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ABSTRACT

BACKGROUND: Osteosarcoma (OS) is the most common malignant bone tumor in clinical practice, and currently, the ability to predict
prognosis in the diagnosis of OS is limited. There is an urgent need to find new diagnostic methods and treatment strategies for OS.

MATERIAL AND METHODS: We downloaded the multi-omics data for OS from the TARGET database. Prognosis-associated methylation
sites were used to identify clustered subtypes of OS, and OS was classified into 3 subtypes (C1, C2, C3). Survival analysis showed signifi-
cant differences between the C3 subtype and the other subtypes. Subsequently, differentially expressed genes (DEGs) across subtypes
were screened and subjected to pathway enrichment analysis.

RESULTS: A total of 249 DEGs were screened from C3 subtype to other subtypes. Metabolic pathway enrichment analysis showed that
DEGs were significantly enriched to the hypoxic pathway. Based on univariate and multivariate COX regression analysis, 12 genes from the
hypoxia pathway were further screened and used to construct hypoxia-related prognostic model (HRPM). External validation of the HRPM
was performed on the GSE21257 dataset. Finally, differences in survival and immune infiltration between high and low risk score groups
were compared.

CONCLUSION: In summary, we proposed a hypoxia-associated risk model based on a 12-gene expression signature, which is potentially

valuable for prognostic diagnosis of patients with OS.
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Background

Osteosarcoma is a highly aggressive malignancy that is often
fatal if not detected and treated early.! The 5-year survival rate
of patients with osteosarcoma without distant metastases has
now been increased to 60-70% percent in clinical practice using
a mix of chemotherapy and surgical treatment options.?
However, for patients with metastatic osteosarcoma, the 5-year
survival rate is less than 30%.3 The capacity to predict progno-
sis at the time of osteosarcoma diagnosis is currently limited.
At the moment of diagnosis, the presence or absence of metas-
tases is the most important predictor of outcome.* However,
markers of metastasis are absolutely meaningless in patients
with just localized disease. As a result, in order to achieve fur-
ther progress in treatment and prognosis, more generalized
predictive methods are needed.

Hypoxia is a characteristic of the great majority of solid
tumors, in which tumor cell proliferation results in hypoxia
due to an aberrant lack of blood supply to the tumor micro-
vasculature.” The absence of oxidative phosphorylation in a
chronic hypoxic environment causes a drop in ATP, forcing
cells to employ anaerobic respiration as a method of survival,
resulting in an accumulation of lactate in the cells and a
decrease in pH.® Although extreme hypoxia causes tumor

necrosis, moderate hypoxia close to the tumor center pro-
motes tumor angiogenesis, cancer cell survival, and stem cell
characteristics, encouraging tumor development, metastasis,
and medication resistance.” DNA methylation plays a signifi-
cant role in defining tissue-specific gene expression and chro-
mosomal instability through epigenetic regulation of gene
expression.® Overall hypomethylation plays a key function in
the tumor cell hypoxia response system to adapt to hypoxia.’
Aberrant methylation has been connected to carcinogenesis,
and in many tumor forms, variations in methylation patterns
between malignancies and benign tissues have been
observed.’ Several biomarkers related with DNA methyla-
tion have been revealed for early cancer diagnosis or prognos-
tic prediction due to the highly conserved feature of DNA
methylation.!1-14

In this study, we identified osteosarcoma methylation sub-
types using prognostic methylation loci and further screened
for differentially expressed genes (DEGs) between subtypes.
Metabolic pathway enrichment analysis of the DEGs indi-
cated that the hypoxic metabolic pathway was significantly
enriched. Accordingly, we constructed a hypoxia-related prog-
nostic model hypoxia-related prognostic model (HRPM)
based on hypoxia pathway genes.
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Material and Methods

Data acquisition

We downloaded gene expression, methylation and copy num-
ber variation (CNV) data for OS from the TARGET database
(https://ocg.cancer.gov/programs/target). Clinical information
of OS patients was also obtained from the TARGET database,
and samples lacking survival information were excluded. Next,
we matched only the sample labels shared between gene expres-
sion data, methylation data, CNV data and clinical data, and
finally retained 83 OS samples. The GSE21257 dataset con-
tains 53 samples of pre-chemotherapy osteosarcoma patients,
we obtained their gene expression matrix and corresponding
clinical information from the Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo) database, which
were used for model validation.

