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Microarray-based classifiers and associated signature genes generated from
various platforms are abundantly reported in the literature; however, the
utility of the classifiers and signature genes in cross-platform prediction
applications remains largely uncertain. As part of the MicroArray Quality
Control Phase II (MAQC-II) project, we show in this study 80–90% cross-
platform prediction consistency using a large toxicogenomics data set by
illustrating that: (1) the signature genes of a classifier generated from one
platform can be directly applied to another platform to develop a predictive
classifier; (2) a classifier developed using data generated from one platform
can accurately predict samples that were profiled using a different platform.
The results suggest the potential utility of using published signature genes in
cross-platform applications and the possible adoption of the published
classifiers for a variety of applications. The study reveals an opportunity for
possible translation of biomarkers identified using microarrays to clinically
validated non-array gene expression assays.
The Pharmacogenomics Journal (2010) 10, 247–257; doi:10.1038/tpj.2010.34
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Introduction

The use of microarrays as molecular tools to measure transcript abundance has
been pursued for more than a decade.1 The production of microarrays and the
associated laboratory methods have improved and become more standardized.
The maturation of this technology provided the necessary groundwork for the
recent deployment of two different microarray-based diagnostic tests (that is,
classifiers) related to cancer. MammaPrint uses the expression levels of 70 genes,
measured using the Agilent (Santa Clara, CA, USA) platform, as a prognostic
indicator to predict the risk of recurrence in lymph node-negative breast cancer
patients.2 The Pathwork Tissue of Origin Test measures the transcript levels of
1500 genes, using the Affymetrix (Santa Clara, CA, USA) platform, to facilitate
the diagnosis of tumors of unknown origin.3 These recent advances highlight the
utility of transcript-based molecular classifiers measured by microarrays in
clinical applications.

A molecular classifier is the result of a combination of signature genes (selected
through machine learning to differentiate biological groups such as between
disease and health) and a machine learning algorithm. The application of
classifiers has been intensively analyzed in the clinic for diagnosis, prognosis and
prediction of treatment outcomes. To enhance the toxicity prediction and reduce
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the cost in animal testing, microarray-based classifiers are
often developed in the field of toxicogenomics using in vitro
systems or short-term animal models to potentially replace
more costly, time consuming and labor-intensive long-term
animal testing. Consequently, microarray-based classifiers
generated from various platforms are abundantly reported
in the literature; however, the utility of the classifiers and
associated signature genes in cross-platform prediction
applications remains largely uncertain. The utility of these
published signature genes and classifiers ultimately relies on
a high degree of cross-platform transferability.

The evaluation of cross-platform microarray performance
has been the focus of a large number of studies (reviewed in
Yauk and Berndt4). Of the different factors that have resulted
in the improved cross-platform correlations, two key areas of
improvement have been in the technical aspects of produ-
cing microarray data and in the way these data are then
analyzed. Technical improvements have been achieved
mainly in the manufacturing of microarrays and in
associated laboratory procedures.5–8 Data analysis has
become more comprehensive as a direct result of the
development of new tools and computational approaches
to facilitate analysis within and across various microarray
platforms.9–15 The Food and Drug Administration(FDA)-led
MicroArray Quality Control Consortium (MAQC) study16–21

systematically evaluated both of these key areas and
concluded that microarrays are capable of generating
reproducible measurements within and across different
laboratories as well as across different platforms if appro-
priate analysis procedures were applied.17,19 This was a
significant outcome as it showed that the same biological
findings and insights were revealed, even when data were
generated on different microarray platforms. The MAQC
Consortium has now further extended their exploration of
the capabilities of microarrays by establishing a set of ‘best
practices’ and an associated data analysis protocol for
developing and validating microarray-based classifiers,22

including the presented study on cross-platform application
of classifiers and signature genes.

