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The tumour necrosis factor‑α converting enzyme inhibition activity of a series comprising of novel tartrate‑based 
analogues has been quantitatively analysed in terms of molecular descriptors. The statistically validated quantitative 
structure‑activity relationship models provided rationales to explain the inhibition activity of these congeners. The 
descriptors identified through combinatorial protocol in multiple linear regression analysis have highlighted the role 
of Moran autocorrelation of lag 7, weighted by atomic van der Waals volume, presence of both prime and nonprime 
amide carbonyl oxygen in the tartrate moiety and occurrence of five membered ring bearing substituents at varying 
sites. A few potential novel tartrate‑based analogues have been suggested for further investigation.
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Tumour necrosis factor-α (TNF-α) is one of the 
cytokines, which is involved in immunomodulation 
and proinflammation events. The overproduction of 
TNF-α has been concerned in many autoimmune 
disorders namely rheumatoid arthritis, Crohn’s disease 
and psoriasis[1-4]. The reduction of TNF-α levels has 
been managed for successful treatment of inflammatory 
diseases[5]. Thus, the finding of a low cost, orally active 
small drug, which could moderate TNF-α levels is 
of prime importance at clinical level at present. One 
important strategy to reduce the levels of soluble 
TNF-α is to block the release of TNF-α from the cell 
surface by the inhibition of TNF-α converting enzyme 
(TACE)[6-8]. This enzyme being a membrane-bound 
zinc-metalloprotease is able to convert the 26-kD 
transmembrane pro-form of TNF-α to the mature 17-kD 
soluble form[9,10]. It has been shown that the active site 
of TACE shares many common features with the matrix 
metalloproteinases (MMPs)[11,12]. However, a unique 
feature of TACE is a tunnel interconnecting the S1′ and 
S3′ pockets into a single large cavity. The selectivity 
of TACE may be accomplished by incorporating 
appropriate substitutions that bind in the narrow S1′ 
tunnel and large S3′ pocket[13-17].

As the broad-spectrum MMP inhibitors exhibit a 
dose-limiting toxicity leading to side effects known 
as musculoskeletal syndrome (MMS)[18-25], therefore, 
selective inhibitors of TACE are desirable at present. 
As most of the common TACE inhibitors are 
hydroxamate based[26,27], the exploration of selective 
nonhydroxamate drugs, devoid of MMS, may be more 
potential TACE inhibitors. In view of this, Rosner, 
et al.[28] have screened their proprietary mixture-based 
combinatorial library with the automated ligand 
identification system[29-31] and were able to identify 
four compounds (Compound. 1-4; Table 1, fig. 1) 
of moderate TACE affinities. The structures of these 
compounds were similar to bis-amides of l-tartaric 
acid (tartrates)[32] while the corresponding d-tartrates 
were reported as inactive. This was the first 
report in which a unique tridentate zinc binding 
mode was revealed with the tartrate scaffold and 
is defined by the two hydroxyl groups and the 
nonprime amide carbonyl interacting with the catalytic 
zinc atom (fig. 2). The zinc atom maintains its 
coordination with the three imidazole nitrogen’s 
of His405, His409 and His415 and attains 
pseudo-octahedral coordination geometry during the 
binding mode. The prime amide carbonyl oxygen 
makes hydrogen bonds with the backbone –NH of 
both Leu348 and Gly349. The OH near the nonprime 
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TABLE 1: MOLECULAR DESCRIPTORS, OBSERVED, CALCULATED AND PREDICTED TUMOR NECROSIS FACTOR-α 
CONVERTING ENZYME INHIBITION ACTIVITY OF NOVEL TARTRATE-BASED ANALOGUES
Compounds R1 R2 nR05 MATS7v O‑058 pKi (M)

Obsa Calcd. Eq. 3 Prtcd LOO
1 3‑Methoxy‑4‑piperazinyl (2‑Thiophen‑2‑ylethyl) amino 1 0.048 2 6.40 6.15 6.12