Osteosarcoma methylation subtype clustering
analysis

Before clustering, we first performed univariate Cox regression
analysis of the methylation levels (Beta values) of all CpG sites
in the DNA methylation data of 83 patients. CpG sites associ-
ated with patient prognosis were retained (P value <.05). Next,
unsupervised consensus clustering of these prognosis-related
CpG sites was performed based on the K-means algorithm
using the ConsensusClusterPlus R package.’> The t-SNE
method was performed using the Rtsne package to explore the
distribution of different clusters.!® Subsequently, the relation-
ship between clustered subtypes and overall patient survival
was analyzed using patient-matched survival data using the
survival R package.

Subtype immune infiltration analysis

We applied 3 independent algorithms to assess the abundance
of tumor microenvironment (TME) cell infiltration. The
CIBERSORT R package quantified the abundance of 22
immune cell types!’; the MCPcounter algorithm was used to
identify 10 immune cell lineages'®; and the stromal score,
immune score and tumor purity were calculated for all samples
by the ESTIMATE algorithm." In addition, we calculated the
DNA methylation of tumor-infiltrating lymphocytes (MeTIL)
for all samples based on the PCA method.? Finally, we com-
pared the differences in immune infiltration abundance,
immune scores and MeTIL in different subtypes.

Copy number variation and immunotherapy
analysis

Whole genome gene copy number variations (CNV) profiles
and chromosome arm/gene-level variations were detected by
GISTIC 2.0 (http://archive.broadinstitute.org/cancer/cga/gis-
tic).?! The focal length cutoff was set to 0.5, the confidence
interval was set as 0.9, and all other operational parameters

were set to their default values. Meanwhile, we used OncoPrint
plot to show the overview of CNVs in each OS subtype. To
assess the probability of response to immunotherapy in indi-
viduals with OS, the Tumor Immune Dysfunction and
Exclusion (TIDE) (http://tide.dfciharvard.edu/) algorithm
was used to predict the response to immunotherapy in each
patient. We further compared the differences in immunother-
apy between patients of different subtypes.

Differential expression analysis and enrichment
analysis

Based on the results of the subtype survival analysis, we
screened for differential genes (DEGs) between poor progno-
sis subtypes and good prognosis subtypes. Differential expres-
sion analysis was performed using the limma package?? and the
screening thresholds were set as follows: adjusted P-value less
than .05 and absolute value of Log2 fold change greater than 1.
Gene set enrichment analysis (GSEA) of gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) in
the ranked list of DEGs were performed using the clusterPro-
filer R package.?* Adjusted Pvalue <.05 was considered statis-
tically significant.

Construction and validation of a hypoxia-related
prognostic model

Based on the results of the pathway enrichment analysis, we
acquired hypoxia-related genes (HRGs) from the GSEA
(https://www.gsea-msigdb.org/gsea/index.jsp) website (hall-
mark gene sets: h.all.v7.5.1.entrez.gmt). A total of 200 HRGs
were obtained. Subsequently, univariate Cox regression analysis
was performed on all HRGs to identify hypoxia-related prog-
nostic genes associated with survival (P value <.05). Further,
we used hypoxia-related prognostic genes to establish a multi-
variate Cox regression model, and based on the bidirectional
stepwise regression method, we finally established a hypoxia-
related prognostic model (HRPM). Additionally, Risk scores
were calculated for each patient by using the formula of
HRPM. All patients were then divided into a high-risk group
and a low-risk group based on the median risk score. Survival
plot, time-dependent receiver operating characteristic (ROC)
curve, and patient risk heat map were plotted separately for
HRPM. The GSE21257 dataset was used to validate the
HRPM. Furthermore, we performed a multifactorial inde-
pendent prognostic analysis of risk scores and clinical informa-
tion including gender, age, and metastatic status. Finally, we
compared the differences between high and low risk groups in
terms of immune cell infiltration and immune score.