To assess the cross-platform transferability of signature
genes and classifier, we analyzed a large toxicogenomics
data set that contains gene expression profiles from the
target tissue (liver) generated on two different microarray
platforms (Agilent and Affymetrix).23 We used a compre-
hensive and robust approach to evaluate whether a
predictive classifier could be developed using the signature
genes derived from a different microarray platform (that is,
transferability of signature genes) and whether the classifier
from one platform could yield an accurate prediction for the
samples whose expression data were generated from another
platform (that is, transferability of classifiers).

Materials and methods

Data set
The microarray-based gene expression profiling data as well
as the histopathological data that were used in this study

were generated previously and have been reported in detail
elsewhere.23,24 Briefly, eight different hepatotoxicants
(1,2-dichlorobenzene, 1,4-dichlorobenzene, bromobenzene,
diquat dibromide, galactosamine, monocrotaline, N-nitro-
somorpholine and thioacetamide) were selected based on
published literature regarding the differences that exist in
the cell types and liver regions that are injured in response
to exposure. For each compound, doses that elicited a sub-
toxic (‘low’), a moderately toxic (‘medium’) or a overtly
toxic (‘high’) response 24 h after treatment were selected.
Samples were collected for gene expression profiling, clinical
chemistry, hematology and histopathology at 6, 24 and 48 h
after exposure. For each compound, four animals were used
for each dose (including a vehicle control) and time point
group, except for the diquat dibromide compound in which
six animals were used for each group (because of higher
degree of variability in the presence and extent of liver
injury in each dose and time group). After 6, 24 or 48 h of
treatment, experiments were performed according to estab-
lished guidelines and an approved Animal Study Protocol
was on file before initiation of the study.25

For hybridizations performed on the Affymetrix platform,
RNA isolated from the liver of each individual rat was
labeled and hybridized to the Rat Genome 230 2.0 Array
with 31 099 probe-sets (Affymetrix) for a total of 418
hybridizations. For hybridizations performed on the Agilent
platform, RNA isolated from the liver from each of the 318
treated rats was labeled and hybridized against a pooled RNA
sample representing all of the individuals in the time- and
compound-matched control group. The samples were
hybridized to Agilent Rat Oligo Microarrays (G4130A)
(22 075 probes) and a fluorophore reversal (dye-swap) was
performed for a total of 636 hybridizations. The dual-color
Agilent data were analyzed in two different ways in this
study—ratio-based and intensity-based. The ratio-based data
are the average value of the dye-swap results while the
intensity-based data are the average value of Cy3 and Cy5
from the dye-swap results, corresponding only to the treated
samples.

Phenotypic anchors for cross-platform analysis
For each animal in this study, a large number of endpoint
measurements were collected, such as clinical chemistry,
hematology and histopathology.23 Many of these para-
meters were relevant to the findings of liver toxicity;
however, for the purposes of this study only two different
endpoints were considered. First, to generate a binary
classifier (the main focus of this study), the histopatholo-
gical data from each of the 418 was used to identify the
animals for which hepatocellular necrosis was observed
(regardless of severity) and those for which it had not
(summarized in Supplementary Table 1 online). Second, the
response to hepatocellular injury (RHI) score24 was used as a
continuous endpoint for regression analysis. All clinical data
for each animal, including both binary classification and
RHI values are available from Supplementary Table 2 online.
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Training and test sets

The training/test set pair for each platform was generated
using a hybrid approach based on chronology-based,
compound-based and random splitting. Using a chronol-
ogy-based approach, in which the date of hybridization is
used to divide these data would be confounded by the fact
that the compounds in this studied data set were profiled
sequentially, which would be problematic as it is hypothe-
sized that the molecular mechanisms underlying the toxic
response to these compounds are different and also because
of the lack of statistical significance associated with the
limited number of compounds in this study. However,
randomly splitting the data across the eight compounds
could unevenly divide the samples between the training and
test sets and therefore could result in inappropriately
reflecting the inherent biases that may have been generated
during the creation of these data. Therefore, the adopted
hybrid approach was that random splitting was performed
on six of the eight compounds, in which the training/test
set ratio was approximately 2:1. The two remaining
compounds were exclusively used for the test set. Mono-
crotaline was randomly selected as one of these compounds
while bromobenzene was selected based on chronology.
This process resulted in an approximately equal number of
necrosis and non-necrosis samples in both the test and
training sets. The numbers of animals with and without
necrosis within each compound assigned to either the test
or training set are detailed in Supplementary Table 2 online.