2b 2‑Chlorophenyl‑4‑piperazinyl (2‑Thiophen‑2‑ylethyl) amino 1 0.168 2 6.40 5.19 ‑

3 4‑(Benzyl) piperidinyl (2‑Thiophen‑2‑ylethyl) amino 1 0.051 2 5.96 6.12 6.14

4 Cyclohexylmethylamino (2‑Thiophen‑2‑ylethyl) amino 1 0.066 2 5.85 6.00 6.02

5 4‑(2‑Pyridinyl) piperazinyl (2‑Thiophen‑2‑ylethyl) amino 1 0.140 2 5.60 5.41 5.37

6 Dimethylamino (2‑Thiophen‑2‑ylethyl) amino 1 0.131 2 5.89 5.49 5.39

7 Benzylmethylamino (2‑Thiophen‑2‑ylethyl) amino 1 0.034 2 6.12 6.26 6.27

8 Methylphenethylamino (2‑Thiophen‑2‑ylethyl) amino 1 0.054 2 5.89 6.10 6.12

9 Furan‑2‑ylmethylmethylamino (2‑Thiophen‑2‑ylethyl) amino 2 0.108 2 5.99 6.30 6.35

10 Pyridine‑3‑ylmethylmethylamino (2‑Thiophen‑2‑ylethyl) amino 1 0.015 2 6.03 6.41 6.46

11 2‑Phenylpiperidinyl (2‑Thiophen‑2‑ylethyl) amino 1 0.012 2 6.49 6.43 6.42

12 2‑Phenylpyrrolidinyl (2‑Thiophen‑2‑ylethyl) amino 2 0.040 2 7.02 6.84 6.83

13c 3‑Phenylpyrrolidinyl (2‑Thiophen‑2‑ylethyl) amino 2 0.089 2 6.34 6.45 ‑

14c 1,2,3,4‑Tetrahydroisoquinolin‑2‑yl (2‑Thiophen‑2‑ylethyl) amino 1 0.043 2 7.04 6.19 ‑

15 2,3‑Dihydro‑1H‑isoindol‑2‑yl (2‑Thiophen‑2‑ylethyl) amino 2 0.004 2 7.18 7.13 7.12

16c 2‑Pyridinyl‑pyrrolidin‑1‑yl (2‑Thiophen‑2‑ylethyl) amino 2 0.050 2 6.73 6.76 ‑

17 2‑Thiazolyl‑pyrrolidin‑1‑yl (2‑Thiophen‑2‑ylethyl) amino 3 0.109 2 6.79 6.92 7.01

18 2‑Chlorophenylpyrrolidin‑1‑yl (2‑Thiophen‑2‑ylethyl) amino 2 0.048 2 6.49 6.78 6.80

19c 3‑Chlorophenylpyrrolidin‑1‑yl (2‑Thiophen‑2‑ylethyl) amino 2 −0.008 2 7.96 7.22 ‑

20 4‑Chlorophenylpyrrolidin‑1‑yl (2‑Thiophen‑2‑ylethyl) amino 2 0.077 2 6.12 6.55 6.58

21 3‑Methylphenylpyrrolidin‑1‑yl (2‑Thiophen‑2‑ylethyl) amino 2 −0.049 2 7.89 7.55 7.48

22c 3‑Methoxyphenylpyrrolidin‑1‑yl (2‑Thiophen‑2‑ylethyl) amino 2 0.041 2 7.48 6.83 ‑

23c 3‑Dimethylaminophenylpyrrolidin‑1‑yl (2‑Thiophen‑2‑ylethyl) amino 2 0.043 2 7.39 6.82 ‑

