to an underestimation of some health conditions, par-

ticularly in the most affluent sub-groups.45 Age, sex, eth-

nicity and sociodemographic status influence the

prevalence of opt-outs in the NHS, whereby patients can

choose not to share their health record beyond purposes

Figure 1 Schematic of a secure data network such as used by the UK Small Area Health Statistics Unit for small-area studies. ONS, Office National for

Statistics; PHE, Public Health England; HES, Health Episode Statistics; A&E, accident and emergency; ISDS, Information Services Division Scotland;

WCISU, Welsh Cancer Intelligence & Surveillance Unit; GDPR, General Data Protection Regulation; ISO, International Organization for

Standardization.
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relating to their direct clinical care.46 Spatial visualization

can help identify data quality or completeness issues. By

mapping data on births at small-area level in London,

Ghosh et al. identified missing data from local hospitals in

south-east London.47 Finally, the quality and completeness

of a dataset can vary over time due to issues such as staff

training, data collection methods and changes in disease

classification (e.g. International Classification of Diseases

codes).

Because the number of cases for a given condition at the

small-area level is often limited, ensuring the highest qual-

ity of health data is essential for correct interpretation and

identification of potential risk factors. This is particularly

relevant when studying rare conditions such as congenital

anomalies.48 Duplicate cases in the database can give rise

to spurious ‘clusters’, and gaps in the data may be detected

as ‘holes’ in a mapping surface.

Population data

Census data are often used to provide background popula-

tion counts of individuals at risk, as well as sociodemo-

graphic covariates (e.g. age, sex and deprivation) and

potential confounders (e.g. smoking). Intercensal esti-

mates, sometimes provided with precision measures as in

the American Community Survey,49 provide annual popu-

lation and demographic data at various sub-national geog-

raphies (Table 1). In countries using decennial censuses,

inaccuracies in denominator information tend to be higher

in intercensal years.50 Inaccurate estimates can change the

patterns observed when data are mapped and can compli-

cate map comparisons, especially for areas with small

populations. Small-area studies require spatially and tempo-

rally detailed population data as denominators for calculat-

ing rates or risks. The quality of population counts is

therefore vital for any health analysis and health surveillance.

Environmental data

Exposure assignment at the population level relies mostly

on exposure proxies. A traditional approach in small-area

studies is distance-based analyses, usually between the

place of residence and the source of a pollutant (e.g. dis-

tance to road or to industrial chimney stack).51,52

Populations at risk can be stratified by distance from the

source of emission or contamination.53 A categorical

Figure 2 Quality of population-based cancer registries per country in 2013. PBCR, population-based cancer registry. Reproduced with permission

from Bray et al42.

Table 1. Hierarchical administrative units used in England, il-

lustrating the inverse relationship between the size of a unit

and its population

Geographical unit Number of units Population per unit

(England, 2011 Census)

Country 1 53 107 000

Local authority 324 25 000–1 000 000

MSOA 6791 5000–15 000

LSOA 32 844 1000–3000

Census output area 171 372 100–625

Postcode 1 745 912 43

Address/household 22 000 000 2.4

Individual 53 107 000 1

Based on information available from the Office for National Statistics (ONS)

[www.ons.gov.uk/methodology/geography/ukgeographies/censusgeography].

MSOA, middle layer super output area; LSOA, lower layer super output

area.
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approach—for example near, intermediate and distant—

may help to assess the presence or absence of a risk to

health. Whereas distance to source may be based on either

the small-area geometric or population-weighted centroid,

more precise distances can be calculated when individual-

level data (i.e. the residential postcode or address) are

available. This is particularly important if the spatial distri-

bution of exposure drops off rapidly with distance, e.g. air

pollution from a road source or electromagnetic fields

from a power line.54

Small-area studies are increasingly using sophisticated

modelling techniques to provide proxy estimates of indi-

vidual pollution exposures for place of residence, ideally

with validation data representative of the areas involved,

or multiple locations (e.g. dynamic mobile health geogra-

phy).55 London Air [https://www.londonair.org.uk/] pro-

vides air pollution estimates for 20-metre grids, which can

be linked to individual addresses and then be used in epide-

miological studies.56,57 Dispersion patterns are well known

for some pollutants, but simple models might be more ap-

propriate for those where specific exposure pathways are

less clear.58

Likewise modelling of exposures from point (e.g. atmo-

spheric dispersion model system emissions modelling for

incinerators)27 or line sources (e.g. 3D modelling using

data on building heights for air and noise pollution along

streets)32 can be used to assign such exposures to individ-

ual postcode or address.