Probe mapping between Affymetrix and Agilent platforms

All analyses were conducted using probes that measured the
same transcript on both the Affymetrix Rat Genome 230 2.0
Array and the Agilent Rat Oligonucleotide Microarray
(G4130A). Three different approaches were used to identify
probes associated with the same transcript.

1. Sequence-based mapping set (SeqMap)—a sequence-
based approach to identifying common probes was
generated using the approach that was also used in the
MAQC-I project.19 Briefly, each probe sequence from
both platforms was BLASTed against the RefSeq database.
For the Affymetrix platform, each of the 11 perfect-match
sequences for each probeset was independently BLASTed
to the RefSeq database and the matching quality was
recorded for each probe. As the 11 Affymetrix probes for
each probeset usually covers several hundred bases, the
criteria to be considered a perfect match to a RefSeq
record was defined as at least 80% of the probes (9 out of
the 11) in a probeset perfectly matched the same RefSeq
record. A list of probes that perfectly matched RefSeq
entries was generated for each platform and then used to
find commonalities. For RefSeq entries that were per-
fectly matched by more than one probe from the same
platform, the probe that is closest to the 30 end was used
and probes that matched more than one RefSeq entry
were excluded.

2. RefSeq set (RefSeq)—the RefSeq database was also used in
a less restrictive way to match Agilent probes with

Affymetrix probesets. The probe ID of Agilent platform
and the probe-set ID of Affymetrix platform were mapped
to the RefSeq database available from the ArrayTrack26,27

Library dated June 2008 that mirrored the RefSeq database
in National Center for Biotechnology Information (NCBI).
The common set was identified using a Venn diagram
approach. In the case of multiple probes (or probesets) IDs
corresponding to the same RefSeq ID for each platform,
the median expression value of the probes (or probesets)
was calculated and used in subsequent analyses.

3. Unigene set (Unigene)—for the least stringent approach
for identifying matching probes across platforms, the
Unigene database was used following the same method
described above for the RefSeq database. The ArrayTrack
Unigene database was used, which mirror the NCBI
database dated 21 May 2008.

T-index for assessing the cross-platform consistency

Both transferability of signature genes and cross-platform
predictivity of classifiers were evaluated using the T-index
score:
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where TA is a measure of transferability of classifiers
developed from platform A to platform B. Total of N (that
is, 500) classifiers were developed. Pk

A and Pk
B are prediction

accuracies for the same test set profiled by platforms A and
B, respectively. s.d. is the standard deviation of (Pk

A�Pk
B). The

T-index score ranges 0 to 1 with o0.5 indicating that
transferability is due to chance. Larger T-index score
indicates better transferability across platforms.

Results

Classifiers were generated for prediction on whether or not a
given animal had evidence of hepatocellular necrosis. Both
the transferability of signature genes and classifiers were
assessed based on the prediction accuracy calculated using
the test set (Figure 1). A T-index score was used to evaluate
the degree of transferability. All of the analyses were based
on the subset of transcripts that were common to both the
Affymetrix and Agilent platforms. Three different methods,
differing based on their level of stringency, were used to
identify the common transcripts (CTs). As shown in Table 1,
the number of CTs increases as the stringency of the
mapping criteria decreases, thus providing an opportunity
to analyze the dependency of the cross-platform transfer-
ability on the stringency that is used in identifying CTs. As
the Agilent platform used a two-color design (one ‘control’
and one ‘treated’ sample, each labeled with a different dye,
hybridized to the same microarray) in contrast to the
Affymetrix platform in which a single labeled sample was
hybridized to each microarray, this difference in hybridi-
zation configuration resulted in three different analysis
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configurations (ACs) to compare the data generated from
the two different platforms (Table 1).