24b 3‑Chlorophenylpyrrolidin‑1‑yl Benzylamino 1 −0.050 2 5.84 6.92 ‑

25 Phenylpyrrolidin‑1‑yl (Benzofuran‑2‑ylmethyl) amino 2 0.072 2 6.80 6.59 6.57

26 Phenylpyrrolidin‑1‑yl (4‑Benzylthiophen‑2‑ylethyl) amino 2 0.022 2 7.18 6.98 6.97

27 4‑Fluorophenylpyrrolidin‑1‑yl (4‑Benzylthiophen‑2‑ylmethyl) amino 2 −0.029 2 7.03 7.39 7.44

28c 3‑Clorophenylpyrrolidin‑1‑yl (4‑Benzylbenzyl) amino 1 −0.021 2 7.15 6.69 ‑

29c Phenylpyrrolidin‑1‑yl (4‑Benzylthiazol‑2‑ylethyl) amino 2 0.031 2 7.32 6.91 ‑

30 Phenylpyrrolidin‑1‑yl (4‑Benzylthiazol‑2‑ylmethyl) amino 2 −0.028 2 8.10 7.38 7.28

31 Phenylpyrrolidin‑1‑yl (4‑Benzyloxazol‑2‑ylethyl) amino 2 0.037 2 6.34 6.86 6.90

32 Phenylpyrrolidin‑1‑yl (4‑Benzyloxazol‑2‑ylmethyl) amino 2 −0.006 2 7.66 7.21 7.16

33 3‑Chlorophenylpyrrolidin‑1‑yl [4‑(2‑Chlorobenzyl) thiophen‑2‑yl 
methyl] amino

2 −0.049 1 5.82 6.05 6.19

34 3‑Chlorophenylpyrrolidin‑1‑yl [4‑(2‑Chlorobenzyl) thiophen‑2‑yl 
methyl] amino

2 −0.052 1 5.95 6.07 6.15

35c Thiazol‑2‑yl (2‑Thiophen‑2‑ylethyl) amino 2 0.075 1 5.26 5.06 ‑

36 1‑Methyl‑1H‑imidazol‑2‑yl (2‑Thiophen‑2‑ylethyl) amino 2 0.131 1 4.97 4.62 4.22
aTaken from Ref.[28], b‘Outlier’ compound, cTest‑set compound, nR05=Number of five‑membered rings, LOO=Leave‑one‑out

Fig. 1: The generalized structures of tartrate-based compounds 
(Table 1).
(a) Compounds 1-32: X=Y=O, 33: X=O, Y=S, 34: X=S, Y=O; 
(b) compounds 35 and 36.

ba

side also forms hydrogen bonds with the carboxylate 
oxygen of Glu406. In this way, all the four oxygen 
atoms on the tartrate core collectively make both 
the nonprime and prime binding interactions with 
the TACE protein. A novel series of compounds, 
able to undergo such interactions, were further 
prepared and evaluated for their binding affinity (Ki) 
for TACE[28]. However this study, being sort of 
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structure-activity relationship (SAR), was targeted at 
the alterations of substituents at different positions 
and provided no rationale to reduce the trial-and-error 
factors. Hence, the present communication is aimed 
at to perform a 2D quantitative structure-activity 
relationship (2D  QSAR) for the reported compounds 
so as to provide the rationale for drug-design and 
to grasp some molecular features of the compounds 
for the property study relating to their binding 
affinity for TACE. In the congeneric series, where 
a relative study is being carried out, the 2D 
descriptors may play important role in deriving the 
significant relationships with biological activities 
of the compounds. The novelty and importance 
of a 2D-QSAR study is due to its simplicity for 
the calculations of different descriptors and their 
interpretation in physical sense. Thus the study 
may not fully explain the mode of interaction 
at the receptor site(s) but it will certainly reflect 
upon important molecular features relevant for the 
interaction.

MATERIALS AND METHODS

The active compounds along with their binding 
constant, Ki under present investigation (Table 1) 
have been taken from the literature[28]. The 
generalised structure of these compounds is shown in 
fig. 1a and b. The binding affinity has been expressed 
on the negative logarithm as pKi (–logKi) on the 
molar basis and stand as the dependent descriptor 
for present quantitative analysis. For modelling 
purpose, the data-set was divided into training- and 
test-sets to insure external validation of models 
derived through identified descriptors. Additionally, 

leave-one-out (LOO) and leave-five-out (L5O) 
procedures were employed for internal validation of 
generated models from the training-set.