Confounder data

Like any epidemiological study, small-area studies are sus-

ceptible to confounding, which can result in spurious expo-

sure–disease associations. As a special type of ecological

study, they are also prone to the ecological fallacy,20 al-

though the small-area design attempts to minimize this by

using small geographies that provide a closer estimation to

individual-level risks. Diseases and outcomes usually vary

by age and sex, which can be addressed by standardiza-

tion.59 Differences in the socioeconomic status of areas is a

major potential source of bias in small-area epidemiologi-

cal studies (Figure 3), as socioeconomic factors are strongly

associated with disease occurrence, and deprived areas

tend to have higher levels of environmental exposures (e.g.

industry and pollution), whereas affluent areas are usually

greener: so-called ‘environmental justice’.60,61 Multiple in-

dices of deprivation have been used to capture socioeco-

nomic differences, for example in the UK: the Townsend

Index, the Carstairs Index and the Index of Multiple

Deprivation (IMD).62–64 The complexity of the indices has

increased over time to capture different components of

deprivation. The IMD 2019, for example, incorporates

data on a range of dimensions including income,

employment, health and disability, education, crime, bar-

riers to housing and services, and living environment. The

IMD 2019 ranks the 32 844 Lower Layer Super Output

Area across England from least deprived to most deprived,

although the inclusion of health variables in the IMD com-

plicates its interpretation in health studies. As a result, al-

though it represents only a small contributor to the overall

index, it is preferable to remove this component when us-

ing the IMD for health study analyses. Choosing the most

appropriate index depends on availability for a specific

area or country, as well as the ability to compare data

across different time periods or areas.64 There can also be

institutional preferences so that, for instance, the Carstairs

Index is largely used in the Scottish NHS and the IMD is

mostly used in local government in England.

Housing, wealth, diet, lifestyle exposures (e.g. smoking)

and access to medical care are all associated with the health

of the population. Smoking behaviour is a key potential

confounder. In England, direct information on smoking by

area is not readily available, although smoking is strongly

associated with deprivation, so that at least to some extent

it is being controlled for by use of deprivation indices.65 In

addition, lung cancer mortality has been used as an indirect

indicator of community cumulative smoking exposure.66–68

Finally, ethnicity may need to be considered, as disease

risks may vary between populations of different ethnicities,

and ethnic minority populations may tend to live in specific

areas of a city, region or country. This is well illustrated in

small-area studies on diabetes.69 In the SAHSU study of

cardiovascular risks related to aircraft noise near

Heathrow airport,9 adjusting for ethnicity was important

as there is a large South Asian community living in West

London near the airport, and South Asians are known to

be at higher risk of cardiovascular disease independently of

aircraft noise exposure.

Biomarker data

There is a growing number of studies (e.g. UK Biobank) col-

lecting data on biomarkers, which may provide a valuable,

person-specific measure of dose. Biomarkers can be

extracted from biological samples such as saliva, blood or

urine and may offer a biological measure of current or his-

torical exposure to a pollutant, or a biological indicator of

presence of disease. They may allow detection of biological

changes due to environmental exposures which may not

have been previously detected. Although to date biomarkers

have rarely been used in small-area studies, they could help

evaluate findings in epidemiological analyses.70,71

Linkage between datasets

Linkage between health datasets can provide valuable in-

formation for long-term follow up of specific individuals.
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For example, combined data on hospital admissions from

the Hospital Episode Statistics and mortality from the

Office of National Statistics datasets provided by NHS

Digital offer additional valuable information, such as the

cause of deaths and data on deaths which occurred outside

hospital settings. Developing standard geographies across

environmental, health and sociodemographic data is essen-

tial to conduct small-area studies of environment and

health associations (Figure 4).

The borders of administrative units often change over

time, so this can be particularly challenging for studies of

long-term health impacts. When exposures vary over

short distances, the linkage of environmental and health

data should be conducted at the individual level for opti-

mum accuracy. For example, the Avon Longitudinal

Study of Parents and Children links participants to

residential address, health, political and administrative

geographies across their life course, as well as to neigh-

bourhood data including deprivation and environmental

exposures.72

Selection of study area

Defining the study area, and a reference area if appropri-

ate, is a critical step. Post hoc definition of the study area

may lead to bias if the boundaries are drawn tightly around

an area of disease excess—the so-called Texas sharp-

shooter fallacy.73 The study area may range from a small

region to a whole country or group of countries. The refer-

ence area is usually a larger geographical area used to com-

pare the health risks of the study area population with

those of the reference area population, for example the sur-

rounding region or the national population. Various stan-

dardization methods, including direct and indirect, may be

used to allow for comparisons between areas.74

Mapping a dataset at different scales can lead to differ-

ent maps that emphasize different features of the data

(Figure 5). Problems can arise from the imposition of artifi-

cial units of spatial reporting (e.g. administrative units) on

continuous geographical phenomena, resulting in the gen-

eration of artificial spatial patterns. This is commonly

Figure 3 Map of the smoothed relative risk of male lung cancer unadjusted (A) and adjusted (B) for deprivation, using the Carstairs Index, at ward