Results
Tumor methylation subtype clustering analysis

From a total of 385291 methylation sites, we identified 33519
potential prognostic methylation sites. As shown in Figure 1B,
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Figure 1. Osteosarcoma clustering subtype analysis. (A) Heat map of clustering of prognostic methylation sites. (B) Consensus cumulative distribution
Function (CDF) Plot. (C) Relative change in area under CDF curve for k=2-6. (D) TSNE plot shows the distribution of the 3 clustered subtypes. (E) Each

DNA methylation subtype’s survival curves.

it shows a graph of the consensus cumulative distribution func-
tion (CDF) plot for each cluster to help the user determine the
choice of the number of subtypes when the CDF reaches a
maximum, at which point the consistency and clustering con-
fidence is maximized. In addition, Figure 1C is used to repre-
sent the relative increase in cluster stability. Ultimately, based
on the prognostic methylation sites, we classified the tumors
into 3 subtypes (C1-3) with the help of a consensus clustering
method (Figure 1A). The similarity distribution of the sample
subtypes in the clusters was evaluated by visualization in the
t-Distributed Stochastic Neighbor Embedding (tSNE) plot.
tSNE analysis showed good separation of samples between
methylation subtypes (Figure 1D). Moreover, in patients with
osteosarcoma, methylation clustering subgroups are signifi-
cantly associated with overall survival, according to a survival
analysis. The C3 subtype patients had a much poorer overall
survival rate than the other 2 subtypes (Figure 1E).

The tumor microenvironment and immune cell
infiltration

The immune cell components infiltrating the OS samples were
analyzed using the CIBERSORT method and the MCPcounter
algorithm, respectively (Figure 2A and C). Meanwhile, in the

TARGET cohort, differences in the abundance of 3 subtypes
of immune cell infiltration were estimated. The infiltration
abundance of dendritic cells resting and macrophages M1 was
considerably different among the 3 subtypes, according to the
findings based on CIBERSORT (Figure 2B). Furthermore,
with the help of the MCPcounter algorithm, we found that
CD8 T cells, fibroblasts and neutrophils were significantly dif-
ferentially infiltrated in subtypes (Figure 2D). The C3 subtype
had the lowest stromal score and the highest tumor purity,
according to the ESTIMATE algorithm, whereas the immune
score did not differ substantially among the 3 subtypes (Figure
3B, C, and D). We derived MeT1IL score using the methylation
signature of tumor-infiltrating lymphocytes, and integrated it
with immune checkpoint and the immune microenvironment
to map the tumor subtype immune landscape (Figure 3A).
Additionally, the C3 subtype had the lowest MeTIL score of
all the subtypes (Figure 3E).

CNV and TIDE analysis
Raw CNV data from 83 samples were analyzed with GISTIC

2.0, and the locations of significant amplifications and dele-
tions were visualized for each chromosome (Figure 4A and B).
Simultaneously, we plotted the gistic scores of overall copy
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number on the chromosomes (Figure 4C). In addition, we
found that 14q11.2 had the highest amplification frequency,
while 13q14.2 had the highest deletion frequency (Figure 4D).
The TIDE algorithm was used to predict the responsiveness to
immunotherapy in 3 subtypes of osteosarcoma. The results
showed that C3 subtypes responded better to immunotherapy
than C1 and C2 (Figure 5A). Consistent with the expected
results, C3 had lower TIDE scores, dysfunction scores and
exclusion scores than the other subtypes (Figure 5B, C, and D).
Low TIDE scores indicate low tumor immune dysfunction,
low immune escape capacity and therefore high immunotherapy
response.

Differential gene screening and analysis

The above results suggest that the C3 subtype has a poorer
prognosis and a better response to immunotherapy, thus we
compared it to other subtypes (C1 and C2) and screened for
DEGs. A total of 249 DEGs were identified, with 146 genes
that were down-regulated and 103 genes that were up-regu-
lated (Figure 6A). Following that, we used GSEA to conduct
gene ontology and metabolic pathway enrichment analyses of
the DEGs. The GO enrichment analysis results for biological

processes showed that GO items such as translational initiation
(GO:0006413), extracellular matrix organization (GO:0030198)
and protein targeting to ER (GO:0045047) were enriched
(Figure 6B). In the metabolic pathway enrichment analysis, we
found that the hypoxia pathway (NES: 1.65) was activated
while the oxidative phosphorylation pathway (NES: -1.78)
was inhibited (Figure 6C).