The selection of compounds for test set has been 
made through SYSTAT, Systat Software Inc., 
Chicago, USA[33] using the single linkage hierarchical 
cluster procedure involving the Euclidean distances of 
the activity values. Nearly 25% of the compounds, 
from total population, were selected for this purpose. 
Based on the pKi values of the data set, a cluster tree 
was generated and compounds were selected in such 
a way to keep them at a maximum possible distance 
from each other. In this way, the test set includes the 
highest to lowest active congeners of the data set. 
In SYSTAT, by default, the normalised Euclidean 
distances are computed to join the objects of cluster. 
The normalised distances are root mean-squared 
distances. The single linkage uses distance between 
two closest members in clustering. It generates 
long clusters and provides scope to choose objects 
at different intervals. Due to this reason, a single 
linkage clustering procedure was applied.

Molecular descriptors:
The structures of the compounds under study 
have been drawn in ChemDraw, Cambridge Soft 
Corporation, Cambridge, USA[34] using the standard 
procedure. These structures were converted into 
3D objects using the default conversion procedure 
implemented in the CS Chem3D Ultra, Cambridge 
Soft Corporation, Cambridge, USA. The generated 
3D-structures of the compounds were subjected to 
energy minimization in the MOPAC module, using the 
AM1 procedure for closed shell systems, implemented 
in the CS Chem3D Ultra. This will ensure 
a well-defined conformer relationship across the 
compounds of the study. All these energy minimised 
structures of respective compounds have been ported 
to DRAGON software (Virtual Computational 
Chemistry Laboratory, Munich, Germany)[35] for 
computing the descriptors corresponding to 0D, 
1D, and 2D classes. Table 2 provides the definition 
and scope of these descriptor classes in addressing 
the structural features which were employed in 
present QSAR work. The combinatorial protocol in 
multiple linear regression (CP-MLR) computational 
procedure[36] has been used for present work in 
developing QSAR models. Prior to application 
of the CP-MLR procedure, all those descriptors 
which are intercorrelated beyond 0.90 and showing 

Fig. 2: Tridentate chelation of the zinc atom with the tartrate core[28].
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a correlation of less than 0.1 with the biological 
endpoints (descriptor vs. activity, r<0.1) were 
excluded. The remaining descriptors, able to address 
the biological activity of these compounds, will serve 
as the database (pool) at the end of this initial stage.

Model development:
The CP-MLR is a ‘filter’-based variable selection 
procedure for model development in QSAR studies[36]. 
Its procedural aspects and implementation are 
discussed in some of our recent publications[37-42]. 
The thrust of this procedure is in its embedded 
‘filters’. They are briefly as follows: Filter-1 seeds 
the variables by way of limiting interparameter 
correlations to predefined level (upper limit ≤0.79); 
filter-2 controls the variables entry to a regression 
equation through t-values of coefficients (threshold 
value ≥2.0); filter-3 provides comparability of 
equations with different number of variables in 
terms of square root of adjusted multiple correlation 
coefficient of regression equation, r-bar; filter-4 
estimates the consistency of the equation in terms of 
cross-validated r2 or q2 with LOO cross-validation 
as default option (threshold value 0.3≤q2≤1.0). All 
these filters make the variable selection process 
efficient and lead to a unique solution. In order 
to collect the descriptors with higher information 
content and explanatory power, the threshold of 
filter-3 was successively incremented with increasing 
number of descriptors (per equation) by considering 
the r-bar value of the preceding optimum model as 
the new threshold for next generation. Furthermore, 
in order to discover any chance correlations 
associated with the models recognized in CP-MLR, 
each cross-validated model has been put to a 

randomisation test[43,44] by repeated randomisation 
of the activity to discover the chance correlations, 
if any, associated with them. For this, every model 
has been subjected to 100 simulation runs with 
scrambled activity. The scrambled activity models 
with regression statistics better than or equal to that 
of the original activity model have been counted, to 
express the per cent chance correlation of the model 
under scrutiny.