level in England. Data have been adjusted for age. Not adjusting for deprivation increases the observed variability of the disease, whereas adjustment

shows many more areas of average risk (white) and fewer areas of very high or very low risk (dark orange or dark purple). In the case of lung cancer,

adjustment for deprivation will partly adjust for individual smoking effects (as smoking rates are higher in more deprived areas)—smoking being by

far the strongest risk factor for lung cancer. Reproduced with permission: Hansell AL, Beale LA, Gosh RE, Fortunato L, Fecht D, Jarup L, Elliott P .

Environment and Health Atlas for England and Wales. 2014. www.envhealthatlas.co.uk.
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Figure 4 Schematic of the data linkage between health, sociodemographic and environmental data to standard geographies. IMD, Index of multiple

deprivation.

Figure 5 Population density (inhabitants per square kilometre) in the Greater London area. The three maps depict the same data at three different

scales: boroughs (London average: 6249 000 inhabitants), middle layer super output areas (MSOA, England average: 67000 inhabitants) and lower

layer super output areas (LSOA, England average: 61500 inhabitants). The borough-level map masks most of the local variability, and outliers or un-

stable measurements are more likely to be found at the lower layer super output area level. Contains National Statistics data VC Crown copyright and

database right [2011]. Data obtained from the London DataStore [https://data.london.gov.uk/dataset/super-output-area-population-lsoa-msoa-

london].
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referred to as the modifiable areal unit problem.75 The

choice of the most suitable level is driven by: (i) the avail-

ability of data—aggregated data are increasingly becoming

freely accessible online, but data at small-area level may

contain potentially identifiable personal information (e.g.

small numbers of a rare disease) and therefore restrictions

on the unit of analysis apply in relation to both the numer-

ator and the denominator in accordance with the specific

policies of the data providers involved; (ii) the frequency of

the event studied—the study of rare events such as congeni-

tal anomalies at a very fine geographical scale will inevita-

bly lead to small numbers and an over-representation of

zero counts; and (iii) the precision of risk estimates—

power calculations will provide information about the

sample size needed to detect a defined level of risk: the

lower the excess risk to be detected, the larger the study

population and years of observation will be needed to de-

tect that risk.76

Once the appropriate scale is identified, careful consider-

ation needs to be paid to any temporal changes in the geo-

graphical units. For example, postcodes (n¼1 765 422 in

late 2019) in the UK are issued, re-allocated or deleted on a

regular basis, with thousands of postcodes added and deleted

every year [https://www.bph-postcodes.co.uk/guidetopc.cgi].

Ignoring these changes can lead to gaps or inaccuracies in

data which may influence the study results, especially those

linked to a specific local area. The NHS Postcode Directory

[https://digital.nhs.uk/services/organisation-data-service/data-

downloads/office-for-national-statistics-data], which relates

current and terminated postcodes in the UK to various geog-

raphies (e.g. pre-2002 health areas, 1991 Census enumera-

tion districts for England and Wales and 2001 and 2011

census output areas) can support the production of area-

based statistics from postcoded data. Similar changes in ge-

ographies regularly occur in most countries, due to the rede-

fining of administrative boundaries or to adjustments

reflecting changes in population distribution.

Defining the time period

Identifying the appropriate time-frame for a small-area

study is another key choice that will affect the results. An

area which appears to be an outlier in an annual dataset

might be within the range expected when looking at multi-

ple years. Monitoring if an excess risk persists over several

time periods can indicate a signal worth investigating. The

latency between a clinical outcome and exposure to a puta-

tive environmental cause needs to be considered. Whereas

it is reasonable to expect respiratory complications within

hours or days of exposure to high levels of air pollution,77

it might take several decades between exposure to a carci-

nogenic substance and the onset of cancer.78

The availability of routine data and cohorts spanning

several decades has enabled the conduct of analyses of pol-

lutant exposures and possible health effects over prolonged

periods. For example, Elliott et al. conducted a small-area

study assessing long-term mortality risks of air pollution in

England and Wales and found impacts on mortality up to

16 years later.79 Hansell et al. subsequently conducted a

prospective cohort study using a Census-based cohort with

up to 38 years of follow-up, and concluded that air pollu-

tion exposure had long-term effects on mortality that per-

sisted for 3 decades after exposure, and that historical air

pollution exposures influenced estimates of associations

between air pollution and mortality.31 Obtaining consis-

tent measurements of environmental factors for the full du-

ration of such long-term studies can present challenges,

because monitoring priorities tend to shift over time, as do

the accuracy and precision of measurements.

