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Background
Osteosarcoma is a highly aggressive malignancy that is often 
fatal if not detected and treated early.1 The 5-year survival rate 
of patients with osteosarcoma without distant metastases has 
now been increased to 60-70% percent in clinical practice using 
a mix of chemotherapy and surgical treatment options.2 
However, for patients with metastatic osteosarcoma, the 5-year 
survival rate is less than 30%.3 The capacity to predict progno-
sis at the time of osteosarcoma diagnosis is currently limited. 
At the moment of diagnosis, the presence or absence of metas-
tases is the most important predictor of outcome.4 However, 
markers of metastasis are absolutely meaningless in patients 
with just localized disease. As a result, in order to achieve fur-
ther progress in treatment and prognosis, more generalized 
predictive methods are needed.

Hypoxia is a characteristic of the great majority of solid 
tumors, in which tumor cell proliferation results in hypoxia 
due to an aberrant lack of blood supply to the tumor micro-
vasculature.5 The absence of oxidative phosphorylation in a 
chronic hypoxic environment causes a drop in ATP, forcing 
cells to employ anaerobic respiration as a method of survival, 
resulting in an accumulation of lactate in the cells and a 
decrease in pH.6 Although extreme hypoxia causes tumor 

necrosis, moderate hypoxia close to the tumor center pro-
motes tumor angiogenesis, cancer cell survival, and stem cell 
characteristics, encouraging tumor development, metastasis, 
and medication resistance.7 DNA methylation plays a signifi-
cant role in defining tissue-specific gene expression and chro-
mosomal instability through epigenetic regulation of gene 
expression.8 Overall hypomethylation plays a key function in 
the tumor cell hypoxia response system to adapt to hypoxia.9 
Aberrant methylation has been connected to carcinogenesis, 
and in many tumor forms, variations in methylation patterns 
between malignancies and benign tissues have been 
observed.10 Several biomarkers related with DNA methyla-
tion have been revealed for early cancer diagnosis or prognos-
tic prediction due to the highly conserved feature of DNA 
methylation.11-14

In this study, we identified osteosarcoma methylation sub-
types using prognostic methylation loci and further screened 
for differentially expressed genes (DEGs) between subtypes. 
Metabolic pathway enrichment analysis of the DEGs indi-
cated that the hypoxic metabolic pathway was significantly 
enriched. Accordingly, we constructed a hypoxia-related prog-
nostic model hypoxia-related prognostic model (HRPM) 
based on hypoxia pathway genes.
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Material and Methods
Data acquisition

We downloaded gene expression, methylation and copy num-
ber variation (CNV) data for OS from the TARGET database 
(https://ocg.cancer.gov/programs/target). Clinical information 
of OS patients was also obtained from the TARGET database, 
and samples lacking survival information were excluded. Next, 
we matched only the sample labels shared between gene expres-
sion data, methylation data, CNV data and clinical data, and 
finally retained 83 OS samples. The GSE21257 dataset con-
tains 53 samples of pre-chemotherapy osteosarcoma patients, 
we obtained their gene expression matrix and corresponding 
clinical information from the Gene Expression Omnibus 
(GEO) (https://www.ncbi.nlm.nih.gov/geo) database, which 
were used for model validation.

Osteosarcoma methylation subtype clustering 
analysis

Before clustering, we first performed univariate Cox regression 
analysis of the methylation levels (Beta values) of all CpG sites 
in the DNA methylation data of 83 patients. CpG sites associ-
ated with patient prognosis were retained (P value < .05). Next, 
unsupervised consensus clustering of these prognosis-related 
CpG sites was performed based on the K-means algorithm 
using the ConsensusClusterPlus R package.15 The t-SNE 
method was performed using the Rtsne package to explore the 
distribution of different clusters.16 Subsequently, the relation-
ship between clustered subtypes and overall patient survival 
was analyzed using patient-matched survival data using the 
survival R package.

Subtype immune infiltration analysis

We applied 3 independent algorithms to assess the abundance 
of tumor microenvironment (TME) cell infiltration. The 
CIBERSORT R package quantified the abundance of 22 
immune cell types17; the MCPcounter algorithm was used to 
identify 10 immune cell lineages18; and the stromal score, 
immune score and tumor purity were calculated for all samples 
by the ESTIMATE algorithm.19 In addition, we calculated the 
DNA methylation of tumor-infiltrating lymphocytes (MeTIL) 
for all samples based on the PCA method.20 Finally, we com-
pared the differences in immune infiltration abundance, 
immune scores and MeTIL in different subtypes.