Applicability domain:
The utility of a QSAR model is based on its accurate 
prediction ability for new compounds. A model 
is valid only within its training domain and new 
compounds must be assessed as belonging to the 
domain before the model is applied. The applicability 
domain is assessed by the leverage values for each 
compound [45,46]. The Williams plot (the plot of 
standardised residuals versus leverage values, h) can 
then be used for an immediate and simple graphical 
detection of both the response outliers (Y-outliers) 
and structurally influential chemicals (X-outliers) in 
the model. In this plot, the applicability domain is 
established inside a squared area within ±x (standard 
deviation) and a leverage threshold h*. The threshold 
h* is generally fixed at 3(k+1)/n (n is the number 
of training-set compounds and k is the number of 
model parameters) whereas x=2 or 3. Prediction 
must be considered unreliable for compounds with a 
high leverage value (h>h*). On the other hand, when 
the leverage value of a compound is lower than the 
threshold value, the probability of accordance between 
predicted and observed values is as high as that for 
the training set compounds.

TABLE 2: DESCRIPTOR CLASSES USED FOR THE ANALYSIS OF TUMOR NECROSIS FACTOR-α CONVERTING 
ENZYME ACTIVITY OF TARTRAE-BASED ANALOGUES AND IDENFIFIED CATEGORIES IN MODELING THE ACTIVITY
Descriptor class (acronyms) Definition and scope
Constitutional (CONST) Dimensionless or 0D descriptors; independent from molecular connectivity and conformations
Topological (TOPO) 2D‑descriptor from molecular graphs and independent conformations
Molecular walk counts (MWC) 2D‑descriptors representing self‑returning walks counts of different lengths
Modified Burden eigenvalues (BCUT) 2D‑descriptors representing positive and negative eigenvalues of the adjacency matrix, 

weights the diagonal elements and atoms
Galvez topological charge indices (GALVEZ) 2D‑descriptors representing the first 10 eigenvalues of corrected adjacency matrix
2D‑autocorrelations (2DAUTO) Molecular descriptors calculated from the molecular graphs by summing the products of atom 

weights of the terminal atoms of all the paths of the considered path length (the lag)
Functional groups (FUNC) Molecular descriptors based on the counting of the chemical functional groups
Atom‑centred fragments (ACF) Molecular descriptors based on the counting of 120 atom‑centred fragments, as defined by 

Ghose‑Crippen
Empirical (EMP) 1D‑descriptors represent the counts of nonsingle bonds, hydrophilic groups and ratio of the 

number of aromatic bonds and total bonds in an H‑depleted molecule
Properties (PROP) 1D‑descriptors representing molecular properties of a molecule
aTodeschini and Consonni, Ref.[35]
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RESULTS AND DISCUSSION

From the listed compounds in Table 1, two 
analogues (compound 2 and 24) have been removed 
from the study. The X-ray structure of compound 
2 has revealed that the 2-chlorophenyl-piperazine 
group binds to the S1 subsite, defined by Val314, 
Lys315, Thr347 and Leu350. This subsite, being a 
flat hydrophobic patch, was solvent exposed. The 
chlorophenyl group appeared disordered and lacks 
2fofc electron density[28]. The compound was unable to 
bind properly to the subsite and behave indifferently 
from other analogues of the series. Likewise, 
shortening of ethylene linker to the methylene linker 
resulted into significantly less active compound 24 
compared to compound 21. Because of larger size of 
phenyl ring and shorter linker, the benzyl amide group 
of compound 24 may not able to bind properly in the 
narrow S1′ tunnel. This compound, therefore, also 
remained the ‘outlier’ of present study.