The transferability analysis of both signature genes
and classifiers revealed 80–90% consistency between the

Affymetrix and Agilent platforms for the studied toxicoge-
nomics data set regardless of the choice of machine learning
methods, the CTs selected, and the ACs applied (the detailed
results are presented below).

Transferability of signature genes

Three different algorithms, nearest centroid, K-nearest
neighbor and decision forest,28,29 were used to generate
classifiers and associated signature genes for each of the
three CT sets and for each of the three ACs for comparing
data across the two platforms. The general analysis proce-
dure is depicted in Figure 1a with additional details provided
for each of the algorithms in Supplementary Methods.
Figure 2 and Supplementary Table 3 shows the T-index
scores and prediction accuracy of the classifiers that were
obtained for each of the 54 permutations (two microarray
platforms � three ACs � three CT sets � three algorithms).
Overall, a high degree of transferability was observed with
an average T-index score of 0.84. There was no significant
difference in transferability regarding the directionality of

Table 1 Description of three ACs for comparing data gener-
ated from the Affymetrix platform with data generated from
the Agilent platform and three methods to identify the CT sets
between two platforms

Abbreviation Description

AC
AC 1 The intensity data of the Affymetrix microarrays

(418 samples) compares with the averaged ratio
data from the dye-swapped Agilent microarrays
(318 samples).

AC 2 The ratio data of the Affymetrix microarrays
(318 samples) compares with the averaged ratio
data from the dye-swapped Agilent microarrays
(318 samples).a

AC 3 The intensity data of the Affymetrix microarrays
(318 samples) compares with the intensity
data extracted from the Agilent platform
(318 samples).b

CT
SeqMap The most stringent method employed a

sequence-based mapping approach (4860 CTs).c

RefSeq The less stringent method was to identify the
probes/probesets from both platforms having
the same RefSeq ID (6312 CTs).

Unigene The least stringent approach was used to generate
the list of Unigene-based CTs (9954 CTs).

Abbreviations: AC, analysis configuration; CT, common transcript; MAQC,

MicroArray Quality Control Phase.
aThe Affymetrix ratio data were calculated using its intensity data similar to the

ratios produced by ‘dual’ samples assayed on the Agilent platform (a treated

sample compared to an average of the corresponding control samples).
bIn the first phase of the MAQC project, a comparative analysis between one-color

and two-color data generated on the same platform revealed that the intensity

value from the single channel of the two-color array exhibits similar sensitivity/

specificity as the two-color ratio array data.18 Therefore, the intensity data are the

average value of Cy3 and Cy5 corresponding only to the treated samples.
cThe method is identical to the one used in the MAQC-I project.19
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Figure 1 Two analysis procedures for evaluation of cross-platform

consistency. (a) Transferability of signature genes was assessed by first

developing Affymetrix-specific classifiers using the training set data. The
signature genes used by the Affymetrix classifiers were then applied to

the training set data generated using the Agilent platform in order to

produce Agilent-specific classifiers. Both sets of platform-specific

classifiers were then used to predict their own test sets, independently.
The process was repeated such that the signature genes were initially

identified on the Agilent platform and then applied to the Affymetrix

platform. The prediction accuracy that was achieved with both

platforms was used to assess the cross-platform consistency at the level
of signature genes. (b) Transferability of classifiers is to assess whether a

classifier generated from one platform can accurately predict the

samples profiled by another platform. Specifically, a set of classifiers
using the training set data was generated for a given platform. These

classifiers were then used to predict the test set for both platforms,

independently. This was examined bi-directionally for both of the

microarray platforms. The difference in the prediction accuracy of the
test sets from the two platforms was used to evaluate cross-platform

consistency at the level of classifiers.
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the transfer (Affymetrix to Agilent or vice versa). Figure 2
clearly shows that the method for selecting the CT sets had
little effect on transferability. The decision forest algorithm
for classification consistently outperformed K-nearest
neighbor and nearest centroid in every instance.