Copy number variation and immunotherapy 
analysis

Whole genome gene copy number variations (CNV) profiles 
and chromosome arm/gene-level variations were detected by 
GISTIC 2.0 (http://archive.broadinstitute.org/cancer/cga/gis-
tic).21 The focal length cutoff was set to 0.5, the confidence 
interval was set as 0.9, and all other operational parameters 

were set to their default values. Meanwhile, we used OncoPrint 
plot to show the overview of CNVs in each OS subtype. To 
assess the probability of response to immunotherapy in indi-
viduals with OS, the Tumor Immune Dysfunction and 
Exclusion (TIDE) (http://tide.dfci.harvard.edu/) algorithm 
was used to predict the response to immunotherapy in each 
patient. We further compared the differences in immunother-
apy between patients of different subtypes.

Differential expression analysis and enrichment 
analysis

Based on the results of the subtype survival analysis, we 
screened for differential genes (DEGs) between poor progno-
sis subtypes and good prognosis subtypes. Differential expres-
sion analysis was performed using the limma package22 and the 
screening thresholds were set as follows: adjusted P-value less 
than .05 and absolute value of Log2 fold change greater than 1. 
Gene set enrichment analysis (GSEA) of gene ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) in 
the ranked list of DEGs were performed using the clusterPro-
filer R package.23 Adjusted P value <.05 was considered statis-
tically significant.

Construction and validation of a hypoxia-related 
prognostic model

Based on the results of the pathway enrichment analysis, we 
acquired hypoxia-related genes (HRGs) from the GSEA 
(https://www.gsea-msigdb.org/gsea/index.jsp) website (hall-
mark gene sets: h.all.v7.5.1.entrez.gmt). A total of 200 HRGs 
were obtained. Subsequently, univariate Cox regression analysis 
was performed on all HRGs to identify hypoxia-related prog-
nostic genes associated with survival (P value < .05). Further, 
we used hypoxia-related prognostic genes to establish a multi-
variate Cox regression model, and based on the bidirectional 
stepwise regression method, we finally established a hypoxia-
related prognostic model (HRPM). Additionally, Risk scores 
were calculated for each patient by using the formula of 
HRPM. All patients were then divided into a high-risk group 
and a low-risk group based on the median risk score. Survival 
plot, time-dependent receiver operating characteristic (ROC) 
curve, and patient risk heat map were plotted separately for 
HRPM. The GSE21257 dataset was used to validate the 
HRPM. Furthermore, we performed a multifactorial inde-
pendent prognostic analysis of risk scores and clinical informa-
tion including gender, age, and metastatic status. Finally, we 
compared the differences between high and low risk groups in 
terms of immune cell infiltration and immune score.

Results
Tumor methylation subtype clustering analysis

From a total of 385291 methylation sites, we identified 33519 
potential prognostic methylation sites. As shown in Figure 1B, 

https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo
http://archive.broadinstitute.org/cancer/cga/gistic
http://archive.broadinstitute.org/cancer/cga/gistic
http://tide.dfci.harvard.edu/
https://www.gsea-msigdb.org/gsea/index.jsp
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it shows a graph of the consensus cumulative distribution func-
tion (CDF) plot for each cluster to help the user determine the 
choice of the number of subtypes when the CDF reaches a 
maximum, at which point the consistency and clustering con-
fidence is maximized. In addition, Figure 1C is used to repre-
sent the relative increase in cluster stability. Ultimately, based 
on the prognostic methylation sites, we classified the tumors 
into 3 subtypes (C1-3) with the help of a consensus clustering 
method (Figure 1A). The similarity distribution of the sample 
subtypes in the clusters was evaluated by visualization in the 
t-Distributed Stochastic Neighbor Embedding (tSNE) plot. 
tSNE analysis showed good separation of samples between 
methylation subtypes (Figure 1D). Moreover, in patients with 
osteosarcoma, methylation clustering subgroups are signifi-
cantly associated with overall survival, according to a survival 
analysis. The C3 subtype patients had a much poorer overall 
survival rate than the other 2 subtypes (Figure 1E).