Hypoxia-related prognostic model construction and
evaluation

A total of 29 hypoxia-related prognostic genes were screened
from 200 hypoxia-related genes by univariate COX regres-
sion. Subsequently, these genes were used to construct a mul-
tivariate COX regression model, and a HRPM including 12
genes was finally obtained by a bidirectional stepwise regres-
sion method (Figure 7A). The risk score for the HRPM can
be calculated using the following formula: risk score = ANXA2
* 0.203+ CASP6 * 0.366 + CAVIN1 * 2.486+ DCN *
0.671 + FAM162A * 4.871 + HMOX1 * 0.674 + MAFF *
2.098+PDK1 * 0.282+RBPJ * 0.431+SDC3 *
0.586 + STC2 * 1.463 + TES * 0.566. Based on the median
risk score, patients were divided into high-risk and low-risk
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groups. Survival risk heat map showed that higher mortality
in OS patients with higher risk scores (Figure 7B). The sur-
vival analysis revealed that the mortality rate in the high-risk
score group was considerably greater than in the low-risk
score group (Figure 7C). The AUCs for 1-year, 2-year, and
3-year of their time-dependent ROC curves were 0.939,
0.931, and 0.909, respectively (Figure 7E). The HPRM was
subsequently validated in the GSE21257 cohort, and we
observed that the model performed well in the validation set
(Figure 7D and F). Furthermore, a multivariate regression
model was built using the patient’s clinical information and
risk score, and the result indicate that risk score was an inde-

pendent prognosis factor (Figure 8A).

Differences in immune infiltration between high
and low risk groups

The MCPcounter algorithm was used to calculate differences
in infiltration of 10 immune cell types in high and low risk
score groups. In the high-risk score group, CD8 T cells, fibro-
blasts, monocytic lineage, and T cells were significantly lower
abundantly infiltrated than in the low-risk score group (Figure
8B). The immune score and stromal score in the low-risk
group were considerably higher than in the high-risk group
(Figure 8C and D), suggesting that tumor cells in the low-risk
group had higher immune cell infiltration than tumor cells in
the high-risk group. Correspondingly, tumor cell purity was
higher in the high-risk score group than in the low-risk score
group (Figure 8E).

Discussion

Previous studies have shown that OS is closely associated with
aberrant genetic and epigenetic changes, leading to abnormal
expression of oncogenes or methylation of antioncogenes.?*
Meanwhile, a large number of studies have confirmed the reli-
ability of clustering subtype analysis of solid tumors based on
methylation sites.?>?” In this study, 33519 methylation sites
were found to be statistically associated with prognosis in OS
patients. Subsequently, we categorized OS into 3 clustering
subtypes based on prognosis-related methylation sites, with the
C3 subtype possessing the poorest prognosis of the 3 subtypes,
according to the survival analysis. Meanwhile, we observed that
the C3 subtype had the lowest CD8 T cell infiltration, but the
highest macrophage M1 infiltration. Immune infiltration in
the tumor serves a crucial function in tumor progression.?8
Previous studies have linked an increase in the number of CD8
T cells infiltration tumors to a favorable anti-tumor immune
response, suggesting that it could be used as a prognostic indi-
cator,?»30 and that CD8 T lymphocyte infiltration improves
the prognosis of patients with osteosarcoma.3? Macrophages,
which are polarized M1 and M2 macrophages, are a prominent
component of the tumor microenvironment.’> The formation
of the tumor microenvironment encourages M1 to M2 conver-
sion. Early tumor tissue is dominated by M1 macrophages,
which limit angiogenesis and stimulate tumor immunity.33
Contrary to expectations, we discovered that M1 macrophages
of the C3 subtype exhibited the highest infiltration abundance
among the 3 subtypes. In osteosarcoma, Buddingh et al. dis-
covered that macrophages’ anticancer efficacy outweighed their
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Figure 6. Screening and enrichment analysis of differentially expressed genes among osteosarcoma subtypes. (A) Heat map of the differential gene

expression patterns. (B) GO enrichment analysis of differential gene expression.