We integrated multiple different histopathological
diagnoses (all related to the severity and extent of the liver
injury) for each animal in this data set into a five-level
of ‘RHI’ score.24 We examined the animals that were
misclassified based on the five-level RHI score. As depicted
in Figure 3, regardless of the choice of AC, CT sets and
classification algorithms used, the frequently misclassified
animals usually had low RHI scores (that is, RHI¼0, 1 and 2,
indicating non-existent or very low levels of liver injury).
The animals frequently misclassified in internal validation
in one platform were also most frequently misclassified in
the other platform using the transferred signature genes
(Figure 4). These results suggest that if the signature genes of
a classifier were generated using one platform, similar

accuracy can be obtained by generating classifiers using
the same signature genes within a different microarray
platform. Moreover, when using the same signature genes
and classification method, the platform-dependent classi-
fiers resulted in not only similar accuracy in predicting the
test set, but also the same samples are consistently
misclassified, which are likely due to the biological outliers
as opposed to a shortcoming in the classification approach.

The results thus far have shown that cross-platform
transferability can be achieved using transcript level data.
However, it has been well documented that cross-platform
reproducibility of microarray data are even greater when the
data are examined at the biological process/pathway level.5

To analyze this, we examined the transferability of data after
the transcript data had been mapped to 352 canonical
pathways using GeneGo’s MetaCore application30,31 and
the analysis procedure detailed in Supplementary Methods.
Supplementary Table 4 summarizes the pathway-based
classifier results. Consistent with previous reports regarding

Figure 2 Assessment of transferability of signature genes across platform using T-index scores. A total of 54 permutations were tested to assess

cross-platform transferability of signature genes, which consisted of two platforms, three ACs, three approaches for generating CT lists and three

classification algorithms. A T-index score was calculated for each permutation to evaluate the transferability. (a) Compares the T-index scores that
were generated by the three ACs, while (b) compares the results that were achieved with the three classification algorithms. (c) Depicts the T-index

scores that were obtained with the three approaches for generating CT sets across the two platforms. Both AC and methods to select the CTs had

little effect on the transferability while a degree of variability was observed for different classification algorithms.
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data reproducibility, improved cross-platform transferability
was observed using pathway level data as compared with
transcript level data. This is evidenced by the overall higher
T-index scores in Supplementary Table 4 as compared with
Supplementary Table 3. Similar to the transcript level
analyses, neither the AC nor the method for choosing CTs
significantly influenced the results.

Although good results were obtained for developing
molecular signatures for a binary classification system (that
is, the presence or absence of necrosis), we further examined
the transferability of signature genes across platforms when
using a continuous variable (that is, endpoint). The RHI
score was selected as the endpoint and cross-platform

transferability was evaluated using three different algo-
rithms (that is, general linear model, partial least square
and partition tree). The analysis procedure is detailed in
Supplementary Methods and the results from 43 model
settings from three algorithms based on AC 3 and the CT set
of SeqMap were summarized in Supplementary Figures 1
and 2. As depicted in Supplementary Figure 1, the training
models developed on the training set of both platforms had
the comparable root mean square error, regardless of
whether the signature genes were derived from the internal
validation conducted within the same platform or were
transferred from the other platform. Moreover, these
training models yielded similar prediction accuracy to their

Figure 3 Distribution of the percentage of misclassified samples across different ‘RHI’ scores. Fifty-four classifiers (summarized in Figure 2 and

Supplementary Table 1 online) were plotted in three panels based on the classification algorithm that was used: (a) nearest centriod (NC);

(b) K-nearest neighbor (KNN); and (c) decision forest (DF). AFX-AFX (or AGL-AGL) denotes the prediction results to the test set that were

obtained when the signature genes were generated using the Affymetrix (or Agilent) training set from the same platform. In contrast, AFX-AGL
(or AGL-AFX) indicates that the signature genes had been identified using the training set from the opposite platform. No samples with an RHI

score 42 was misclassified in any of the permutations tested. The largest misclassification rate was observed for low RHI scores (that is, RHI¼0

and 1), relating to either the absence of any apparent or the presence of only minor amounts of liver injury.
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respective test sets. The Pearson’s correlation of prediction
between the training models of two platforms, one using
signature genes derived from the internal validation while
the other using the transferred signature genes, were 40.97,
which is slightly higher than the correlation (0.94–0.96)
values that were generated with each respective test set
(Supplementary Figure 2). These results show a high cross-
platform transferability of signature genes when using a
continuous endpoint variable.