The tumor microenvironment and immune cell 
infiltration

The immune cell components infiltrating the OS samples were 
analyzed using the CIBERSORT method and the MCPcounter 
algorithm, respectively (Figure 2A and C). Meanwhile, in the 

TARGET cohort, differences in the abundance of 3 subtypes 
of immune cell infiltration were estimated. The infiltration 
abundance of dendritic cells resting and macrophages M1 was 
considerably different among the 3 subtypes, according to the 
findings based on CIBERSORT (Figure 2B). Furthermore, 
with the help of the MCPcounter algorithm, we found that 
CD8 T cells, fibroblasts and neutrophils were significantly dif-
ferentially infiltrated in subtypes (Figure 2D). The C3 subtype 
had the lowest stromal score and the highest tumor purity, 
according to the ESTIMATE algorithm, whereas the immune 
score did not differ substantially among the 3 subtypes (Figure 
3B, C, and D). We derived MeTIL score using the methylation 
signature of tumor-infiltrating lymphocytes, and integrated it 
with immune checkpoint and the immune microenvironment 
to map the tumor subtype immune landscape (Figure 3A). 
Additionally, the C3 subtype had the lowest MeTIL score of 
all the subtypes (Figure 3E).

CNV and TIDE analysis

Raw CNV data from 83 samples were analyzed with GISTIC 
2.0, and the locations of significant amplifications and dele-
tions were visualized for each chromosome (Figure 4A and B). 
Simultaneously, we plotted the gistic scores of overall copy 

Figure 1. Osteosarcoma clustering subtype analysis. (A) Heat map of clustering of prognostic methylation sites. (B) Consensus cumulative distribution 

Function (CDF) Plot. (C) Relative change in area under CDF curve for k = 2-6. (D) TSNE plot shows the distribution of the 3 clustered subtypes. (E) Each 

DNA methylation subtype’s survival curves.
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number on the chromosomes (Figure 4C). In addition, we 
found that 14q11.2 had the highest amplification frequency, 
while 13q14.2 had the highest deletion frequency (Figure 4D). 
The TIDE algorithm was used to predict the responsiveness to 
immunotherapy in 3 subtypes of osteosarcoma. The results 
showed that C3 subtypes responded better to immunotherapy 
than C1 and C2 (Figure 5A). Consistent with the expected 
results, C3 had lower TIDE scores, dysfunction scores and 
exclusion scores than the other subtypes (Figure 5B, C, and D). 
Low TIDE scores indicate low tumor immune dysfunction, 
low immune escape capacity and therefore high immunotherapy 
response.

Differential gene screening and analysis

The above results suggest that the C3 subtype has a poorer 
prognosis and a better response to immunotherapy, thus we 
compared it to other subtypes (C1 and C2) and screened for 
DEGs. A total of 249 DEGs were identified, with 146 genes 
that were down-regulated and 103 genes that were up-regu-
lated (Figure 6A). Following that, we used GSEA to conduct 
gene ontology and metabolic pathway enrichment analyses of 
the DEGs. The GO enrichment analysis results for biological 

processes showed that GO items such as translational initiation 
(GO:0006413), extracellular matrix organization (GO:0030198) 
and protein targeting to ER (GO:0045047) were enriched 
(Figure 6B). In the metabolic pathway enrichment analysis, we 
found that the hypoxia pathway (NES: 1.65) was activated 
while the oxidative phosphorylation pathway (NES: −1.78) 
was inhibited (Figure 6C).

Hypoxia-related prognostic model construction and 
evaluation

A total of 29 hypoxia-related prognostic genes were screened 
from 200 hypoxia-related genes by univariate COX regres-
sion. Subsequently, these genes were used to construct a mul-
tivariate COX regression model, and a HRPM including 12 
genes was finally obtained by a bidirectional stepwise regres-
sion method (Figure 7A). The risk score for the HRPM can 
be calculated using the following formula: risk score = ANXA2 
* 0.203 + CASP6 * 0.366 + CAVIN1 * 2.486 + DCN * 
0.671 + FAM162A * 4.871 + HMOX1 * 0.674 + MAFF * 
2.098 + PDK1 * 0.282 + RBPJ * 0.431 + SDC3 * 
0.586 + STC2 * 1.463 + TES * 0.566. Based on the median 
risk score, patients were divided into high-risk and low-risk 