The remaining 34 compounds have been further 
divided into training and test sets. As mentioned 
above, the selection of test-set compounds was made 
through SYSTAT using the single linkage hierarchical 
cluster procedure involving the Euclidean distances 
of the pKi values. Nine compounds (compound 13, 
14, 16, 19, 22, 23, 28, 29 and 35; Table 1) were 
selected from the generated cluster tree in such a way 
to keep them at a maximum possible distance from 
each other. The test set was employed for external 
validation of models derived from remaining 25 
analogues of the series. The internal consistency, for 
each of the generated models from training set, was 
achieved through LOO and L5O procedures. A total 
number of 481 descriptors, belonging to 0D, 1D and 
2D classes, were computed for these compounds 
utilizing DRAGON software. The descriptors which 
were poorly correlated with dependent variable, pKi 
and were intercorrelated among themselves were 
eliminated initially. The leftover 99 descriptors were 
collated in a pool and were subjected to CP-MLR. 
A large number of models were obtained in one, two 
and three descriptors. In doing so the threshold of 
filter-3 was successively incremented with increasing 
number of descriptors (per equation) by considering 
the r-bar value of the preceding optimum model 
as the new threshold for next generation. However, 
the statistical significance was achieved only for 
21 models that were obtained in three descriptors. 
The identified descriptors for them along with their 

average regression coefficients and the total incidence 
are given in Table 3. The name of each descriptor is 
given in the footnote under this Table. Three such 
models, in the increasing level of significance, are 
given through Eqs. 1-3

pKi=42.594(±15.951) PW3–8.231(±1.581) 
MATS7v+1.463(±0.278) O-058–10.552
n=25, r=0.845, s=0.431, F (3, 21)=17.460, AIC=0.257, 
FIT=1.541, LOF=0.270,
q2

LOO=0.554, q2
L5O=0.563, r2

Test=0.663 (1)

pKi=–0.209(±0.068) RBN–9.081(±1.516) 
MATS7v+1.433(±0.264) O-058+6.467
n=25, r=0.857, s=0.415, F (3, 21)=19.379, AIC=0.238, 
FIT=1.710, LOF=0.250,
q2

LOO=0.624, q2
L5O=0.625, r2

Test=0.517 (2)

TABLE 3: DESCRIPTORS IDENTIFIED FOR MODELING 
THE TUMOR NECROSIS FACTOR-α CONVERTING 
ENZYME INHIBITION ACTIVITY OF TARTRATE-BASED 
ANALOGUES ALONG WITH THEIR AVERAGE 
REGRESSION COEFFICIENTS AND THE TOTAL 
INCIDENCE
Descriptora Avg. reg. coeff. 

(total incidence) b
Descriptora Avg. reg. coeff. 

(total incidence) b

CONST 2DAUTO
Me −46.238 (1) MATS4m −54.517 (2)
RBN −0.209 (1) MATS6m −56.186 (1)
nDB 0.653 (2) MATS8m 58.640 (4)
nR05 0.634 (8) MATS1v 11.162 (2)

TOPO MATS7v −7.948 (10)
MAXDN 5.532 (7) MATS4e 8.109 (1)
PW3 42.594 (1) MATS5e 8.627 (1)

MWC MATS1p 9.324 (1)
MWC09 7.772 (1) FUN

BCUT nCs −0.363 (2)
BELm1 4.415 (1) nNR2 −0.762 (1)
BEHv1 4.960 (2) ACF

C‑031 0.489 (1)
O‑058 1.288 (13)