Transferability of classifiers

The cross-platform transferability of classifier was analyzed
as outlined in Figure 1b. The classifiers were generated
using the training set from a given platform and then
used to predict the test sets from gene expression data
that was generated by both platforms. The prediction
accuracies for the test set of both platforms were compared
using the T-index score to determine the cross-platform
predictivity. K-nearest neighbor, decision forest and support
vector machine were applied to each of three ACs for all
the three CT sets. The analysis procedures for three distinct
classification algorithms are summarized in Supplementary
Methods.

As with the evaluation of the transferability study of
signature genes, a total of 54 different classifiers were
generated with the cross-platform batch correction for ACs
1 and 3, but not for AC 2. Supplementary Table 5 online

summarizes the T-index scores of these classifiers and
illustrates the high prediction accuracy that was observed
for both platforms with an average T-index score of 0.84.
Figure 5 clearly shows that there was little difference among
the prediction accuracy regardless of which of the three ACs
to compare data across the platforms and which of the
methods for selecting the CT sets were used. A slight
variation among classification algorithms used was observed
for cross-platform transferability analysis.

Cross-platform batch correction is necessary to use a
classifier from one platform to predict the samples profiled
by the other platform because the scale in measurement
for the absolute transcript abundance is different between
platforms. As depicted in Figure 6 and summarized in
Supplementary Table 6, when using intensity values generated
by at least one of the platforms (ACs 1 and 3), the
predictivity was low unless a cross-platform batch correction
was performed. In the case of AC 3 (the comparison of
intensity-based data generated by both platforms), a simple
data transformation such as the mean centering method is
sufficient to correct the batch effect (Supplementary Table
6). However, when classifiers from the Affymetrix intensity
data were used to predict the ratio data generated by samples
profiled on the Agilent platform (that is, AC 1), both data
transformation and scaling was required. Not surprisingly,
when ratio-based data were compared (AC 2), no cross-
platform batch correction was required.
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Figure 4 The misclassification rate for each animal of the test set in the study of cross-platform transferability of signature genes. The study of

cross-platform transferability of signature genes involved 54 permutations (that is, two microarray platforms � three ACs � three CT sets � three
algorithms), resulting total of 108 classifiers (that is, transfer from Affymetrix to Agilent and vice versa). The misclassification rate is calculated

by dividing the frequency of misclassification for each animal by the total number of classifiers (that is, 108 classifiers) for the test set. Each bar is

divided into two colors; the blue is associated with the misclassification for the classifiers selected by the cross-validation while the red is for the

classifiers using the transferred signature genes. The label above the bar is the RHI score. All the misclassified animals had the RHI scores of 0, 1 or 2,
and no animals with RHI¼3 and 4 were misclassified. the samples (that is, animals) misclassified by the cross-validation driven classifiers in one

platform likely occurred in another platform using the transferred signature genes, indicating the performance of the classifiers was not affected

by the choice of the signature genes as long as they were validated in any platform. Animals 27, 39, 45, 43 and 83 were misclassified by all

the classifiers.
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Discussion

There is great interest in using classifiers (that is, molecular
signatures) in clinical applications, predictive toxicology
and risk assessment. With the variety of different microarray
platforms that are commercially available, natural questions
arise regarding (1) can signature genes identified from one
platform be directly used by another platform to generate a
predictive classifier, thereby suggesting the potential utility
of using published signature genes in cross-platform appli-
cations? and (2) will a classifier developed using one
platform yield an accurate prediction for samples whose
gene expression data were generated using a different
platform, which would suggest the possible adoption
of the published classifiers for a variety of applications?
Using data from a large toxicogenomics study that were
generated using both the Agilent and Affymetrix microarray

platforms, the results presented here describe a comprehen-
sive evaluation of these specific questions, which revealed
80–90% cross-platform consistency regardless of the choice
of machine learning methods, the CTs selected, and the
ACs applied.