Figure 4. Overall copy number variation landscape in patients with osteosarcoma. (A) Copy number amplification events in osteosarcoma gene 

expression levels. (B) Copy number deletion events in osteosarcoma gene expression levels. (C) The gistic scores of overall copy number on the 

chromosomes. (D) Percentage of copy number variants in the corresponding patient cohort (Top 20).
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groups. Survival risk heat map showed that higher mortality 
in OS patients with higher risk scores (Figure 7B). The sur-
vival analysis revealed that the mortality rate in the high-risk 
score group was considerably greater than in the low-risk 
score group (Figure 7C). The AUCs for 1-year, 2-year, and 
3-year of their time-dependent ROC curves were 0.939, 
0.931, and 0.909, respectively (Figure 7E). The HPRM was 
subsequently validated in the GSE21257 cohort, and we 
observed that the model performed well in the validation set 
(Figure 7D and F). Furthermore, a multivariate regression 
model was built using the patient’s clinical information and 
risk score, and the result indicate that risk score was an inde-
pendent prognosis factor (Figure 8A).

Differences in immune infiltration between high 
and low risk groups

The MCPcounter algorithm was used to calculate differences 
in infiltration of 10 immune cell types in high and low risk 
score groups. In the high-risk score group, CD8 T cells, fibro-
blasts, monocytic lineage, and T cells were significantly lower 
abundantly infiltrated than in the low-risk score group (Figure 
8B). The immune score and stromal score in the low-risk 
group were considerably higher than in the high-risk group 
(Figure 8C and D), suggesting that tumor cells in the low-risk 
group had higher immune cell infiltration than tumor cells in 
the high-risk group. Correspondingly, tumor cell purity was 
higher in the high-risk score group than in the low-risk score 
group (Figure 8E).

Discussion
Previous studies have shown that OS is closely associated with 
aberrant genetic and epigenetic changes, leading to abnormal 
expression of oncogenes or methylation of antioncogenes.24 
Meanwhile, a large number of studies have confirmed the reli-
ability of clustering subtype analysis of solid tumors based on 
methylation sites.25-27 In this study, 33519 methylation sites 
were found to be statistically associated with prognosis in OS 
patients. Subsequently, we categorized OS into 3 clustering 
subtypes based on prognosis-related methylation sites, with the 
C3 subtype possessing the poorest prognosis of the 3 subtypes, 
according to the survival analysis. Meanwhile, we observed that 
the C3 subtype had the lowest CD8 T cell infiltration, but the 
highest macrophage M1 infiltration. Immune infiltration in 
the tumor serves a crucial function in tumor progression.28 
Previous studies have linked an increase in the number of CD8 
T cells infiltration tumors to a favorable anti-tumor immune 
response, suggesting that it could be used as a prognostic indi-
cator,29,30 and that CD8 T lymphocyte infiltration improves 
the prognosis of patients with osteosarcoma.31 Macrophages, 
which are polarized M1 and M2 macrophages, are a prominent 
component of the tumor microenvironment.32 The formation 
of the tumor microenvironment encourages M1 to M2 conver-
sion. Early tumor tissue is dominated by M1 macrophages, 
which limit angiogenesis and stimulate tumor immunity.33 
Contrary to expectations, we discovered that M1 macrophages 
of the C3 subtype exhibited the highest infiltration abundance 
among the 3 subtypes. In osteosarcoma, Buddingh et al. dis-
covered that macrophages’ anticancer efficacy outweighed their 

Figure 5. Analysis of immunotherapy for osteosarcoma subtypes. (A) Response rate of immunotherapy among 3 subtypes of osteosarcoma.  

(B) Differences in TIDE scores among 3 subtypes of osteosarcoma. (C) Differences in dysfunction scores among 3 subtypes of osteosarcoma.  