Furthermore, individuals are mobile and may change

residence, particularly over long time periods. Information

on mobility is often not available in routine datasets.

According to the US Census Bureau, a typical resident in

the USA moves on average 11 times throughout their life-

time. In England, the average number of moves over an

individual’s lifetime has been estimated as eight.80 These

changes tend to occur at key life stages such as early adult-

hood or during pregnancy. Tracing these changes in data-

sets is therefore important but can be challenging.81

Data analysis

Statistical analyses of spatial data need to take account of

Tobler’s first law of geography, which states that ‘every-

thing is related to everything else, but near things are more

related than distant things’.82 This principle is particularly

useful when considering statistical smoothing techniques

and spatial correlation. The SpatialEpi R package83 pro-

vides a valuable toolbox for disease mapping, cluster detec-

tion and other spatial methods.

Bayesian models, in particular, have proved useful to

smooth underlying risk estimates across small areas when

data are sparse, providing more stable estimates of disease

patterns (Figure 6).84 Relative risks and posterior probabil-

ities can be derived with Bayesian smoothing approaches,

with inclusion of random effects to allow for unmeasured

differences between areas. Different priors are commonly

used, assuming a structure of similarity either across all the

areas or among neighbouring ones. The first involves

‘global smoothing’ across the whole study area, and the

latter uses ‘local smoothing’ by borrowing information

from neighbouring areas. A combination of the two struc-

tures can also be specified so that both ‘local’ and ‘global’

smoothing are used. Whereas such Bayesian models
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originally relied on computationally intensive Markov

chain Monte Carlo techniques, the optimization of the

Integrated Nested Laplace Approximation approach, and

its integration into an R package R-INLA [www.r-inla.

org],85 as well as into SAHSU’s Rapid Inquiry Facility (RIF

4.0),86 greatly facilitate their use.

The size of a small-area dataset can be very large when

considered at regional or national scale (Table 1). Access to

cloud storage can facilitate international access and collabora-

tions, provided the necessary security protocols are in place to

protect potentially identifiable data, and high-performance

computing infrastructures are needed to provide the processor

speed, memory and graphic interfaces to rapidly process such

large datasets. Innovative software, such as DataSHIELD

[http://www.datashield.ac.uk/], can enable the remote and

non-disclosive analysis of sensitive research data.79

Traditionally, analyses have been undertaken of associ-

ations between one or several pollutants and a single or

limited set of health outcomes. Recent advances in comput-

ing power and statistical methodology are facilitating

multi-level analysis of complex disease aetiologies, but so

far ‘big data’ health analyses have mostly focused on

the analysis of -omics data. The Environment-Wide

Association Study is an emerging type of environment-

health analyses using a comprehensive and systematic ‘ag-

nostic’ approach similar to that used in genome-wide asso-

ciation studies.87 Mixed-level studies88 allow linkage of

individual-level cohort or survey data, such as biomarkers,

with small-area data to better understand the associations

between pollutant exposures and health, and specifically to

help overcome bias and the issue of ecological confound-

ing.18,89,90 Recent work on mixed-level designs has mostly

focused on graphical models aiming to integrate multiple

data sources at individual and small-area levels. In addition

use of indices, such as the propensity score,91 has been pro-

posed to summarize individual-level confounders and to

impute these where missing, since surveys or cohorts may

not have full spatial coverage.92 The estimated and im-

puted confounders can then be used in an ecological regres-

sion linking risk factors to health outcomes with potential

to reduce bias, although care is needed in the implementa-

tion and interpretation of the models.93

Advances are also being made with respect to pollutant

modelling using multiple data sources. The assessment of

Figure 6 Standard incidence ratio (SIR) (A) and smoothed relative risk (B) maps of female leukaemia, adjusted for age and deprivation, in England

and Wales. The two maps illustrate the impact of global and local Bayesian smoothing. Although it is hard to identify a clear pattern of disease risk in

the SIR map, areas of higher and lower risk are much easier to discern with the smoothed map. Reproduced with permission from Environment and