There are many parameters that can be varied when
comparing data across microarray platforms, each of which
could theoretically affect the conclusions that are drawn.
For example, the distinct experimental designs associated
with the one-color Affymetrix platform and the two-color
Agilent platform resulted in three different ways to compare
the data between the two platforms (Table 1). In addition,
the method used to identify the common list of transcripts
that were measured by both platforms (Table 1) and also the
algorithm used for classification of the samples could affect
the cross-platform comparison results. Furthermore, the
cross-platform consistency can be evaluated either at the

Figure 5 Assessment of transferability of classifiers across platform using T-index scores. A total of 54 permutations were tested to assess cross-

platform predictivity of classifiers, which consisted of two platforms, three ACs, three approaches for generating CT sets and three classification

algorithms (that is, support vector machine (SVM), KNN and DF). AFX-AGL (or AGL - AFX) denotes that the classifiers were generated from the
Affymetrix (or Agilent) platform and then used to predict the test sets that profiled by the opposite platform. A T-index score was calculated for each

permutation to evaluate the cross-platform predictivity based on a comparative analysis of prediction results obtained from both of the test sets that

each set of classifiers was used to predict. (a) Compares the T-index scores that were generated by the three ACs, while (b) compares the results that

were achieved with the three classification algorithms. (c) Depicts the T-index scores that were obtained with the three approaches for generating
CT lists across the two platforms. The results indicate that the cross-platform predictivity was independent of the AC and the method for identifying

the CTs, but varied slightly with the classification algorithms.
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level of individual transcripts or at the level of biological
pathways. Finally, the cross-platform consistency can be
assessed in either the binary classification or by regression
analysis. Given their combinatorial nature, it is not feasible
to analyze all possible factors that may influence microarray
results. Therefore, in this study we focused on evaluating
factors that we believe are most important and most likely to
affect the interpretation of cross-platform consistency
results.

We examined a number of the key factors that influence
the cross-platform transferability of signature genes. The
choice of AC or CT determination generally had minimum
effect on the cross-platform consistency, while different
classification methods varied slightly in regards to the
accuracy that each was capable of achieving. Cumulatively,
the results show that the high degree of cross-platform
transferability of signature genes for both binary classifi-
cation and continuous endpoint prediction.

In terms of cross-platform transferability of classifiers,
when ratio-based data were calculated from the one-color
Affymetrix platform and compared with the ratios that were
generated directly by the two-color Agilent platform (AC 2),
no cross-platform batch correction was needed to achieve
high cross-platform predictivity. However, when the inten-
sity data were extracted from the two-color Agilent platform
and compared with the intensity data generated directly by
the one-color Affymetrix platform (AC 3), a simple mean
centering data transformation was necessary to achieve the
same level of cross-platform predictivity. Finally, a more com-
plicated batch correction was required when the intensity
data from the Affymetrix platform compared with the ratio
data from the Agilent platform (AC 1). This emphasizes the

importance of ensuring data equivalency from different
platforms before making cross-platform analysis.

There were unexpected phenotypic results within the
context of this multiple compound study. For example, on
histological examination of the liver sections from each of
the 418 animals, it was observed that two of the control
animals had minimal amounts of liver necrosis. The cause
was idiopathic because these animals had not been exposed
to any toxicants, but as the damage was present, these
animals were counted in the ‘necrosis’ group in this study.
In addition, in spite of the fact that an inbred strain of
animals was used, there was considerable variability across
animals in the phenotypic response to some of the toxicants
at particular dose and time intervals. When one considers
this variability, it was not surprising that several animals
were consistently misclassified regardless of the methods
used to generate the classifiers with or without using the
transferred signature genes. However, in order to better
understand how well the classifiers and signatures genes
performed, the misclassified animals were analyzed further.
In most of the permutations tested, the majority of
the misclassified animals either had minimal amount of
necrosis (that is, predicted as false negatives) or none at all
(that is, predicted as false positives) (Figure 4). From a
technical standpoint, this result was not unexpected. Two
separate cross-sections of the left lobe of the liver were
harvested at necropsy. One section was used for histopatho-
logy and the other section was used for gene expression
profiling. The different levels of hepatocellular necrosis
(minimal, mild, moderate and marked (severe)) were based
on the amount of necrosis that was observable in the section
that was used for histopathology.23 At the more pronounced