(D) Differences in exclusion scores among 3 subtypes of osteosarcoma. ns, no significant; *P < .05. **P < .01. ***P < .001.
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probable tumor-supporting role.34 Tumor-infiltrating lympho-
cytes (TILs) have been shown to have a profound impact on 
the prognosis of a variety of cancers.35-37 Previous studies have 
utilized the methylation signature of TILs compared to gene 
expression-based immune markers to measure TILs distribu-
tion and to predict survival and tumor immune response.38 
Therefore, we evaluated the differences in MeTIL scores 
among the 3 osteosarcoma subtypes. We observed significantly 
lower scores for the C3 subtype than for the other 2 subtypes. 
In general, elevated levels of tumor-infiltrating lymphocytes 

are thought to be associated with a better prognosis. In particu-
lar, the synergistic effect of tumor stromal and TILs has an 
enhanced prognostic impact.39,40 Based on the TIDE website, 
we evaluated the efficacy of immunotherapy against 3 OS sub-
types, and the results suggested that the C3 subtype responded 
well to immunotherapy. TIDE has shown potential in pub-
lished clinical trials for predicting patient response to immuno-
therapy, but more studies are needed to prove its utility in OS.

Next, we screened for genes that were differentially expressed 
between the C3 subtype and other subtypes. The pathway 

Figure 6. Screening and enrichment analysis of differentially expressed genes among osteosarcoma subtypes. (A) Heat map of the differential gene 

expression patterns. (B) GO enrichment analysis of differential gene expression. (C) GSEA enrichment results for metabolic pathways.
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enrichment analysis suggested that these DEGs were substan-
tially related with hypoxia pathway activation and oxidative 
phosphorylation pathway inhibition. Studies have shown that 
patients with lower oxygen levels are not only more tolerant to 
radiation than patients with higher oxygen levels, but also have 
a greater likelihood of recurrence.41 Hypoxia is also linked to 
chemotherapeutic resistance.42,43 Anti-angiogenic medications 
cut off the tumor’s blood supply, causing or exacerbating a 
hypoxic microenvironment in the tumor, which is the primary 
cause of resistance to anti-angiogenic therapy after the first 
response, resulting in treatment failure.44 This treatment-
induced hypoxia has been proven to be the catalyst for second-
ary anti-vegf therapeutic resistance.45,46 Thus, we speculate that 
patients with C3 subtype have a worse prognosis, which could 
be connected to chemotherapy resistance due to increased 
hypoxia pathway activation.

We obtained 200 hypoxia pathway genes from the MSigDB 
database, and screened 12 genes by univariate and multivariate 
COX regression analysis to construct HRPM and calculate the 
risk scores of the patients. According to the median risk score, 
patients were separated into high and low risk groups, and we 
found that patients in the high risk group had a lower overall 
survival rate. Furthermore, the ROC analysis revealed that the 

risk score model is highly reliable. We externally validated the 
model in the GSE21257 dataset and also obtained more satis-
factory results. In a multivariate regression analysis, we included 
age, sex, metastasis, and risk score, and the result indicated that 
risk score could be an independent prognostic factor. Notably, 
CD8 T cell infiltration was markedly lower in individuals with 
high risk scores than in patients with low risk scores. 
Furthermore, patients in the high-risk group had lower 
immune score and higher tumor purity than those in the low-
risk group.

Overall, in this study, we proposed a novel 12-gene signa-
ture for OS prognosis encompassing ANXA2, CASP6, 
CAVIN1, DCN, FAM162A, HMOX1, MAFF, PDK1, RBPJ, 
SDC3, STC2, and TES, which can be used to predict high-risk 
groups of patients with osteosarcoma. The contribution of 
HRPGs as biomarkers of tumor progression as well as poten-
tial therapeutic targets might be confirmed by further studies.

Conclusions
Overall, we constructed a hypoxia-associated gene signature 
based on multi-omics data to assess the prognosis of patients 
with OS. It may serve as a potential prognostic marker for the 
prognosis diagnosis of OS patients.

Figure 8. Independent prognostic analysis of model risk scores and immune infiltration analysis. (A) Independent prognostic analysis of risk scores. (B) 

Infiltration abundance of 10 immune cell types in groups with high and low risk scores. (C) Comparison of immune scores in high and low risk score 

groups. (D) Comparison of stromal scores in high and low risk score groups. (E) Comparison of tumor purity in high and low risk score groups. ns, no 

significant; *P < .05. **P < .01. ***P < .001.
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