Health Atlas of England and Wales, as in Figure 2.
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long-term exposure (e.g. to air pollutants) in small-area ep-

idemiological studies is often based on land use regression

(LUR) or dispersion models (DM). Novel methods combin-

ing LUR and DM in hybrid approaches are being devel-

oped.94 These advances allow modelling of previously

understudied pollutants (e.g. ultrafine particles, oxidative

potential of particulate matter) and back and forward ex-

trapolation with increased temporal resolution of exposure

estimates from annually to monthly or daily, while main-

taining spatial granularity.95

In addition, spatial data mining (SDM) methods are

emerging to search for patterns in large health databases,

e.g. to study census and cancer mortality data in

Mexico,96,97 or to investigate the associations between

multiple exposures (such as nitrogen dioxide and fine par-

ticulate matter) and health outcomes using the HES data-

base in England.98 A range of biostatistical techniques

including clustering and classification approaches that can

readily be scaled to large populations, are now available

for such studies. Applying SDM techniques to analyse

health outcomes associated with a common environmental

exposure may help validate previously reported associa-

tions and identify new combinations of health effects.

Finally, advances in methods for routine surveillance of

non-communicable diseases may lead to early detection of

spatio-temporal signals that warrant further investigation,

e.g. presence of local sources of environmental pollutants

or health outcomes of extreme climatic events (tempera-

ture, flooding). One of such tools, BaySTDetect,22,99

includes mixture models that distinguish between areas

with unusual temporal trends from those that follow a

common trend.

Protecting data privacy and confidentiality

Strict information governance and data security are essen-

tial for small-areas studies (Supplementary Material 2,

available as Supplementary data at IJE online), since they

require personal identifiable information such as residen-

tial postcode or address. Data need to be held securely

with restricted access to bona fide staff and researchers.

When releasing study results, careful attention needs to be

paid to small numbers either by masking such values or by

aggregating data to a higher level to avoid inadvertent dis-

closure of identities—including in tables and maps (e.g.

rates based on small numbers of cases).

Because identifiable data from individuals are increas-

ingly being used for a range of purposes including aca-

demic research, it is essential: (i) to inform the public

about how their data are being used; (ii) to involve patients

and the public where possible in the development of re-

search projects; and (iii) to identify the best ways of

communicating outcomes to the relevant audiences.

Through case studies provided by UK researchers, charities

and public health institutions, the Understanding Patient

Data portal [http://understandingpatientdata.org.uk/]

explains how and why data can be used for care and re-

search, what is allowed and what is not, and how personal

information is kept safe.

Communicating the results

Small-area studies may reveal areas at high risk or suggest

potential health effects associated with industries. Careful

measured communication to the public is essential to en-

sure proper understanding of the size and extent of such

risks, and any limitations (e.g. possible causal effects, bias

and confounding) in the data and analysis. SAHSU, in col-

laboration with Sense about Science [http://senseabouts

cience.org/], used patient and public involvement to de-

velop the Environment and Health Atlas for England and

Wales [http://www.envhealthatlas.co.uk].100 This atlas

provides interactive maps of geographical variations for 14

health conditions, including cancers, heart disease and

chronic obstructive pulmonary disease, and seven environ-

mental agents, such as air pollutants, fungicides and herbi-

cides, at a neighbourhood (small-area) scale. The maps

were developed for the public, researchers and public

health and policy professionals to better understand the

geographical distribution of environmental agents and

health conditions in England and Wales. Workshops with

stakeholders helped in the formatting of chapters, choosing

the language used to reach target audiences and the display

of the maps. For example, an orange-purple palette legible

by colour-blind individuals and reducing potential for mis-

interpretation of the risks (e.g. dangerous vs safe) was cho-

sen instead of a red-green palette.

Conclusions

Small-area studies are used to assess health risks in relation

to environmental exposures, investigate disease clusters

and carry out disease surveillance and mapping.

Advantages of such studies, mainly based on routinely col-

lected data, are their population representativeness and the

lower costs and duration compared with other study

designs (e.g. new cohort studied or purposely designed

case-control studies). They require specialized knowledge

and skills to rigorously conduct analyses, correctly inter-

pret the results and translate them into public health poli-

cies. This is important for high-income countries, but also

for low- and middle-income countries where large amounts

of relevant data are being generated and where there is

greater exposure to environmental toxicants. Making use
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of the increasing availability of large and diverse data sour-

ces for public health purposes offers great potential, al-

though this relies on timeliness of data, rapid data linkage,

necessary expertise in data management and analysis and

appropriate information governance framework.

Supplementary data

Supplementary data are available at IJE online.
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