aThe descriptors are identified from the three‑parameter models emerged from 
CP‑MLR protocol with filter‑1 as 0.3, filter‑2 as 2.0, filter‑3 as 0.82, filter‑4 as 
0.3≤q2≤1.0, and number of compounds in the study are 25 in the training‑set and 
9 in the test‑set, Me=The mean atomic Sanderson electronegativity (scaled on 
carbon atom), RBN=Number of rotatable bonds, nDB=Number of double bonds, 
nR05=Number of five‑membered rings, MAXDN=Maximal electrotopological 
negative variation, PW3=Path/walk 3‑Randic shape index; MWC09=Molecular walk 
count of order 9, BELm1 and BEHv1‑Are the lowest and the highest eigenvalues 
no. 1 of Burden matrices/weighted, respectively, by atomic masses (m) and 
atomic van der Waals volumes (v), MATSkw=Moran autocorrelation, where 
k and w represent, respectively, the lag and the atomic properties such as 
mass (m), van der Waals volume (v), Sanderson electronegativity (e) and 
polarisability (p), nCs and nNR2=The number of total secondary C (sp3) and 
tertiary amines (aliphatic), respectively, C‑031 and O‑058, the functionality 
X‑CR–X and O=, respectively. bThe average regression coefficient of the descriptor 
corresponding to all models and the total number of its incidences, the arithmetic 
sign of the coefficient represents the actual sign of the regression coefficient in 
the models. CONST=Constitutional, TOPO=Topological, BCUT=Modified Burden 
eigenvalues, 2DAUTO=2D‑autocorrelations, ACF=Atom‑centred fragments, 
FUN=Functional group
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pKi=0.631(±0.129) nR05–7.946(±1.255) 
MATS7v+1.498(±0.218) O-058+2.900
n=25, r=0.906, s=0.342, F (3, 21) =31.910, 
AIC=0.161, FIT=2.816, LOF=0.170,
q2

LOO=0.732, q2
L5O=0.690, r2

Test=0.660 (3)

where n and F represent, respectively, the number of 
data points and the F-ratio between the variances of 
calculated and observed activities. The ±data within 
the parentheses are the standard errors associated 
with regression coefficients. FIT is the Kubinyi 
function [47,48], AIC is the Akaike’s information 
criterion[49,50] and LOF is the Friedman’s lack of 
fit factor[51]. The FIT function is closely related to 
the F-statistic but proved to be a useful parameter 
for the assessment of the quality of the models. 
The disadvantage of the F-value is its sensitivity to 
changes in the number of independent variables, k in 
the equation that describes the model. The F-value 
is more sensitive if k is small, whereas it is less 
sensitive if k is large. The FIT function, on the other 
hand, is less sensitive to a lower number k but is 
more sensitive to a larger number k. The best model 
would yield the highest value for this function. The 
AIC takes into account the statistical goodness of 
fit and the number of parameters that have to be 
estimated to achieve that degree of fit. The model that 
produces the lower AIC value should be considered 
potentially the most useful. The LOF factor takes into 
account the number of terms used in the equation and 
is not biased, as are the indicator variables, toward 
large number of parameters. A statistical sound 
model will generate the lower value of LOF. In a 
comparative study, where QSAR models are generated 
from the descriptors belonging to different categories, 
the FIT function, the AIC criterion and the LOF 
factor are very important parameters in explaining the 
best model[52-54]. In all above equations, the F-values 
remained significant at 99% level [F3,21 (0.01)=4.874] 
and indices q2

LOO and q2
L5O (>0.5) have accounted for 

their internal robustness. The r2
Test value, greater than 

0.5, specified that the identified test-set is able to 
validate these models externally. The descriptors RBN, 
nR05, O-058 and MATS7v involved in these models 
represent, respectively, number of rotatable bonds, 
number of five-membered rings, number of doubly 
bonded oxygen atoms and Moran autocorrelation of 
lag 7/weighted by atomic van der Waals volume.

Though all the above models are reliable enough 
in statistical sense, but the highest variance (r2), in 

observed activities, is explained only through Eq. 3. 
The other statistical parameters, s, F, AIC, FIT, LOF 
and q2 also favoured Eq. 3 as a statistically reliable 
model and thus retained for further discussion.