Figure 6 Assessment of cross-platform batch correction on the transferability of classifiers across platform. The effect of cross-platform batch

correction was evaluated for each of the 54 permutations before and after the batch correction was applied to the data. (a) Compares the prediction

accuracy that was obtained by generating classifiers using data from the Agilent platform and then predicting the test set data from the Affymetrix
platform. (b) Depicts the results from the reverse approach in which the classifiers were generated using data from the Affymetrix platform and then

used to predict the test set data from the Agilent platform. The results showed that cross-platform batch correction was necessary for ACs 1 and 3,

but not required when the ratio data was used (AC 2).
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levels of necrosis, one would expect that the damage would
not be localized in specific regions of the liver, but might
rather present throughout. This is consistent with the
observations that samples with moderate or marked necrosis
were not misclassified in this study. However, with less
pronounced levels of the liver damage, the injury may not
be homogenous throughout the liver, but rather localized.
This could explain why the observation of necrosis was
made in one section of the tissue, but the damage was not
present in the section that was used for gene expression
profiling, hence leading to the misclassification as a result
of a sampling issue. The second most common set of
misclassifications was when an animal had no observable
necrosis but classified to have necrosis. From a technical
perspective, this could simply be the reverse of the sampling
issue detailed above. However, from a biological perspective,
this observation was also expected. Within the context of
a given dose group, some animals did not have observable
liver necrosis at the 6-h time point (and therefore would be
included in the ‘non-necrosis’ group), yet all of the animals
at the next time point exposed to the same dose had notable
necrosis. We considered these animals to be representative
of ‘incipient toxicity’, in which the liver responds to
the toxic insult at the level of transcription, but has not
yet manifested in the cellular phenotype.32 This could
potentially explain why the necrotic signal was detected at
the molecular (transcript) level and hence the ‘necrosis’ calls
by the classifier, but why this was not yet observable at the
cellular (histopathological) level.

There are several additional interesting observations that
can be made when these results are examined in aggregate.
First, there is no significant difference in the degree of
transferability for both signature genes and classifiers when
generated on the Agilent platform and transferred to the
Affymetrix platform as compared with these in the reverse
order, suggesting the comparability of data derived from the
Affymetrix and Agilent microarray platforms and thus
further supporting the findings of the MAQC-I project
regarding the reproducibility of data generated on different
microarray platforms. Second, the T-index scores for
the transferability of signature genes were statistically
comparable (P-value o0.05) to the scores assessing the
cross-platform predictivity of classifiers, suggesting a posi-
tive correlation between signature genes and classifiers in
terms of cross-platform transferability. Finally, the gene
expression profiles derived from either platform performed
well at separating samples in a principal component analysis
based on the presence or absence of necrosis and also based
on the severity of the necrosis (that is, RHI) (Supplementary
Figure 3). Undoubtedly, there is a strong transcriptional
response to necrosis occurring in the liver that was observed
in this study and therefore the cross-platform consistency of
biological responses evoked by weaker biological stimuli
should be the subject of further investigation.

In summary, the positive findings of cross-platform transfer-
ability in signature gene and classifiers not only open
potential opportunities and applications for the existing
and future signature genes and classifiers for cross-platform

applications, but also suggest the possibility of identifying
clinically relevant biomarkers based on data generated using
expression microarrays, and then assaying these biomarkers
using a lower-density platform (for example, quantitative-
PCR) in clinical and risk assessment applications.
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