(C) GSEA enrichment results for metabolic pathways.

probable tumor-supporting role.>* Tumor-infiltrating lympho-
cytes (TILs) have been shown to have a profound impact on
the prognosis of a variety of cancers.>>%” Previous studies have
utilized the methylation signature of TILs compared to gene
expression-based immune markers to measure TILs distribu-
tion and to predict survival and tumor immune response.*8
Therefore, we evaluated the differences in MeTIL scores
among the 3 osteosarcoma subtypes. We observed significantly
lower scores for the C3 subtype than for the other 2 subtypes.

In general, elevated levels of tumor-infiltrating lymphocytes

are thought to be associated with a better prognosis. In particu-
lar, the synergistic effect of tumor stromal and TILs has an
enhanced prognostic impact.3* Based on the TIDE website,
we evaluated the efficacy of immunotherapy against 3 OS sub-
types, and the results suggested that the C3 subtype responded
well to immunotherapy. TIDE has shown potential in pub-
lished clinical trials for predicting patient response to immuno-
therapy, but more studies are needed to prove its utility in OS.

Next, we screened for genes that were differentially expressed

between the C3 subtype and other subtypes. The pathway
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Figure 8. Independent prognostic analysis of model risk scores and immune infiltration analysis. (A) Independent prognostic analysis of risk scores. (B)
Infiltration abundance of 10 immune cell types in groups with high and low risk scores. (C) Comparison of immune scores in high and low risk score
groups. (D) Comparison of stromal scores in high and low risk score groups. (E) Comparison of tumor purity in high and low risk score groups. ns, no

significant; *P <.05. **P <.01. ***P <.001.

enrichment analysis suggested that these DEGs were substan-
tially related with hypoxia pathway activation and oxidative
phosphorylation pathway inhibition. Studies have shown that
patients with lower oxygen levels are not only more tolerant to
radiation than patients with higher oxygen levels, but also have
a greater likelihood of recurrence. Hypoxia is also linked to
chemotherapeutic resistance.*>* Anti-angiogenic medications
cut off the tumor’s blood supply, causing or exacerbating a
hypoxic microenvironment in the tumor, which is the primary
cause of resistance to anti-angiogenic therapy after the first
response, resulting in treatment failure.** This treatment-
induced hypoxia has been proven to be the catalyst for second-
ary anti-vegf therapeutic resistance.** Thus, we speculate that
patients with C3 subtype have a worse prognosis, which could
be connected to chemotherapy resistance due to increased
hypoxia pathway activation.

We obtained 200 hypoxia pathway genes from the MSigDB
database, and screened 12 genes by univariate and multivariate
COX regression analysis to construct HRPM and calculate the
risk scores of the patients. According to the median risk score,
patients were separated into high and low risk groups, and we
found that patients in the high risk group had a lower overall
survival rate. Furthermore, the ROC analysis revealed that the

risk score model is highly reliable. We externally validated the
model in the GSE21257 dataset and also obtained more satis-
factory results. In a multivariate regression analysis, we included
age, sex, metastasis, and risk score, and the result indicated that
risk score could be an independent prognostic factor. Notably,
CD8T cell infiltration was markedly lower in individuals with
high risk scores than in patients with low risk scores.
Furthermore, patients in the high-risk group had lower
immune score and higher tumor purity than those in the low-
risk group.

Overall, in this study, we proposed a novel 12-gene signa-
ture for OS prognosis encompassing ANXA2, CASP6,
CAVIN1, DCN, FAM162A, HMOX1, MAFF, PDK1, RBP]J,
SDC3,STC2,and TES, which can be used to predict high-risk
groups of patients with osteosarcoma. The contribution of
HRPGs as biomarkers of tumor progression as well as poten-
tial therapeutic targets might be confirmed by further studies.

Conclusions

Overall, we constructed a hypoxia-associated gene signature
based on multi-omics data to assess the prognosis of patients
with OS. It may serve as a potential prognostic marker for the
prognosis diagnosis of OS patients.
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