The computed values of descriptors employed in 
the derivation of Eq. 3 are given in Table 1 for the 
sake of convenience. That these descriptors have 
no mutual correlation is shown in Table 4. The 
descriptor, MATS7v divulged the implication of 
lag 7, weighted by atomic van der Waals volume. 
The highest value of descriptor O-058 could be 
two (Table 1) for the compound under study, 
advocating the need of both oxygen (O=) atoms. 
Alternatively, it is essential to have a tartrate core 
for key binding interaction involving these oxygen 
atoms through hydrogen bonding with receptor sites. 
Replacement of any of these oxygen atoms with 
sulphur (Compounds 33 and 34) and substitution 
of the nonprime amide with amide isosteres, such 
as a thiazole or imidazole (Compound 35 and 36), 
afforded compounds with weaker TACE inhibition 
and were not advantageous. The loss of activity in 
these compounds is thought to be caused by the 
poorer hydrogen-bond acceptor character of sulphur 
and lack of interactions with the S1 subsite or the 
face-edge interactions with His415. From Eq. 3, it 
appeared that the higher values of descriptors nR05 
and O-058 and the lower (or more negative) value of 
MATS7v are conducive in improving the activity of 
a compound. The calculated and predicted pKis using, 
respectively, Eq. 3 and LOO procedure, remained in 
parity with the observed ones (Table 1). The plot, 
showing the variation of observed versus calculated 
and predicted pKis is given in fig. 3. Except two 
‘outlier’ congeners (Compound 2 and 24), all other 
compounds have exhibited systematic variation 
between observed and calculated pKi values, reflecting 
upon the goodness of fit. Based on Eq. 3, a few 
potential inhibitors of TACE have been suggested 
for further exploration. These are given in Table 5 
along with descriptors and calculated pKi values. The 
predicted activities of some of these congeners were 

TABLE 4: CORRELATION MATRIXa AMONGST THE 
DESCRIPTORS OF EQ. 3
Descriptors nR05 MATS7v O‑058 pKi

nR05 1.000
MATS7v 0.028 1.000
O‑058 0.047 0.038 1.000
pKi 0.179 0.304 0.195 1.000
aMatrix elements are the r2‑values
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much superior to that of highest potent compounds 
reported in the original series.

The applicability domain was visualised through 
the Williams plot (fig. 4) for the highest significant 
model, obtained for complete data-set as

pKi=0.638(±0.150) nR05–6.269(±1.383) 
MATS7v+1.540(±0.251) O-058+2.848
n=36, r=0.821, s=0.461, F (3,32)=22.011, q2

LOO=0.586, 
q2

L5O=0.524
AIC=0.266, FIT=1.467, LOF=0.272 (4)

The limits of normal values for the Y-outliers (response 
outliers) was set equal to ±2 times the standard 
deviation and a leverage threshold at h*. For present 
work, the residual limits and leverage threshold 
were ±0.92 and 0.33, respectively. From fig. 4, it 
appeared that compounds 2 and 24 were obvious 
‘outliers’ while compound 36 (X-outlier) is a prominent 
congener to influence the statistics of present series. 
The residual and leverage of this influential compound 
were 0.127 and 0.349, respectively. All remaining 
compounds (training set and test set), present within 
the square, indicated that the applicability domain 
is fully justified and the identified model has been 
evaluated correctly. Furthermore, the derived model 
matches the high quality parameters with good fitting 
power and capability of assessing external data.

The present study has, therefore, provided guidelines 
to develop new tartrate-based analogues which 
may be potent inhibitors of TNF-α converting 
enzyme (TACE). The emerged descriptors enlightened 
the role of Moran autocorrelations pertaining to lag 7, 
weighted by atomic van der Waals volume, presence 
of both prime and nonprime amide carbonyl oxygen 
in the tartrate moiety and occurrence of 5 membered 
ring bearing substituents at prime and nonprime sites. 
A few potential novel tartrate-based analogues, as the 
inhibitors of TNF-α converting enzyme (TACE), have 
been suggested for further investigation.
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